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Abstract

Hypersubstitutions are mappings which map operation symbols to
terms. The set of all hypersubstitutions of a given type forms a monoid
with respect to the composition of operations. Together with a second
binary operation, to be written as addition, the set of all hypersubsti-
tutions of a given type forms a left-seminearring. Monoids and left-
seminearrings of hypersubstitutions can be used to describe complete
sublattices of the lattice of all varieties of algebras of a given type. The
complexity of a hypersubstitution can be measured by the complexity
of the resulting terms. We prove that the set of all hypersubstitutions
with a complexity greater than a given natural number forms a sub-
left-seminearring of the left-seminearring of all hypersubstitutions of
the considered type. Next we look to a special complexity measure,
the operation symbol count op(t) of a term t and determine the greatest
M -solid variety of semigroups where M = H

op

2
is the left-seminearring

of all hypersubstitutions for which the number of operation symbols
occurring in the resulting term is greater than or equal to 2. For every
n ≥ 1 and for M = Hop

n
we determine the complete lattices of all

M -solid varieties of semigroups.
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1. Introduction

Let τ = (ni)i∈I be a type indexed by a set I, with operation symbols fi

of arity ni for ni ∈ IN. Let X = {x1, x2, . . .} be a countably infinite set
of variables. We denote by Wτ (X) the set of all terms of type τ over the
alphabet X.

Terms are often identified with semantic trees to represent the terms.
Consider for example the type τ = (2, 1), with a binary operation symbol
f2 and a unary operation symbol f1 and a set X = {x1, x2, x3} of variables.
Then the term t = f2(f1(f2(f2(x1, x2), f1(x3))), f1(f2(f1(x1), f1(f1(x2)))))
corresponds to the following semantic tree.
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The complexity of a term or a tree plays an important role in Computer
Science applications and can be measured in different ways. One can count
the number of occurrences of variables in the tree, or one can also count the
number of operation symbols. Another method is to compare the lengths of
all paths from the root to the leaves in the tree. The length of the longest
such path gives the depth while the length of the shortest such path gives
the mindepth ([4]). In [7] a general complexity function, called a valuation
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of terms of type τ into an algebra INτ of type τ with the set of all natural
numbers IN as universe, was considered.

Definition 1.1 [7]. Let a be a fixed natural number and let INτ = (IN;

(fIN
i )i∈I) be an algebra of type τ with base set IN. Let v : X → IN be a

mapping defined by v(x) = a for all x ∈ X. Then v has a unique extension
(which we also denote by v) to the set Wτ (X) of all terms which is a homo-
morphism from the free algebra F τ (X) = (Wτ (X); (f̄i)i∈I) into INτ . This
extension homomorphism is called a valuation of terms of type τ into INτ if
it satisfies the condition v(t) ≥ v(x) for every variable x and every term t.
The algebra INτ will be called the valuation algebra of the valuation v, and
a is called the base value of the valuation.

Now we want to give some examples of such valuations of terms. The oper-
ation symbol count of a term, denoted by op(t) is inductively defined by

(i) op(t) = 0 if t is a variable,

(ii) op(t) = 1 +
∑ni

j=1 op(tj) if t is a composite term t = fi(t1, . . . , tni
).

In this case the operations f IN
i are defined by f IN

i (a1, . . . , ani
) = 1+

∑ni

j=1 aj,
with op(t) = 0 if t is a variable.

The minimum depth of a term t, denoted by mindepth(t), is the length
of the shortest path from the root to a vertex in the tree, and is defined
inductively by

(i) mindepth(t) = 0 if t is a variable,

(ii) mindepth(t) = 1 + min{mindepth(tj) | 1 ≤ j ≤ ni} if t is a composite
term t = fi(t1, . . . , tni

).

For mindepth we use the operations f IN
i defined by fi(a1, . . . , ani

) = 1 +
min{a1, . . . , ani

}, with mindepth(t) = 0 if t is a variable.

