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Abstract
Whereas the Dedekind-MacNeille completion D(P ) of a poset P is

the minimal lattice L such that every element of L is a join of elements
of P, the minimal strict completion D(P )∗ is the minimal lattice L
such that the poset of join-irreducible elements of L is isomorphic to
P. (These two completions are the same if every element of P is join-
irreducible). In this paper we study lattices which are minimal strict
completions of finite orders. Such lattices are in one-to-one correspon-
dence with finite posets. Among other results we show that, for every
finite poset P, D(P )∗ is always generated by its doubly-irreducible el-
ements. Furthermore, we characterize the posets P for which D(P )∗

is a lower semimodular lattice and, equivalently, a modular lattice.
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1. Introduction

Let P be a finite poset. A lattice L is called a (join) completion of P if it has
a subposet Q isomorphic to P and such that every element of L is a join of
some elements of Q. The best known completion of a poset P is its Dedekind-
MacNeille completion D(P ) (also called normal completion.) The set of all
completions of a poset P is a lattice first studied apparently by Robinson and
Wolk in [13], then by Daĺık ([5], [6]) and Nation and Pogel ([11]). The least
element of this lattice is the Dedekind-MacNeille completion of P, whereas
its greatest element is the lattice O(P ) of all (order) ideals of P. A lattice
L is a strict (join) completion of P if it is a completion of P such that the
subposet Q is the poset of join-irreducible elements of L. (The dual notion
of strict meet completion has been considered by Šešelja and Tepavčević in
[14].) The set of all strict completions of P is also a lattice. This lattice was
studied by Bordalo and Monjardet in [3]. We denote by D(P )∗ the least
element of this lattice and we call it the minimal strict completion of P.
In fact the lattice of strict completions is the interval [D(P )∗,O(P )] of the
lattice of all the completions of P.

It is well known that the correspondence P ↔ O(P ) between the class
of all (finite) posets and the class of all (finite) distributive lattices is one-to-
one. On the other hand the correspondence between posets and Dedekind-
MacNeille completions is not one-to-one. But a result recalled in Section 2
establishes a one-to-one correspondence between the class of all posets and
the class of all minimal strict completions. The purpose of this paper is to
study some properties of this correspondence and some related properties
on lattices of completions.

In Section 2, we give notations for some notions concerning posets or
lattices, useful in this paper and we recall results on the lattices of all comple-
tions and of all strict completions. Section 3 starts with characterizing the
posets for which the minimal strict completion is the Dedekind-MacNeille
completion. This occurs in particular if P is a sum of chains or an ordinal
sum of antichains. We study these two cases. In the following Section we
first show that the minimal strict completion of a poset is always gener-
ated by its doubly-irreducible elements. Then we characterize the posets for
which this minimal strict completion is a modular lattice. We finish with
results on the behavior of the Dedekind-MacNeille or the minimal strict
completions relatively to some operations on posets. In our conclusion we
mention some open problems.

N.b.: All definitions, propositions, theorems etc. stated in the paper
are numbered from 1 to 17 in their appearance order.
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2. Notations and preliminaries

Throughout this paper the terms poset or lattice mean finite poset or lattice.
The symbol P is used to denote the set P as well as the poset (P,≤).

An element j (respectively m) of P is join-irreducible (respectively meet-
irreducible) if j = ∨A (respectively m = ∨A) with A ⊆ P implies j ∈ A
(respectively m ∈ A). We denote by J(P ) or simply J (resp. M(P ) or simply
M) the set of join-irreducible (respectively meet-irreducible) elements of P.
An element is join-reducible (respectively meet-reducible) if it is not join-
irreducible (respectively meet-irreducible). So, if P has a least element,
denoted by 0P or 0 (respectively a greatest element denoted by 1P or 1),
then 0 = ∨∅ (respectively 1 = ∨∅) is join-reducible (respectively meet-
reducible).

