ON ABSOLUTE RETRACTS AND ABSOLUTE CONVEX RETRACTS IN SOME CLASSES OF ℓ-GROUPS

Ján Jakubík
Matematický ústav SAV, Grešákova 6, 04001 Košice, Slovakia
email: kstefan@saske.sk

Abstract

By dealing with absolute retracts of ℓ-groups we use a definition analogous to that applied by Halmos for the case of Boolean algebras. The main results of the present paper concern absolute convex retracts in the class of all archimedean ℓ-groups and in the class of all complete ℓ-groups.

Keywords: ℓ-group, absolute retract, absolute convex retract, archimedean ℓ-group, complete ℓ-group, orthogonal completeness.

2000 Mathematics Subject Classification: 06F20, 06F15.

1. Introduction

Retracts of abelian ℓ-groups and of abelian cyclically ordered groups were investigated in [6], [7], [8].

Suppose that \mathcal{C} is a class of algebras. An algebra $A \in \mathcal{C}$ is called an absolute retract in \mathcal{C} if, whenever $B \in \mathcal{C}$ and A is a subalgebra of B, then A is a retract of B (i.e., there is a homomorphism h of B onto A such that $h(a)=a$ for each $a \in A$). Cf., e.g., Halmos [3].

Further, let \mathcal{C} be a class of ℓ-groups. An element $A \in \mathcal{C}$ will be called an absolute convex retract in \mathcal{C} if, whenever $B \in \mathcal{C}$ and A is a convex ℓ-subgroup of B, then A is a retract of B.

Let \mathcal{G} and Arch be the class of all ℓ-groups, or the class of all archimedean ℓ-groups, respectively.

It is easy to verify (cf. Section 2 below) that for $A \in \mathcal{G}$ the following conditions are equivalent:
(i) A is an absolute retract in \mathcal{G};
(ii) A is an absolute convex retract in \mathcal{G};
(iii) $A=\{0\}$.

In this note we prove
(α) Let A be an absolute retract in the class Arch. Then the ℓ-group A is divisible, complete and orthogonally complete.

By applying a result of [5] we obtain
(β) Let $A \in$ Arch and suppose that the ℓ-group A is complete and orthogonally complete. Then A is an absolute convex retract in the class Arch.

The question whether the implication in (α) (or in (β), respectively) can be reversed remains open.

Let us denote by
Compl - the class of all complete ℓ-groups;
Compl* - the class of all ℓ-groups which are complete and orthogonally complete.
(γ) Let $A \in$ Compl. Then the following conditions are equivalent:
(i) A is orthogonally complete.
(ii) A is an absolute convex retract in the class Compl.

As a corollary we obtain that each ℓ-group belonging to Compl ${ }^{*}$ is an absolute convex retract in the class Compl*.

We prove that if the class $\mathcal{C} \subseteq \mathcal{G}$ is closed with respect to direct products and if $A_{i}(i \in I)$ are asbolute (convex) retracts in \mathcal{C}, then their direct product $\prod_{i \in I} A_{i}$ is also an absolute (convex) retract in \mathcal{C}.

2. Preliminaries

For ℓ-groups we apply the notation as in Conrad [1]. Hence, in particular, the group operation in an ℓ-group is written additively.

We recall some relevant notions. Let G be an ℓ-group. G is divisible if for each $a \in G$ and each positive integer n there is $x \in G$ with $n x=a$. A system $\emptyset \neq\left\{x_{i}\right\}_{i \in I} \subseteq G^{+}$is called orthogonal (or disjoint) if $x_{i(1)} \wedge x_{i(2)}=0$ whenever $i(1)$ and $i(2)$ are distinct elements of I. If each orthogonal subset of G possesses the supremum in G then G is said to be orthogonally complete. G is complete if each nonempty bounded subset of G has the supremum and the infimum in G.
G is archimedean if, whenever $0<x \in G$ and $y \in G$, then there is a positive integer n such that $n x \not \equiv y$. For each archimedean ℓ-group G there exists a complete ℓ-group $D(G)$ (the Dedekind completion of G) such that
(i) G is a closed ℓ-subgroup of $D(G)$;
(ii) for each $x \in D(G)$ there are subsets $\left\{y_{i}\right\}_{i \in I}$ and $\left\{z_{j}\right\}_{j \in J}$ of G such that the relations