The depth of a term t, denoted by depth(t), is inductively defined by

(i) depth(t) = 0 if t is a variable,

(ii) depth(t) = 1 + max{depth(tj) | 1 ≤ j ≤ ni} if t is a composite term
t = fi(t1, . . . , tni

).
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In this case f IN
i is defined by fi(a1, . . . , ani

) = 1 + max{a1, . . . , ani
}, with

depth(t) = 0 if t is a variable.

In all our examples the operations f IN
i of the valuation algebra are

monotone, meaning that the following condition (OC) is satisfied:

(OC) If aj ≤ bj for 1 ≤ j ≤ ni and fi is an ni- ary operation symbol of

type τ , then for the corresponding operation f IN
i we have f IN

i (a1, . . . , ani
) ≤

fIN
i (b1, . . . , bni

).

We denote the superposition of the term s with the terms t1, . . . , tn by
s(t1, . . . , tn). It was proved in [7] that for valuations satisfiying (OC) the
following condition is satisfied.

Lemma 1.2 . Let v be a valuation of terms of type τ into INτ which satis-
fies (OC). Then for any n-ary term s and m-ary terms t1, . . . , tn we have
v(s(t1, . . . , tn)) ≥ v(s).

Hypersubstitutions are defined as mappings from the set {fi | i ∈ I} of
operation symbols to the set Wτ (X) of all terms of type τ which preserve
the arity, i.e. ni-ary operation symbols are mapped to terms which use at
most the variables x1, . . . , xni

.

Hypersubstitutions were introduced to make precise the concept of a
hyperidentity and generalizations to M -hyperidentities.

Any hypersubstitution can be uniquely extended to a map σ̂ on Wτ (X)
which is inductively defined by the following steps:

(i) σ̂[x] := x if x ∈ X,

(ii) σ̂[t] := σ(f)(σ̂[t1], . . . , σ̂[tni
]) if t = f(t1, . . . , tni

).

An identity s ≈ t of type τ is called a hyperidentity of a variety V of type τ

if σ̂[s] ≈ σ̂[t] is an identity for every hypersubstitution σ.

Using this extension we can define a binary operation ◦h on the set
Hyp(τ) of all hypersubstitutions of type τ by σ1 ◦h σ2 := σ̂1 ◦ σ2, where ◦
is the usual composition of operations. Clearly, this makes (Hyp(τ); ◦h, σid)
a monoid with the identity σid which maps every operation symbol fi to
a so-called fundamental term fi(x1, . . . , xni

). A second binary operation +
can be defined on Hyp(τ) by (σ1 + σ2)(fi) = σ2(fi)(σ1(fi), . . . , σ1(fi)) for
every i ∈ I. It was proved in [1] that (Hyp(τ), ◦h, +) is a left-seminearring.

If M is any submonoid of (Hyp(τ), ◦h), then an identity s ≈ t of a
variety V is called an M -hyperidentity in V if for every σ ∈ M the equation
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σ̂[s] ≈ σ̂[t] is an identity in V . Here we remark that not every submonoid
of (Hyp(τ), ◦h) is closed under addition.

A variety V is said to be solid if every identity is satisfied as a hyperi-
dentity or M -solid if every identity of V is an M -hyperidentity in V . The
set of all solid varieties of type τ forms a complete sublattice of the lattice of
all varieties of type τ and if M1 ⊆ M2, then for the lattices SM1

(τ), SM2
(τ)

of M -solid varieties we have SM2
(τ) ⊆ SM1

(τ).

2. Complexity of hypersubstitutions

Since hypersubstitutions of type τ map operation symbols to terms, we can
use the definition of a valuation of a term of type τ into an algebra INτ to
define the value of a hypersubstitution.

Definition 2.1 . Let v be a valuation of terms of type τ into an algebra
INτ = (IN; (f IN

i )i∈I) and let σ be a hypersubstitution of type τ . Then we
define v(σ) = min{v(σ(fi)) | i ∈ I}.