For x ∈ P, the principal ideal {y ∈ P : y ≤ x} generated by x, is denoted
by (x]P or simply by (x] and the ideal (x] \ {x} is denoted by (x[P or (x[.
The following fact will often be useful.

Lemma 1. For all x, y ∈ P, (x[∩(y[= (x] ∩ (y] if x and y are incomparable,
and (x[∩(y[= (y[ if y ≤ x.

Let P, Q be two disjoint posets:

- The symbol O(P ) denotes the lattice of all order ideals of P and
D(P ) its Dedekind-MacNeille or normal completion: D(P ) = {(x] :
x ∈ P} ∪ {∩(xi] : xi ∈ P} ∪ {P}.

- The symbol P +Q denotes the cardinal or direct sum of P and Q, i.e.
the disjoint union of P and Q.

- The symbol P ×Q denotes the direct product of P and Q.

- The symbol P⊕Q denotes the ordinal sum of P and Q (every element
of P is put below every element of Q).

- The symbol P ⊕′ Q denotes the reduced ordinal sum of a poset P ad-
mitting a maximum element 1P and a poset Q admitting a minimum
element 0Q, these two elements being identified.

We now recall the definitions and/or the notations for some types of
posets. The poset formed by n incomparable elements, i.e. the antichain of
size n, will be denoted by An and A1 will be also denoted by 1. The poset
formed by n comparable elements, i.e. the chain of size n, will be denoted
by Cn.
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A poset P is a weak order if it does not contain the direct sum of a
singleton and of a 2-element chain as subposet. Equivalently, a weak order
is the ordinal sum of antichains and we denote it by An1⊕ ...⊕Ank

...⊕Anm .
The sets Ank

are called the levels of the weak order.
A poset P is series-parallel if it does not contain the poset called N and

represented on Figure 1 as a subposet. A poset P is N -free if it does not
contain the poset represented on Figure 1 as a convex subposet.
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Figure 1

Finally, a poset P is chain-antichain complete if every maximal chain in P
meets every maximal antichain in P.

Definitions 2. Let P be a poset. A lattice L is a completion of a poset P
if it has a subposet Q isomorphic to P and such that every element of L is
a join of some elements of Q.

A completion L of P is strict if Q is the poset of join-irreducible elements
of L.

A strict completion L of P is minimal if it has minimal cardinality
among all strict completions of P.

Obviously a strict completion is a completion. We use the term comple-
tion or strict completion instead of the more precise terms join completion
used by Nation and Pogel in [11], or strict join completion used by Bordalo
and Monjardet in [3].

Theorem 3 below summarizes some results proved in [11] for comple-
tions, and in [3] for strict completions. It shows in particular that every
poset P has a (unique up to isomorphism) minimal strict completion and,
moreover, it determines all the strict completions. In fact the strict comple-
tions of the poset P form a lattice, denoted by MP , with the minimal strict
completion as minimum element.

We must first recall the definitions of some classes of lattices. A lattice
is atomistic if its join-irreducible elements are its atoms, i.e. the elements
covering the least element of the lattice.

A lattice is lower semimodular if x covered by x∨y implies x∧y covered
by y. A lattice is locally lower distributive if it is lower semimodular and
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does not contain the modular lattice M3 with 3 atoms and 5 elements as a
sublattice.

One defines a dependency relation D on the set J(L) of join-irreducible
elements of a lattice L by: aDb if there exists p ∈ L with a ≤ b ∨ p and
a 6≤ c ∨ p for c < p. A lattice is lower bounded if its dependence relation has
no cycles. (See [8] for equivalent definitions and properties of lower bounded
lattices.) Recall in particular that an atomistic and lower bounded lattice
is locally lower distributive.

The Boolean lattice with n atoms will be denoted by 2n.

Theorem 3. For any given poset P there exists exactly one (up to isomor-
phism) minimal strict completion of P, denoted by D(P )∗. This completion
is a meet subsemilattice of the lattice O(P ) of all order ideals of P and it con-
sists of the following ideals: D(P )∗={P} ∪ {(x] : x∈P} ∪ {∩(xi] : xi∈P}
∪{(x[ : x ∈ P} = D(P ) ∪ {(x[ : x ∈ P}.