$$
\sup \left\{x_{i}\right\}_{i \in I}=x=\inf \left\{z_{j}\right\}_{j \in J}
$$

are valid in $D(G)$.
Let G_{1} be a linearly ordered group and let G_{2} be an ℓ-group. The symbol $G_{1} \circ G_{2}$ denotes the lexicographic product of G_{1} and G_{2}. The elements of $G_{1} \circ G_{2}$ are pairs $\left(g_{1}, g_{2}\right)$ with $g_{1} \in G_{1}$ and $g_{2} \in G_{2}$. For each $g_{2} \in G_{2}$, the pair $\left(0, g_{2}\right)$ will be identified with the element g_{2} of G_{2}. Then G_{2} is a convex ℓ-subgroup of $G_{1} \circ G_{2}$.

Lemma 2.1. Let A be an ℓ-group, $A \neq\{0\}$, and let G_{1} be a linearly ordered group, $G_{1} \neq\{0\}$. Put $B=G_{1} \circ A$. Then A fails to be a retract of B.

Proof. By way of contradiction, suppose that A is a retract of B. Let h be the corresponding retract homomorphism of B onto A; i.e., $h(a)=a$ for each $a \in A$. There exists $g_{1} \in G_{1}$ with $g_{1}>0$. Denote $\left(g_{1}, 0\right)=b$, $h(b)=a$. Further, there exists $a_{1} \in A$ with $a_{1}>a$. We have $a_{1}<b$, whence $h\left(a_{1}\right) \leqq h(b)$, thus $a_{1} \leqq a$, which is a contradiction.

Let us denote by \mathcal{A} the class of all abelian lattice ordered groups. If A, G_{1} and B are as in Lemma 2.1 and $A, G_{1} \in \mathcal{A}$, then also B belongs to \mathcal{A}. Thus Lemma 2.1 yields

Proposition 2.2. Let $\mathcal{C} \in\{\mathcal{G}, \mathcal{A}\}$ and let A be an absolute retract (or an absolute convex retract, respectively) in the class \mathcal{C}. Then $A=\{0\}$.

It is obvious that $\{0\}$ is an absolute (convex) retract in both the classes \mathcal{G} and \mathcal{A}.

Let us remark that if $G_{1}, B \in \mathcal{G}$ and if G_{1} is a retract of B, then G_{1} need not be a convex ℓ-subgroup of B. This is verified by the following example:

Let G_{1} be a linearly ordered group, $G_{1} \neq\{0\}$. Further, let $G_{2} \in \mathcal{G}$, $G_{2} \neq\{0\}$. Put $B=G_{1} \circ G_{2}$. If $g_{1} \in G_{1}$, then the element $\left(g_{1}, 0\right)$ of B will be identified with the element g_{1} of G_{1}. Thus G_{1} turns out to be an ℓ-subgroup of B which is not a convex subset of B. For each $\left(g_{1}, g_{2}\right) \in B$ we put $h\left(\left(g_{1}, g_{2}\right)\right)=g_{1}$. Then h is a homomorphism of B onto G_{1} such that $h\left(g_{1}\right)=g_{1}$ for each $g_{1} \in G_{1}$. Hence G_{1} is a retract of B.

3. Proofs of $(\alpha),(\beta)$ AND (γ)

In this section we assume that A is an archimedean ℓ-group. Hence A is abelian.

It is well-known that there exists the divisible hull A^{d} of A. Thus
(i) A^{d} is a divisible ℓ-group;
(ii) A is an ℓ-subgroup of A^{d};
(iii) if $g \in A^{d}$, then there are $a \in A$, a positive integer n and an integer m such that $n g=m a$.

Lemma 3.1. Assume that A is an absolute retract in the class Arch. Then the ℓ-group A is divisible.

Proof. By way of contradiction, suppose that A fails to be divisible. Thus there are $a_{1} \in A$ and $n \in N$ such that there is no x in A with $n x=a_{1}$.