Example 2.2 . For a hypersubstitution σ which maps each fi to a vari-
able we have v(σ) = min{v(xi)) | i ∈ I} = min{a} = a. For the hyper-
substitution σid we have v(σid) = min{v(σid(fi(x1, . . . , xni

))) | i ∈ I} =

min{fIN
i (a, . . . , a) | i ∈ I}.

We denote by Pre(τ) the set of all prehypersubstitutions, i.e. hypersubsti-
tutions which do not map any operation symbol to a variable. From the
definition one can easily derive some properties of the valuation of a hyper-
substitution.

Proposition 2.3 . For any two hypersubstitutions σ1, σ2 ∈ Hyp(τ) and for
every valuation v which satisfies the condition (OC) we have v(σ1 + σ2) ≥
v(σ2) and if σ2 ∈ Pre(τ), then v(σ1 ◦h σ2) ≥ v(σ1).

Proof. Let fi be an arbitrary operation symbol. For the operation +, we
have v((σ1 + σ2)(fi)) = v(σ2(fi)(σ1(fi), . . . , σ1(fi))) ≥ v(σ2(fi)) by Lemma
1.2 and then v(σ1 + σ2) = min{v((σ1 + σ2)(fi)) | i ∈ I} ≥ min{v(σ2(fi)) |
i ∈ I} = v(σ2).

For the operation ◦h, since σ2 ∈ Pre(τ), we have σ2 does not map
fi to a variable. Then v((σ1◦hσ2)(fi)) = v(σ̂1[σ2(fi)]) = v(σ1(fk)(σ̂1[t1], . . . ,
σ̂1[tnk

])) ≥ v(σ1(fk)) by Lemma 1.2. Here we have used the fact that σ2
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does not map fi to a variable, so we can write σ2(fi) = fk(t1, . . . , tnk
) for

some index k ∈ I and some terms t1, . . . , tnk
. Then

v(σ1 ◦h σ2) = min{(σ1 ◦h σ2)(fi) | i ∈ I} ≥ min{(v(σ1(fi)) | i ∈ I} = v(σ1).

If v is a valuation of hypersubstitutions, then for every given natural number
n we consider the following set of hypersubstitutions:

Hv
n = {σ ∈ Hyp(τ) | v(σ) ≥ n}.

We list some properties of Hv
n.

Proposition 2.4 . Let v be a valuation of hypersubstitutions of type τ which
satisfies the condition (OC). Then for every n ∈ IN, H v

n has the following
properties:

(i) Hv
n = Hyp(τ) if and only if 0 ≤ n ≤ a (where a is the base value

of v),

(ii) Hv
n ⊆ Pre(τ) if and only if n > a.

Proof. (i) Assume that n > a. Then Hv
n 6= Hyp(τ) since hypersubstitu-

tions which map one of the operation symbols to a single variable, have the
value a. Assume that 0 ≤ n ≤ a. Let σ be an element from Hyp(τ). For
all i ∈ I, we have v(σ(fi)) ≥ a ≥ n and this means v(σ) ≥ n and σ ∈ Hv

n.
Altogether, we have Hyp(τ) = Hv

n.

(ii) Assume that 0 ≤ n ≤ a. By (i) we have Hv
n = Hyp(τ) which is

not contained in Pre(τ). If n > a and σ ∈ Hv
n, then for all i ∈ I we have

v(σ(fi)) ≥ n > a. Thus σ(fi) is not a variable and σ ∈ Pre(τ).

Then we can prove:

Theorem 2.5 . Let v be a valuation of hypersubstitutions of type τ which
satisfies the condition (OC). Then for every n ∈ IN the set H v

n forms a
sub-left-seminearring of (Hyp(τ); ◦h, +).