A lattice L is a strict completion of a poset P (respectively a completion
of P ) if and only if it is isomorphic to a meet subsemilattice of the lattice
O(P ) containing D(P )∗ (respectively to a meet subsemilattice of the lattice
O(P ) containing D(P )).

The set MP of all strict completions (respectively the set of all comple-
tions) of a poset P is isomorphic to the interval [D(P )∗,O(P )](respectively
to the interval [D(P ),O(P )]) of all the meet subsemilattices of O(P ) con-
taining D(P )∗ (respectively, containing D(P )). It is a lower bounded and
lower semimodular lattice.

In view of this theorem, henceforth we will look upon each completion
of a poset P as a meet subsemilattice of O(P ). So each element of such a
completion is considered as an order ideal of P. Note also that, since these
completions are closed by the intersection operation and contain P, they are
Moore families (closure systems) on the set P. In fact the above intervals
[D(P )∗,O(P )] and [D(P ),O(P )]) are intervals in the lattice M of all Moore
families on P (a lattice studied among others in [4]).

Definition 4. We say that a lattice L is a minimal strict completion if it is
a minimal strict completion of some poset P.

As we said in the introduction, Theorem 3 implies that the map which
assigns to each poset its mimimal strict completion is a one-to-one corre-
spondence between all posets and all lattices which are minimal strict com-
pletions. Its inverse map assigns to every minimal strict completion L its
poset J(L) of join-irreducible elements.
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3. Posets for which the minimal strict completion is the
Dedekind-MacNeille completion

By Theorem 3, the two lattices of all strict completions of the poset P and
of all the completions of P are the same if and only if D(P )∗ = D(P ), an
equality characterized below.

Proposition 5. Let P be a poset. Then D(P )∗ = D(P ) if and only if every
element of P is join-irreducible.

Proof. By definitions, D(P )∗ = D(P ) if and only if every ideal (x[ is a
principal ideal or an intersection of such ideals. If x is join-reducible, it is
the join of p > 1 elements xi covered by x and so (x[= ∪{(xi] : i = 1, ..., p}
is not a principal ideal. Moreover, (x[ cannot be an intersection of principal
ideals, since any such ideal containing (x[ must contain x. Conversely, if x
is join-irreducible, either there exists a unique y covered by x or there exists
p + 1(≥ 3) elements y1, ..., yp, t such that, for every i, yi < x and yi < t or
x is a minimal (not minimum) element of P. In the first case (x[= (y], in
the second (x[= (x] ∩ t] and in the third (x[= (x] ∩ (z], where z is another
minimal element of P.

Remark. It follows from Theorem 3 and Proposition 5 that, among all
posets having the same Dedekind-MacNeille completion, there exists at most
one with the property that every element is join-irreducible.

We consider now some particular posets P for which D(P )∗ = D(P ), i.e.
for which every element of P is join-irreducible. The simplest case occurs,
when P is An, the n-element antichain. (In this case J(P ) = M(P ) = P ).
The poset P is the n-element antichain An if and only if its minimal strict
completion is isomorphic to the modular lattice Mn with n atoms and n+2
elements, and also if and only if its lattice of order ideals is the Boolean lat-
tice 2n with n atoms. We need the definition of a certain significant class of
Moore families: let A ⊆ An and x /∈ A. We define FA,x as {X ⊆ An : A 6⊆ X
or x ∈ X}.

Proposition 6. i) The lattice MAn of all strict completions of the antichain
An is lower bounded, atomistic with 2n−(n+2) atoms, and, therefore, lower
locally distributive. Its least element is the Moore family on An containing
all the singletons of An, the sets ∅, and An.

ii) The meet-irreducible elements of MAn are the Moore families FA,x

with A ⊆ An, where |A| ≥ 2 and x /∈ A. In particular its coatoms are the
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n Moore families F(An\{x}),x = 2n \ (An \ {x}) (where x is any element
of An).

iii) If L is an atomistic lattice with n atoms, then there exists a strict
completion in MAn which is isomorphic to L.