Put $B=A^{d}$. In view of the assumption, A is a retract of B; let h be the corresponding retract homomorphism.

There exists $b \in B$ with $n b=a_{1}$. Then $b \notin A$. Denote $h(b)=a$. We have

$$
a_{1}=h\left(a_{1}\right)=h(n b)=n h(b)=n a,
$$

which is a contradiction.

Lemma 3.2. Assume that A is an absolute retract in the class Arch. Then A is a complete ℓ-group.

Proof. By way of contradiction, suppose that A fails to be complete. Put $B=D(A)$. Then A is an ℓ-subgroup of B and $A \neq B$. Thus there is $b \in B$ such that b does not belong to A.

In view of the assumption, A is a retract of B; let h be the corresponding retract homomorphism. Put $h(b)=a$.

There exists a subset $\left\{a_{i}\right\}_{i \in I}$ of A such that the relation

$$
b=\bigvee_{i \in I} a_{i}
$$

is valid in B. Hence $a_{i} \leqq b$ for each $i \in I$. This yields

$$
a_{i}=h\left(a_{i}\right) \leqq h(b)=a
$$

for each $i \in I$. Thus $b \leqq a$.
At the same time, there exists a subset $\left\{a_{j}^{\prime}\right\}_{j \in J}$ of A such that the relation

$$
b=\bigwedge_{j \in J} a_{j}^{\prime}
$$

holds in B. Hence $b \leqq a_{j}^{\prime}$ for each $j \in J$, thus by applying the homomorphism h we obtain that $a \leqq a_{j}^{\prime}$ for each $j \in J$. Therefore $a \leqq b$. Summarizing, $a=b$ and we arrived at a contradiction.

Lemma 3.3. Suppose that H is a complete ℓ-group. Then there exists an ℓ-group K such that
(i) H is a convex ℓ-subgroup of K;
(ii) K is complete and orthogonally complete;
(iii) for each $0<k \in K$ there exists a disjoint subset $\left\{x_{i}\right\}_{i \in I}$ of H such that the relation

$$
k=\bigvee_{i \in I} x_{i}
$$

is valid in K.

Proof. This is a consequence of results of [5].

Lemma 3.4. Assume that A is an absolute retract in the class Arch. Then the ℓ-group A is orthogonally complete.

Proof. In view of Lemma 3.2, A is complete. Put $A=H$ and let K be as in Lemma 3.3. According to the assumption, A is a retract of K. Let h be the corresponding retract homomorphism.

Let $0<k \in K$ and let $\left\{x_{i}\right\}_{i \in I}$ be as in Lemma 3.3. Put $h(k)=a$. Then $a \geqq h\left(x_{i}\right)=x_{i}$ for each $i \in I$, whence $k \leqq a$. Thus the condition (i) of Lemma 3.3 yields that $k \in A$. Hence $K^{+} \subseteq A$ and then $K \subseteq A$. Therefore $K=A$ and so A is orthogonally complete.

From Lemmas 3.1, 3.2 and 3.4 we conclude that (α) is valid.
Let $G_{1}, G_{2} \in \mathcal{G}$; their direct product is denoted by $G_{1} \times G_{2}$. If $g_{1} \in G_{1}$, then the element $\left(g_{1}, 0\right)$ of $G_{1} \times G_{2}$ will be identified with g_{1}. Similarly, for $g_{2} \in G_{2}$, the element $\left(0, g_{2}\right)$ of $G_{1} \times G_{2}$ will be identified with g_{2}. Under this identification, both G_{1} and G_{2} are convex ℓ-subgroups of $G_{1} \times G_{2}$.

Definition 3.5. (Cf. [2].) Let $G_{1} \in$ Arch. We say that G_{1} has the splitting property if, whenever $H \in$ Arch and G_{1} is a convex ℓ-subgroup of H, then G_{1} is a direct factor of H.

Proposition 3.6. (Cf. [4].) Let $G_{1} \in$ Arch. Then the following conditions are equivalent:
(i) G_{1} has the splitting property.
(ii) The ℓ-group G_{1} is complete and orthogonally complete.