Proof. Let a be the base value of v. If 0 ≤ n ≤ a, then by Proposition
2.4 (i), Hv

n = Hyp(τ). If n > a, by Proposition 2.4 (ii), H v
n ⊆ Pre(τ). By

Proposition 2.3, Hv
n forms a sub-left-seminearring of (Hyp(τ); ◦h, +).
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Clearly, from n1 ≤ n2 we get Hv
n1

⊇ Hv
n2

and therefore we have a chain
Hv

a = Hyp(τ) ⊇ Hv
a+1 ⊇ · · · of left-seminearrings. To each left-seminearring

we form the reduct to ◦h, add the identity hypersubstitution σid and consider
the Hv

n-solid varieties. Then we get a chain of complete lattices: SHv
a
(τ) ⊆

SHv
a+1

(τ) ⊆ · · · of M -solid varieties for the monoids H v
n, n ≥ a.

3. Applications to varieties of semigroups

As a special valuation we consider the operation symbol count op defined in
the introduction. The valuation op satisfies the condition (OC) and there-
fore for every n ∈ IN the set Hop

n forms a sub-left-seminearring of the left-
seminearring (Hyp(τ); ◦h, +). We add the identity hypersubstitution and
denote by Hop

n , for short, the left-seminearring (Hop
n ; ◦h, +, σid).

Assume now that the type is τ = (2). Clearly, H
op
1 is the set Pre(2) of

all pre-hypersubstitutions. We determine the greatest H
op
2 -solid variety of

semigroups. We denote by σt for a term t ∈ Wτ ({x, y}) the hypersubstitu-
tion which maps the binary operation symbol to the term t.

Theorem 3.1. The variety V = Mod{x(yz) ≈ (xy)z, x3 ≈ x5, xyxzxyx ≈
xyzyx, (x2y)2z ≈ x2y2z, x(yz2)2 ≈ xy2z2} is the greatest H

op
2 -solid variety

of semigroups.

Proof. We denote by f the binary operation symbol. The following hy-
persubstitutions belong to H

op
2 : σf(x,f(y,x)), σf(f(x,x),y)), σf(x,f(y,y)) and so

does the identity hypersubstitution σid = σf(x,y), since we assume that H
op
2

is a left-seminearring with identity. Applying these hypersubstitutions to
the associative law we get x(yz) ≈ (xy)z, xyxzxyx ≈ xyzyx, (x2y)2z ≈
x2y2z, x(yz2)2 ≈ xy2z2 and applying σf(x,f(x,x)) which also belongs to H

op
2

to the associative law we get the equation x9 ≈ x3. From xyxzxyx ≈ xyzyx

by identification of all variables with x one obtains x7 ≈ x5 and then x3 ≈ x5.

The greatest H
op
2 -solid variety of semigroups is the class of all

semigroups which satisfy the associative law as a H
op
2 -hyperidentity. We de-

note this class by HH
op
2

ModAss. Our calculations so far show that
HH

op
2

ModAss ⊆ V .

To prove the converse inclusion we use a result of [3]. In this paper
all elements of the two-generated free algebra with respect to the vari-
ety VHR were calculated, where VHR = Mod{x(yz) ≈ (xy)z, xyxzxyx ≈
xyzyx, (x2y)2z ≈ x2y2z, x(yz2)2 ≈ xy2z2}.
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The algebra FVHR
({x, y}) consists exactly of the following elements,

where congruence classes with respect to IdVHR are for short denoted by
their representatives:

xyxyx, xy2xyx, xy2xy, xy3xy, xy4xy, xyx2y, xyx4y, x2y2xy, x2y3xy, x3y2xy,

x3y3xy, xyx2y2, xyx2y3, xyx3y2, xyx3y3, x2yx2y, xy2xy2, xyxy, x2yxy,

x3yxy, xyxy2, xyxy3, x2yxy2, xy2x2y, xyx, x2yx, x3yx, x4yx, x5yx, x2yx2,

x2yx3, xyx2, xyx3, xyx4, xyx5, x2y2x, x3y2x, x3y3x, x2y3x, xy2x2, xy2x3,

xy3x2, xy3x3, xy2x, xy3x, xy4x, x2y2x2, x2y5x2, x2y2x3, x2y3x2, xy, x2y, x3y,

x4y, x5y, xy2, xy3, xy4, xy5, x2y2, x2y3, x2y4, x3y2, x3y3, x, x2, x3, x4, x5, x6

and all terms arising from these terms by exchanging x and y.