Proof. i) The fact that MAn is lower bounded is a consequence of The-
orem 3. Since D(P )∗ is isomorphic to Mn, it is the Moore family on An

containing all the singletons of An (and An and ∅). Then the elements
of MAn are the Moore families containing all the singletons of An. So the
atoms of MAn are the Moore families containing all the singletons, the sets
∅, An and another arbitrary subset of An. Thus there are 2n−(n+2) atoms.
It is obvious that every element of MAn is the join of the atoms which it
contains. Then MAn is atomistic and since it is lower bounded it is lower
locally distributive.

ii) It is clear that the meet-irreducible elements of MAn are the meet-
irreducible elements of M, the lattice of all Moore families on An, that
belong toMAn . It is known (see, e.g., [4]) that the meet-irreducible elements
of M are the Moore families FA,x with ∅ ⊂ A ⊆ An and x /∈ A. In particular
its coatoms are the families F(An\{x}),x. Since F{y},x = {X ⊆ An : y ∈ X
implies x ∈ X} does not contain {y}, it follows that FA,x belongs to MAn

if and only if |A| ≥ 2.

iii) Obvious.

Remark. |MAn | is the number of Moore families on a set of cardinality n
containing all the singletons of this set. This number is known up to n = 6
(L. Nourine, [12]).

Corollary 7. The cardinality of an atomistic lattice L with n atoms takes
all the values of the interval [n + 2, 2n].

Proof. By Proposition 6 iii) above, such a lattice is isomorphic to an arbi-
trary Moore family ofMAn . As the latticeMAn is lower locally distributive,
it contains a Moore family of cardinality k for every k ∈ [n + 2, 2n].

The following result gives a restricted converse condition.

Proposition 8. Let L be a lattice. For every n > 2, if |J(L)| = n and
|L| = 2n − 1, then L is atomistic.

Proof. Suppose J(L) is not an antichain. We consider two cases.
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Case a): Assume that J(L) has a maximum element x. Since |J(L)| = n >
2, there exist a, b ∈ J(L) with a, b < x. So, the sets {x} and {x, a} are not
ideals of J(L), and |L| ≤ |O((J(L))| ≤ 2n − 2, a contradiction.

Case b): If J(L) has not a maximum element, it has several maximal
elements. Let {m1, ..., mk} be the maximal elements of J(L) which are not
minimal. If k ≥ 2, then we argue that each {mi}, i = 1, ..., k, is not an ideal,
so |L| ≤ |O((J(L))| ≤ 2n − k, another contradiction. If k = 1, then there
must exist an element x incomparable to m1. Then {m1} and {x,m1} are
not ideals of J(L), and we obtain the same contradiction as in case a).

We consider now two generalizations of the case where P is an antichain.
We begin with the case where P is an ordinal sum of antichains of cardinality
greater than one.

Proposition 9. Let P = An1 ⊕ ... ⊕ Ank
⊕ ... ⊕ Anmbe a weak order with

nk ≥ 2 for every k = 1, ...,m. Then D(P ) = D(P )∗ is a series-parallel
modular lattice such that no two consecutive levels have both cardinality 1.

Proof. It is clear that every element of such a weak order P is join-
irreducible (and also meet-irreducible). Thus D(P )∗ = D(P ). The lattice
D(P ) is obtained from P by adding an element a1 below An1 , an element
ak,k+1 between two consecutive levels Ank

and Ank+1
, and an element anm+1

above Anm . Then D(P ) is the ordinal sum of the antichains Ank
and of the

antichains formed by the added elements. So it is series-parallel and it is
obvious that it satisfies the required condition.