Lemma 3.7. Let $H \in \mathcal{G}$ and let G_{1} be a direct factor of H. Then G_{1} is a retract of H.
Proof. There exists $G_{2} \in \mathcal{G}$ such that $H=G_{1} \times G_{2}$. For $\left(g_{1}, g_{2}\right) \in H$ we put $h\left(\left(g_{1}, g_{2}\right)\right)=g_{1}$. Then h is a retract homomorphism of H onto G_{1}.

Proof of (β). Let $A, B \in$ Arch and suppose that A is a convex ℓ-subgroup of B. Further, suppose that A is complete and orthogonally complete. In view of Proposition 3.6, A is a direct factor of B. Hence according to Lemma $3.7, A$ is a retract of B. Therefore A is an absolute convex retract in the class Arch.

Lemma 3.8. Let $A \in$ Compl. Suppose that A is an absolute convex retract in the class Compl. Then A is orthogonally complete.

Proof. Put $H=A$ and let K be as in Lemma 3.3. In view of Lemma 3.3 (i), A is a convex ℓ-subgroup of K. Hence according to the assumption, A is a retract of K. Now it suffices to apply the same method as in the proof of Lemma 3.4.

Lemma 3.9. Let $A \in$ Compl. Suppose that A is orthogonally complete. Then A is an absolute convex retract in the class Compl.

Proof. In view of $(\beta), A$ is an absolute convex retract in the class Arch. It is well-known that the class Compl is a subclass of Arch. Hence A is an absolute convex retract in the class Compl.

From Lemmas 3.8 and 3.9 we conclude that (γ) holds.
Corollary 3.10. Let $A \in$ Compl* *. Then A is an absolute convex retract in the class Compl*.

4. Direct products

Let $A_{i}(i \in I)$ be ℓ-groups; consider their direct product

$$
\begin{equation*}
A=\prod_{i \in I} A_{i} \tag{1}
\end{equation*}
$$

Without loss of generality we can suppose that $A_{i(1)} \cap A_{i(2)}=\{0\}$ whenever $i(1)$ and $i(2)$ are distinct elements of I. For $a \in A$ and $i \in I$, we denote by a_{i} or by $a\left(A_{i}\right)$ the component of a in the direct factor A_{i}.
Let $i \in I$. Put

$$
A_{i}^{\prime}=\left\{a \in A: a_{i}=0\right\}
$$

Then we have

$$
\begin{align*}
A & =A_{i} \times A_{i}^{\prime} \tag{2}\\
A_{i}^{\prime} & =\prod_{j \in I \backslash\{i\}} A_{j}
\end{align*}
$$

Let $i(0) \in I$ and $a^{i(0)} \in A_{i(1)}$. There exists $a \in A$ such that

$$
a_{i}= \begin{cases}a^{i(0)} & \text { if } i=i(0) \\ 0 & \text { otherwise }\end{cases}
$$

Then the element a of A will be identified with the element $a^{i(0)}$ of $A_{i(0)}$. Under this identification, each A_{i} turns out to be a convex ℓ-subgroup of A.

Lemma 4.1. Let B be an ℓ-group and let A be an ℓ-subgroup of B. Suppose that (1) is valid. Let i be a fixed element of I and assume that A_{i} is a retract of B; the corresponding retract homomorphism will be denoted by h_{i}. Then for each $a \in A$ the relation

$$
h_{i}(a)=a_{i}
$$

is valid.
Proof. a) At first let $0 \leqq a^{\prime} \in A_{i}^{\prime}$ and $0 \leqq a^{i} \in A_{i}$. Then $a^{\prime} \wedge a^{i}=0$, thus

$$
0=h_{i}\left(a^{\prime}\right) \wedge h_{i}\left(a^{i}\right)=h_{i}\left(a^{\prime}\right) \wedge a^{i}
$$