Since our variety V is a subvariety of VHR, the set of all elements
(classes) in FV ({x, y}) is a subset of the set of all elements (classes) of
FVHR

({x, y}). It was proved in [3] that every hypersubstitution σt, where
t is one of the terms listed before and containing both variables x and y,
preserves the associative identity in VHR. Since we now have a subset of this
set and the identities in VHR form a subset of the identities in V , all hyper-
substitutions σt, where t ∈ FV ({x, y}) preserve the associative law in V . We
have only to consider the hypersubstitutions σt where t is a term built up
only by x. Because of op(σ) ≥ 2, we have only to consider σx3 and σx4 since
x3 ≈ x5 is an identity in V . Applying these hypersubstitutions to the asso-
ciative law gives x9 ≈ x3 and x16 ≈ x4. Both equations are consequences of
x5 ≈ x3 and therefore satisfied in V . This shows V ⊆ HH

op
2

ModAss, and

therefore V is the greatest H
op
2 -solid variety of semigroups.

It is easy to get some conditions under which a H
op
2 -solid variety of

semigroups is solid.

Proposition 3.2 . Let V be a non-trivial variety of semigroups. Then V is
solid if and only if the following conditions hold:

(i) V is H
op
2 -solid,

(ii) V is dual solid,

(iii) RB ⊆ V ,

(iv) V ⊆ Mod{x2 ≈ x4}.
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Proof. If V is solid, then V is clearly H
op
2 -solid and dual solid, i.e. for

every s ≈ t we have σ̂yx[s] ≈ σ̂yx[t] ∈ IdV .

The inclusion RB ⊆ V is also clear, since every identity of V is invariant
under the application of σx as well as under the application of σy, i.e. s ≈ t

is outermost. The application of σx2 to the associative identity gives x2 ≈
x4 ∈ IdV and then V ⊆ Mod{x2 ≈ x4}.

We assume now that (i)–(iv) are satisfied.

Note that Hyp(τ) = H
op
2

⋃
{σid, σyx}

⋃
{σx, σy}

⋃
{σx2 , σy2}.

If σ ∈ H
op
2 , then, because of (i), σ̂[s] ≈ σ̂[t] ∈ IdV if s ≈ t ∈ IdV .

If σ ∈ {σid, σyx}, then, because of (ii), we have σ̂[s] ≈ σ̂[t] ∈ IdV if
s ≈ t ∈ IdV .

If σ ∈ {σx, σy}, then, because of (iii), we get σ̂[s] ≈ σ̂[t] ∈ IdV if
s ≈ t ∈ IdV .

Since x2 ≈ x4 ∈ IdV and we get σ̂x2 [s] ≈ x2p ≈ x2q ≈ σx2 [t] ∈ IdV . For
σy2 we conclude in a similar way. Altogether, V is solid.

If, in addition, the commutative identity is satisfied for arbitrary n ≥ 1 we
can give the following characterization of all H op

n -solid varieties of commu-
tative semigroups.

Theorem 3.3 . Let n ≥ 1, n ∈ IN, τ = (2) and Hop
n = {σ ∈ Hyp(2) |

op(σ(f)) ≥ n}. Let Vn = Mod({(xy)z ≈ x(yz), xy ≈ yx, xn+1 ≈ yn+1,

xn+1y ≈ xyn+1}
⋃
{xayb ≈ xbya | a, b ∈ {1, . . . , n}, a + b = n + 1}). Then a

variety of commutative semigroups is Hop
n -solid if and only if V ⊆ Vn.