The second generalization, where P is a sum of chains, has been already
studied in [3]. Recall the result:

Proposition 10. If P is a sum of m chains of cardinalities n1, ..., nm, then
D(P ) = D(P )∗ is the lattice 1⊕P⊕1 and MP is an atomistic lower bounded
lattice with

∏{ni + 1 : i = 1, ..., m} −∑{ni : i = 1, ..., m} − 2 atoms.

Remark. For such a sum of chains, D(P ) = D(P )∗ is a modular lattice if
and only if each chain has cardinality 1.

4. More about minimal strict completions

If P contains at least one join-reducible element, then D(P ) ⊂ D(P )∗, and
the following result shows that the completions of P contained betweenD(P )
and D(P )∗ form a Boolean lattice under the inclusion order:
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Proposition 11. Let P be a poset and s the number of its join-reducible
elements. In the lattice of all completions of P, the interval [D(P ),D(P )∗]
is isomorphic to the Boolean lattice 2s.

Proof. First note that {D(P )∗ = D(P ) ∪ {(x[ : x ∈ P/J(P )}. (Indeed, if
x ∈ J(P ), then (x[ is a principal ideal or an intersection of such ideals). We
only have to prove that, for every A ⊆ I = {(x[ : x ∈ P/J(P )},D(P )∪A is
a completion of P, i.e., by Theorem 3, that it is closed under the intersection
operation. Let I, J be in D(P ) ∪A. If I and J ∈ D(P ), then I ∩ J ∈ D(P ).
If I = (x] ∈ D(P ) or I = (x[∈ A and J = (y[∈ A with I incomparable to
J (thus x incomparable to y), then I ∩ J = (x] ∩ (y] by Lemma 1. Thus
I ∩ J ∈ D(P ). If I = ∩{(xi] : i = 1, ..., r} ∈ D(P ) and J = (y[∈ A, I ∩ J =
∩{(xi] : i = 1, ..., r} ∩ (y[= ∩{(xi] ∩ (y[ : i = 1, ..., r} is the intersection of r
elements belonging to D(P ), then I ∩ J ∈ D(P ).

Remark. Proposition 11 shows that [D(P ),D(P )∗] ⊕′ [D(P )∗,O(P )] =
2s ⊕′ [D(P )∗,O(P )] ⊆ [D(P ),O(P )]. In general, the inclusion is strict. In
particular, there exist posets P admitting maximal chains of completions of
P from D(P ) to O(P ) which contain only O(P ) as a strict completion. For
instance, this is the case for the poset shown on Figure 2.
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Figure 2

It is well known that the join- and the meet-irreducible elements of the
Dedekind-MacNeille completion D(P ) of a poset P are the same (up to iso-
morphism) as the join- and the meet-irreducible elements of P. The following
result characterizes these irreducible elements in D(P )∗.

Proposition 12. Let I be an ideal of D(P )∗. Then I is join-irreducible
whenewer I is a principal ideal (x] for some x ∈ P. It is join-reducible
whenever I is an ideal (x[, for some join-reducible x in P, or if I is an
intersection of principal ideals but is not a principal ideal itself. It is meet-
irreducible if I is a principal ideal (x] for some meet-irreducible x in P, or if
I is an ideal (x[ for some join-reducible x in P. It is meet-reducible if I is a
principal ideal (x] for some meet-reducible x in P, or if I is an intersection
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of principal ideals which is not a principal ideal. It is doubly-irreducible if I
is a principal ideal (x] for some meet-irreducible x in P.

Proof. The first assertion follows from the definition of D(P )∗ and implies
the second. The ideal (x[ cannot be an intersection of principal ideals (see
proof of Proposition 5), just as (x] if x is meet-irreducible in P. The two last
assertions immediately follow.

Note that doubly irreducible elements do not always occur in lattices
(as witnessed by the Boolean lattices 2s, for s > 2). However, since every
poset has at least one meet-irreducible element, Proposition 12 yields the
following:

Corollary 13. For every poset P, we have J(D(P )∗) ∩M(D(P )∗) 6= ∅.