Since this is valid for each $a^{i} \in A_{i}$ and $h_{i}\left(a^{\prime}\right) \in A_{i}$ we conclude that $h_{i}\left(a^{\prime}\right)=$ 0 . Then $h_{i}\left(-a^{\prime}\right)=0$ as well and this yields that $h_{i}\left(a^{\prime \prime}\right)=0$ for each $a^{\prime \prime} \in A_{i}^{\prime}$. b) Let $a \in A$. In view of (2) we have

$$
a=a_{i}+a\left(A_{i}^{\prime}\right)
$$

Thus

$$
h_{i}(a)=h_{i}\left(a_{i}\right)+h_{i}\left(a\left(A_{i}^{\prime}\right)\right)
$$

According to a), $h_{i}\left(a\left(A_{i}^{\prime}\right)\right)=0$. Thus $h_{i}(a)=a_{i}$.
Lemma 4.2. Let B be an ℓ-group and let A be an ℓ-subgroup of B. Suppose that (1) is valid and that for each $i \in I, A_{i}$ is a retract of B; the corresponding retract homomorphism will be denoted by h_{i}. For $b \in B$ we put

$$
h(b)=b^{1} \in A
$$

where $b_{i}^{1}=h_{i}(b)$ for each $i \in I$. Then
(i) h is a homomorphism of B into A;
(ii) $h(a)=a$ for each $a \in A$.

Proof. The definition of h and the relation (1) immediately yield that (i) is valid. Let $a \in A$ and $i \in I$. Put $h(a)=a^{1}$. We have

$$
a=a_{i}+a\left(A_{i}^{\prime}\right)
$$

thus by applying (i),

$$
\begin{aligned}
& h(a)=h\left(a_{i}\right)+h\left(a\left(A_{i}^{\prime}\right),\right. \\
& a_{i}^{1}=h_{i}\left(a_{i}\right)+h_{i}\left(a\left(A_{i}^{\prime}\right)\right)
\end{aligned}
$$

Since $h_{i}\left(a_{i}\right)=a_{i}$ and because $\left(a\left(A_{i}^{\prime}\right)\right)_{i}=0$, according to Lemma 4.1, we obtain

$$
a_{i}^{1}=a_{i} \quad \text { for each } i \in I
$$

thus $a^{1}=a$.

Corollary 4.3. Let the assumptions of Lemma 4.2 be valid. Then A is a retract of B.

From Corollary 4.3 we immediately conclude

Proposition 4.4. Assume that \mathcal{C} is a class of ℓ-groups which is closed with respect to direct products. Let $A_{i}(i \in I)$ be absolute retracts in \mathcal{C} and let (1) be valid. Then A is an absolute retract in \mathcal{C}.

Proposition 4.5. Assume that \mathcal{C} is a class of ℓ-groups which is closed with respect to direct products. Let $A_{i}(i \in I)$ be absolute convex retracts in \mathcal{C} and let (1) be valid. Then A is an absolute convex retract in \mathcal{C}.

Proof. Let $B \in \mathcal{C}$ and suppose that A is a convex ℓ-subgroup of B. Then all A_{i} are convex ℓ-subgroups of B. Hence in view of the assumption, all A_{i} are retracts of B. Thus according to Corollary 4.3, A is a retract of B. Therefore A is an absolute convex retract in the class \mathcal{C}.

5. An example

The assertions of the following two lemmas are easy to verify; the proofs will be omitted.

Lemma 5.1. Let A be an ℓ-group which is complete and divisible. Then
(i) we can define (in a unique way) a multiplication of elements of A with reals such that A turns out to be a vector lattice;
(ii) if $r>0$ is a real, $0<a \in A, X=\left\{q_{1} \in Q: 0<q_{1} \leqq r\right\}$, $Y=\left\{q_{2} \in R: r \leqq q_{2}\right\}$, then the relations

$$
\sup \left(q_{1} a\right)=r a=\inf \left(q_{2} a\right)
$$

are valid in A;
(iii) if A_{1} is an ℓ-subgroup of A such that A_{1} is complete and divisible, and $a_{1} \in A$, then for each real r the multiplication $r a_{1}$ in A_{1} gives the same result as the multiplication $r a_{1}$ in A.