Proof. Let V be Hop
n -solid. We have to check that V satisfies all identities

of the identity basis of Vn. To do so, we consider the hypersubstitutions
σxn+1 , σxn+1y ∈ Hop

n and σxayb ∈ Hop
n for a, b ∈ {1, . . . , n} with a + b =

n + 1. Since V is Hop
n -solid, it has to satisfy the identities σ̂xn+1 [xy] ≈

σ̂xn+1 [yx], σ̂xn+1y[xy] ≈ σ̂xn+1y[yx] and σ̂xayb [xy] ≈ σ̂xayb [yx]. This gives

xn+1 ≈ yn+1, xn+1y ≈ xyn+1 ∈ IdV and xayb ≈ xbya ∈ IdV and the identity
hypersubstitution gives the associative and commutative law. Therefore
V ⊆ Vn.

Conversely, assume that V ⊆ Vn. We show that V is Hop
n -solid.

At first we derive some more identities in V .
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(I) xn+1y ≈ zn+1w ∈ IdV . Indeed, from xn+1y ≈ xyn+1 and xn+1 ≈ yn+1

there follows zn+1y ≈ xtn+1 and xn+1y ≈ zn+1w.

(II) xn+2 ≈ xn+1 ∈ IdV .

From xn+1 ≈ yn+1 there follows xn+1 ≈ x2(n+1). If we replace in (I) y

and z by x and w by xn+1, we get xn+2 ≈ x2(n+1). This gives xn+2 ≈ xn+1.

Using the relation ∼V defined on Hyp(τ) by σ1 ∼V σ2 if and only if σ1(f) ≈
σ2(f) ∈ IdV , because of

σ̂1[s] ≈ σ̂2[t] ∈ IdV and σ1 ∼V σ2 ⇒ σ̂2[s] ≈ σ2[t] ∈ IdV,

we can restrict ourselves to one representative from each equivalence class
with respect to the relation ∼V .

Using the identities in Vn which are also satisfied in V ⊆ Vn we consider
the following list of representatives:
σxn+1 , σxayb , for a, b ∈ {1, . . . , n}, a + b = n + 1.

Let u ≈ v ∈ IdV . Then σ̂xn+1 [u] ≈ leftmost(u)s for some s ≥ n +
1 (where leftmost(u) is the first variable occurring in u) and σ̂xn+1 [v] ≈
leftmost(v)r for some r ≥ n + 1. Using the identity (I) and xn+1 ≈ yn+1 ∈
IdV we have σ̂xn+1 [u] ≈ σ̂xn+1 [v] ∈ IdV .

Now we consider hypersubstitutions of the form σxayb with a, b ∈
{1, . . . , n}, a + b = n + 1. Let u ≈ v ∈ IdV , and u = u1 . . . um, v = v1 . . . vp

for variables u1, . . . , um, v1, . . . , vp ∈ X.

We consider the following cases for m and p:

(1) m = p = 1,

(2) m = 1, p ≥ 2,

(3) m ≥ 2, p = 1,

(4) m = p = 2,

(5) m = 2, p ≥ 3,

(6) m ≥ 3, p = 2,

(7) m ≥ 3, p ≥ 3.
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ad (1): In this case we have u = u1 ≈ v1 = v ∈ IdV and thus σ̂xayb [u] =
σ̂xayb [u1] = u1 ≈ v1 = σ̂xayb [v1] = σ̂xayb [v] ∈ IdV .

ad (2): In this case we have u = u1 ≈ v ∈ IdV . If we substitute for all
variables occurring in u1 and v the variable x, we get x ≈ xp ∈ IdV and
together with xn+2 ≈ xn+1 ∈ IdV we have xnp ≈ x2 ∈ IdV and since
np ≥ n + 2 we have xnp ≈ xn(p−1) ≈ x and then x ≈ x2 ∈ IdV . But then
σxayb ∼V σxy and we can apply σxy to u ≈ v which gives σ̂xy[u] = u ≈ v =
σ̂xy[v] ∈ IdV .

ad (3): m ≥ 2, p = 1 goes in the same way as Case (2).

ad (4): For m = p = 2 we consider the following three cases:

(4.1) u1 = v1 and u2 = v2,

(4.2) u1 = v2 and u2 = v1,

(4.3) u1 6= v1 or u2 6= v2 and u1 6= v2 or u2 6= v1.