Moreover, not only minimal strict completions possess doubly-irreducible
elements, but they are generated by them.

Proposition 14. Every minimal strict completion D(P )∗ is generated by
its doubly-irreducible elements.

Proof. Let I be a join-irreducible element ofD(P )∗ which is meet-reducible.
By Proposition 12, I = (x] with x meet-reducible in P. So, we can write
x = ∧{ai : i = 1, ..., r} as an infimum in P of meet-irreducible elements.
Then I = (x] = ∩{(ai] : i = 1, ..., r}, where each (ai] is doubly-irreducible in
D(P )∗, again by Proposition 12.

Remarks. Proposition 14 is obviously equivalent to the fact that every
lattice which is a minimal strict completion has a unique minimal set of
generators.

It is also obvious that atomistic lattices Mn of cardinality n + 2 are
also generated by their doubly-irreducible elements. These lattices are iso-
morphic to the atoms of the lattice MAn of the strict completions of the
antichain An.

We would like to determine when the lattice D(P )∗ has some ”classical”
properties. It is clear that D(P )∗ is distributive if and only if D(P )∗ = O(P ),
a case which has been characterized in [3]. Recall that the width of a poset P
is the maximum cardinality w(P ) of its antichains. Then D(P )∗ = O(P ) if
and only if P is an ordinal sum of singletons or 2-elements antichains, i.e. if
and only if P is a weak order such that w(P ) ≤ 2. As shown in the following
theorem this result can be generalized: D(P )∗ is lower semimodular (or
equivalently modular) if and only if P is a weak order.
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Theorem 15. Let P be a partial order. The following conditions are equiv-
alent.

1) P is a weak order,

2) D(P )∗ is a weak order,

3) D(P )∗ is an ordinal sum of m antichains Ai, where |A1| = |Am| = 1,
and where |Ai| > 1 implies |Ai+1| = 1,

4) D(P )∗ is a N -free modular lattice,

5) D(P )∗ is a chain-antichain complete modular lattice,

6) D(P )∗ is a series-parallel modular lattice,

7) D(P )∗ is a modular lattice which does not contain a lattice isomorphic
to C2 × C3,

8) D(P )∗ is a modular lattice,

9) D(P )∗ is a lower semimodular lattice.

Proof. 1) ⇒ 2): Let P = An1⊕ ...⊕Abnk
⊕ ...⊕Anm be a weak order. The

lattice D(P )∗ is obtained from P by adding an element a1 below An1 , if n1 >
1, an element anm+1 above Anm and in some cases an element ak,k+1 between
two consecutive levels Ank

and Ank+1.
Then D(P )∗ is the ordinal sum of the

antichains Ank
and of the antichains formed by the added elements and so

it is a weak order.
2) ⇒ 3): Obvious, since D(P )∗ is a lattice.
3) ⇒ 1): By definition, P is isomorphic to the join-irreducible elements

of D(P )∗ = An1 ⊕ ...⊕Ank
⊕ ...⊕Anm . Then P is obtained from D(P )∗ by

deleting the levels Ank
such that nk = 1 and nk−1 > 1. So P is the ordinal

sum of the other levels and is a weak order.
3)⇔ 4)⇔ 5)⇔ 6)⇔ 7): See [9] and [1], where it is proved that a lattice

is series-parallel if and only if it does not contain a sub-lattice isomorphic
to the lattice C2 × C3.

7) ⇒ 8) ⇒ 9): Obvious.
9) ⇒ 1): We first prove that if D(P )∗ is a lower semimodular lattice, P

is a series-parallel poset. To do that we assume that P is not series-parallel
and we show that D(P )∗ contains a sublattice isomorphic to the lattice N5

with a join-irreducible element x (see Figure 3). But, by Lemma 7 in [2],
such a sublattice cannot occur in a lower semimodular lattice. We call such
a sublattice a forbidden N5.