Lemma 5.2. Let A be as in Lemma 5.1 and suppose that $A=\prod_{i \in I} A_{i}$. Then all A_{i} are complete and divisible; moreover, for each real r, each $a \in A$ and each $i \in I$ we have

$$
(r a)_{i}=r a_{i}
$$

Let R be the additive group of all reals with the natural linear order. We denote by $\mathcal{C}_{\mathcal{R}}$ the class of all lattice ordered groups which can be expressed as direct products of ℓ-groups isomorphic to R.

We remark that if $B \in \mathcal{C}_{\mathcal{R}}$ and if A is an ℓ-subgroup of B which is isomorphic to R, then A need not be a convex ℓ-subgroup of B. In fact, suppose that

$$
B=\prod_{i \in I} B_{i}
$$

where each B_{i} is isomorphic to R; let φ_{i} be and isomorphism of R onto B_{i}. For each $r \in R$ put

$$
\varphi(r)=\left(\ldots, \varphi_{i}(r), \ldots\right)_{i \in I}
$$

$$
A=\varphi(R)
$$

A is an ℓ-subgroup of B; if I has more than one element, then A fails to be convex in B.

Let B be as above; suppose that A is an ℓ-group isomorphic to R and that A is an ℓ-subgroup of B. Let $0<a \in A$. Then $a_{i}=a\left(B_{i}\right) \geqq 0$ for each $i \in I$ and there exists $i(0) \in I$ with $a_{i(0)}>0$. Thus, in view of Lemma 5.1, we have $(r a)_{i(0)}>0$ for each $r \in R$ with $r \neq 0$. Further, for each $a_{1} \in A$ there exists a uniquely determined element $r \in R$ with $a_{1}=r a$. This yields that the mapping

$$
\varphi_{i(0)}: a_{1} \mapsto\left(a_{1}\right)_{i(0)}
$$

is an isomorphism of A into $B_{i(0)}$.
Let $b \in B_{i(0)}$. There exists a unique $r \in R$ such that

$$
b=r a_{i(0)} .
$$

Then, in view of Lemma 5.2, $b=(r a)_{i(0)}$ and hence the mapping $\varphi_{i(0)}$ is an isomorphism of A onto $B_{i(0)}$.

For each $b \in B$ we put

$$
h(b)=\varphi_{i(0)}^{-1}\left(b_{i(0)}\right) .
$$

Then h is a homomorphism of B into A. For $a_{1} \in A$ the definition of $\varphi_{i(0)}$ yields

$$
h\left(a_{1}\right)=a_{1} .
$$

Thus we obtain
Lemma 5.3. Let $B \in \mathcal{C}_{\mathcal{R}}$ and let A be an ℓ-subgroup of B such that A is isomorphic to R. Then A is a retract of B.

Corollary 5.4. Let A be an ℓ-group isomorphic to R. Then A is an absolute retract in the class $\mathcal{C}_{\mathcal{R}}$.

From Lemma 5.4 and Corollary 4.5 we conclude
Proposition 5.5. Each element of $\mathcal{C}_{\mathcal{R}}$ is an absolute retract in the class $\mathcal{C}_{\mathcal{R}}$.

References

[1] P. Conrad, Lattice Ordered Groups, Tulane University, New Orleans, LA, 1970.
[2] P. Conrad, The essential closure of an archimedean lattice-ordered group, Duke Math. J. 38 (1971), 151-160.
[3] P. Halmos, Injective and projective Boolean algebras, p. 114-122 in: "Lattice Theory" (R.P. Dilworth, editor), Amer. Math. Soc., Providence, RI,1961.
[4] J. Jakubík, Splitting property of lattice ordered groups, Czechoslovak Math. J. 24 (1974), 257-269.
[5] J. Jakubík, Orthogonal hull of a strongly projectable lattice ordered group, Czechoslovak Math. J. 28 (1978), 484-504.
[6] J. Jakubík, Retracts of abelian cyclically ordered groups, Archivum Math. (Brno) 25 (1989), 13-18.
[7] J. Jakubík, Retracts of abelian lattice ordered groups, Czechoslovak Math. J. 39 (1989), 477-489.
[8] J. Jakubík, Retract varieties of lattice ordered groups, Czechoslovak Math. J. 40 (1990), 104-112.