In the first case we have u = v and therefore σ̂xayb [u] = σ̂xayb [v] ∈ IdV .

In the second case, i.e. if u1v1 ≈ v1u1 we obtain σ̂xayb [u1v1] = ua
1v

b
1 ≈

va
1ub

1 = σ̂xayb [v1u1] ∈ IdV because of the identities in the basis of Vn which
are also satisfied in V ⊆ Vn.

In the third case we have u1 6= v1, v2 or u2 6= v1, v2 or v2 6= u1, u2 or
v1 6= u1, u2. Without restriction of the generality we assume that u1 6= v1, v2.
If we replace u1 by x2 and w ∈ W (X)\{u1} by x in u ≈ v, we obtain x3 ≈ x2

(If u1 = u2, then we get at first x4 ≈ x2 which gives also x3 ≈ x2 because of
xn+2 ≈ xn+1).

If a = b = 1, then clearly σ̂xayb [u] ≈ σ̂xayb [v] ∈ IdV .

Without restriction of the generality we assume now that a ≥ 2. Then

σ̂xayb [u] ≈ ua
1u

b
2

≈ un+1
1 ua

1u
b
2 because of x3 ≈ x2

≈ vn+1
1 (σ̂xayb [v]) because of (I)

≈ σ̂xayb [v] since the term σ̂[v] starts with v2
1 and then we

can use x3 ≈ x2.

ad (5): We replace all variables occurring in u ≈ v by x and get x2 ≈ xp.
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Together with (II), we get x3 ≈ x2. Then similar to (4.3) we get σ̂xayb [u] =
σ̂xayb [v] ∈ IdV .

ad (6): This case is similar to (5).

ad (7): Without loss of generality we may assume that the brackets in u

and in v are canonical. Then there are terms ū and v̄ such that σ̂xayb [u] ≈

(ūaub
m−1)aub

m ≈ ūaauba
m−1u

b
m and σ̂xayb [v] ≈ (v̄avb

p−1)avb
p ≈ v̄aauba

p−1u
b
p.

It is easy to see that aa ≥ n + 1 or bb ≥ n + 1. In the first case
we get ūaauba

m−1u
b
m ≈ xn+1z ≈ xn+1 and v̄aavba

p−1u
b
p ≈ xn+1z by (I), i.e.

σ̂xayb [u] ≈ ūaauba
m−1u

b
m ≈ xn+1z ≈ v̄aavba

p−1u
b
p ≈ σ̂xayb [v].

If bb ≥ n + 1, then we use xayb ≈ xbya ∈ IdV and get ūaauba
m−1u

b
m ≈

ūaaubb
m−1u

a
m and v̄aavba

p−1u
b
p ≈ v̄aavbb

p−1u
a
p. By (I) we have ūaaubb

m−1u
a
m ≈

xn+1z and v̄aavbb
p−1u

a
p ≈ xn+1z and thus σ̂xayb [u] ≈ σ̂xayb [v] ∈ IdV .

Now we apply our results to a particular case. We noticed already that
H

op
1 = Pre(τ) is the set Hyp \ {σx, σy} of all pre-hypersubstitutions and

then VPC = V1 is the greatest pre-solid variety of commutative semigroups,
i.e. VPC = Mod{x(yz) ≈ (xy)z, xy ≈ yx, x2 ≈ y2, x2y ≈ xy2}. Every
subvariety of VPC is pre-solid. In [2] the lattice of subvarieties of VPC was
determined.

If pm = x0x1 . . . xm ≈ y0y1 . . . ym, Im = {x(yz) ≈ (xy)z, xy ≈ yx, x2 ≈
y2, x2y ≈ xy2, pm}, Pm = ModIm for every natural number m, then the
varieties Pm,m ∈ IN are exactly all subvarieties of VPC .
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