96 G.H. Bordalo and B. Monjardet

u

u

u
u

u

x

!!!e
e

e
%

%
%b

bb

Figure 3

Assume that P is not series-parallel, i.e. that it contains a subposet Q
isomorphic to the poset N (Figure 1). We set Q = {x, y, z, s} with z >
x, s > x, s > y, x ‖ y, z ‖ y and z ‖ s. Note that one can assume that s is a
minimal element greater than x and y.

We consider two cases:

Case 1. s = x ∨ y.
We claim that the ideals (z], (s[ and (s] generate a forbidden sublattice N5

in D(P )∗. First note that since z ‖ y and z ‖ s, one has (z] ‖ (s[ and
(z]∩ (s[= (z]∩ (s]. Now let I = (z]∨ (s[. We prove that I = (z]∨ (s], i.e. that
s ∈ I. If I = P, it is obvious. If not, then either there exists t ∈ P such that
I = (t] or (t[, or I is the intersection of ideals (ti]. In the first case, t > x, y,
and, since s = x∨ y, s = t is impossible, one obtains t > s, i.e. s ∈ I. In the
second case, one has ti > s, for every i, for the same reason. So, s ∈ I. We
have proved that the ideals (z], (s[ and (s] generate a sublattice N5. Since
(s] is join-irreducible in D(P )∗ our claim is proved.

Case 2. x ∨ y does not exist.
As above we have (z] ∩ (s[= (z] ∩ (s]. We consider I = (z] ∨ (s[ and

assume that I does not contain s. (If not, then I = (z]∨ (s] and, as in Case
1, one obtains a forbidden N5 in D(P )∗). Then there exists t ∈ P such that
t > z and y, and t ‖ s. And so, the subset z, y, t, s is (isomorphic to) the
poset N, and satisfies t > z. Now, repeating the previous reasonning, either
one obtains a contradiction, or one obtains a subset z, y, t, s′ isomorphic to
N and satisfying s′ > s. Since P is finite, we will finally get a contradiction.

To complete the proof, we have to show that, in the case where D(P )∗ is
a lower semimodular lattice, the series-parallel poset P can only be a weak
order. We know that series-parallel posets are generated from the poset of
cardinality 1 by using iteratively the operations of cardinal and ordinal sums.
If we use uniquely the cardinal sum of antichains and the ordinal sum, we
get the ordinal sums of antichains, i.e. the weak orders. Assume now that
our series-parallel poset is not a weak order and consider in its construction
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the first time, where we use a cardinal sum of two posets of which at least
one is not an antichain. Then we make the cardinal sum of two weak orders
of which at least one contains a chain x > y. Taking an arbitrary element z
in the other weak order, it is clear that x, y, z will generate a forbidden N5

in D(P ) and, thus, in D(P )∗.

Corollary 16. Let P be a poset.

a) The following are equivalent:
- D(P ) = D(P )∗ and D(P )∗ is a lower semimodular lattice,

- D(P ) = D(P )∗ and D(P )∗ is a modular lattice,

- D(P )∗ is an ordinal sum of m antichains Ai, where |A1| =
|Am| = 1, and where |Ai| > 1 (respectively |Ai| = 1) implies
|Ai + 1| = 1 (|Ai + 1| > 1, respectively),

- P is a weak order without an element comparable with any other
element.

b) The following are equivalent:
- D(P )∗ = O(P ),

- D(P )∗ is a lower locally distributive lattice,

- D(P )∗ is a distributive lattice,

- D(P )∗ is an ordinal sum of singletons or 2-elements antichains,

- P is a weak order of width at most 2.

c) The following are equivalent
- D(P ) = O(P ),

- P is an ordinal sum of 2-elements antichains.

Proof. a) This follows from Theorem 15 and Proposition 5, since all the
elements of a weak order P are join-irreducible if and only if P has no
element comparable with any other element.

b) By definition, D(P )∗ is lower locally distributive if and only if D(P )∗

is lower semimodular and does not contain the modular lattice M3 with 3
atoms as sublattice. Then by Theorem 15, D(P )∗ is lower locally distributive
if and only if P a weak order without M3, i.e. if and only if P a weak order of
width at most 2, and, by Proposition 16 in [3], if and only if D(P )∗ = O(P ),
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i.e. if and only if D(P )∗ is a distributive lattice, and also if and only if D(P )∗

is an ordinal sum of singletons or 2-elements antichains. (Note that in the
paper quoted above there is a misprint: it is written “of width 2” instead
“of width ≤ 2”).

c) Since D(P ) = O(P ) implies D(P ) = D(P )∗ = O(P ), this follows
from a) and b) above.

Remark. Case c) of the above Corollary is mentionned in [7] where such
a weak order is called a doubled chain. The authors give several charac-
terizations of the corresponding distributive lattice D(P ) and they call it a
rhombic chain.

A weak order is an ordinal sum of antichains. We consider now the
ordinal sum of arbitrary posets. Recall that P ⊕′ Q denotes the reduced
ordinal sum of a poset P admitting a maximum element 1P and a poset Q
admitting a minimum element 0Q. (Note that 1P and 0Q are identified).

Proposition 17. Let P and Q be two disjoint posets. If P has a maximum
element and Q a minimum element, then

D(P ⊕Q) is isomorphic to D(P )⊕D(Q), and

D(P ⊕Q)∗ is isomorphic to D(P )∗ ⊕′ D(Q)∗.

If not, then

D(P ⊕Q) is isomorphic to D(P )⊕′ D(Q), and

D(P ⊕Q)∗ is isomorphic to D(P )∗ ⊕D(Q)∗.

Proof. Since the proofs of these four results are similar, we just prove the
first one. We set R = P ⊕Q.

By definition the Dedekind-McNeille completion D(P ⊕Q) contains the
set P ∪Q, all the principal ideals (x]R with x ∈ R, and all the intersections
of these ideals. Now if x ∈ P and y ∈ Q, then (x]R = (x]P ⊂ (y]R = (y]Q∪P.
Consider {x1, ..., xr} ⊆ R and the intersection of all the ideals (xi]R. There
are two cases to consider. Either there exist xi ∈ P and then this intersection
is the intersection of all the (xi]P where xi ∈ P and so it belongs to D(P ).
Or all the xi ∈ Q and then ∩{(xi]R : i = 1, ..., r} = ∩(P ∪ {(xi]Q) : i =
1, ..., r}) = P ∪ (∩{(xi]Q : i = 1, ..., r}). Now it is clear that the map
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D 7→ D, if D ∈ D(P )

D 7→ D ∪ P, if D ∈ D(Q)

is an isomorphism from D(P )⊕D(Q) onto D(P ⊕Q).

Remark. Obviously, the result of Proposition 17 can be extended to
an arbitrary number of posets. In particular, one obtains the implication
1) ⇒ 2) of Theorem 15.

5. Conclusion

In this paper, we have studied the minimal strict completion D(P )∗ of a
poset P. In particular, we have characterized the case where D(P )∗ is equal
to the Dedekind-MacNeille completion D(P ). It results, by the construction
of D(P )∗, that it has generally many doubly-irreducible elements and, in
fact, we have shown that D(P )∗ is always generated by such elements. We
have raised the problem to characterize the posets P for which the lattice
D(P )∗ has ”classical” properties, and we have given the answer for the
cases, where D(P )∗ is either atomistic, lower semimodular, or lower locally
distributive.

On the other hand, similar questions could be (or have been) raised for
the Dedekind-MacNeille completion D(P ), but we don’t know if there exist
results for this case. Note that the Dedekind-MacNeille completion of the
poset P represented on Figure 1 is distributive, as O(P ) is generated by its
doubly irreducible elements (see [10]). However, D(P )∗ is not even modular.
It would be interesting to know, for which posets P, is D(P ) a modular non
distributive lattice.
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