Discussiones Mathematicae
General Algebra and Applications 23(2003) 19-30

ON ABSOLUTE RETRACTS AND ABSOLUTE CONVEX
RETRACTS IN SOME CLASSES OF ¢-GROUPS

JAN JAKUBIK

Matematicky tustav SAV,
Gresdkova 6, 040 01 Kosice, Slovakia
email: kstefan@saske.sk

Abstract

By dealing with absolute retracts of ¢-groups we use a definition
analogous to that applied by Halmos for the case of Boolean algebras.
The main results of the present paper concern absolute convex retracts
in the class of all archimedean /-groups and in the class of all complete
£-groups.
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1. INTRODUCTION

Retracts of abelian ¢-groups and of abelian cyclically ordered groups were
investigated in [6], [7], [8].

Suppose that C is a class of algebras. An algebra A € C is called an
absolute retract in C if, whenever B € C and A is a subalgebra of B, then
A is a retract of B (i.e., there is a homomorphism h of B onto A such that
h(a) = a for each a € A). Cf., e.g., Halmos [3].

Further, let C be a class of {-groups. An element A € C will be called an
absolute convex retract in C if, whenever B € C and A is a convex ¢-subgroup
of B, then A is a retract of B.
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Let G and Arch be the class of all £-groups, or the class of all archimedean
{-groups, respectively.

It is easy to verify (cf. Section 2 below) that for A € G the following
conditions are equivalent:

(i) A is an absolute retract in G;

(ii) A is an absolute convex retract in G;
(iii)) A ={0}.
In this note we prove

() Let A be an absolute retract in the class Arch. Then the ¢-group A
is divisible, complete and orthogonally complete.

By applying a result of [5] we obtain

(8) Let A € Arch and suppose that the ¢-group A is complete and orthog-
onally complete. Then A is an absolute convex retract in the class
Arch.

The question whether the implication in («) (or in (3), respectively) can be
reversed remains open.

Let us denote by
Compl - the class of all complete ¢-groups;
Compl* - the class of all ¢-groups which are complete and orthogonally
complete.

(7) Let A € Compl. Then the following conditions are equivalent:

(i) A is orthogonally complete.

(ii) A is an absolute convex retract in the class Compl.

As a corollary we obtain that each ¢-group belonging to Compl* is an abso-
lute convex retract in the class Compl*.

We prove that if the class C C G is closed with respect to direct products
and if A; (i € I) are asbolute (convex) retracts in C, then their direct product
[L;c; Ai is also an absolute (convex) retract in C.
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2. PRELIMINARIES

For ¢-groups we apply the notation as in Conrad [1]. Hence, in particular,
the group operation in an ¢-group is written additively.

We recall some relevant notions. Let G be an ¢-group. G is divisible if
for each a € G and each positive integer n there is x € G with nx = a. A
system @) # {x;}ie;r € G is called orthogonal (or disjoint) if x;(1) A xi2) = 0
whenever (1) and ¢(2) are distinct elements of I. If each orthogonal subset
of GG possesses the supremum in G then G is said to be orthogonally complete.
G is complete if each nonempty bounded subset of G has the supremum and
the infimum in G.

G is archimedean if, whenever 0 < z € G and y € G, then there is a
positive integer n such that nz i y. For each archimedean ¢-group G there
exists a complete ¢-group D(G) (the Dedekind completion of G) such that

(i) G is a closed f-subgroup of D(G);

(i) for each z € D(G) there are subsets {y;}icr and {z;}je; of G such
that the relations

sup{z; }icr = x = inf{z; }cs
are valid in D(G).

Let G be a linearly ordered group and let G2 be an ¢-group. The symbol
G1 o G2 denotes the lexicographic product of G; and G3. The elements of
G1 o Gy are pairs (g1, g2) with g1 € G1 and g2 € Ga. For each g2 € Gg, the
pair (0, go) will be identified with the element g of Go. Then G is a convex
{-subgroup of G o Gs.

Lemma 2.1. Let A be an £-group, A # {0}, and let G1 be a linearly ordered
group, G1 # {0}. Put B=G10A. Then A fails to be a retract of B.

Proof. By way of contradiction, suppose that A is a retract of B. Let h
be the corresponding retract homomorphism of B onto A; i.e., h(a) = a
for each a € A. There exists g € G1 with g1 > 0. Denote (g1,0) = b,
h(b) = a. Further, there exists a; € A with a; > a. We have a; < b, whence
h(a1) < h(b), thus a; < a, which is a contradiction. |

Let us denote by A the class of all abelian lattice ordered groups. If A, Gy
and B are as in Lemma 2.1 and A, G € A, then also B belongs to .A. Thus
Lemma 2.1 yields
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Proposition 2.2. Let C € {G, A} and let A be an absolute retract (or an
absolute convex retract, respectively) in the class C. Then A = {0}. |

It is obvious that {0} is an absolute (convex) retract in both the classes G
and A.

Let us remark that if G1, B € G and if (G; is a retract of B, then G;
need not be a convex f-subgroup of B. This is verified by the following
example:

Let G7 be a linearly ordered group, G; # {0}. Further, let G2 € G,
Go # {0}. Put B = Gy 0 Gy. If g1 € Gy, then the element (g1,0) of B
will be identified with the element g; of G;. Thus G; turns out to be an
¢-subgroup of B which is not a convex subset of B. For each (g1,g2) € B
we put h((g1,92)) = g1. Then h is a homomorphism of B onto G such that
h(g1) = g1 for each g1 € G1. Hence G is a retract of B.

3. PROOFS OF («), (B) AND (7)

In this section we assume that A is an archimedean f-group. Hence A is
abelian.
It is well-known that there exists the divisible hull A% of A. Thus

(i) A?is a divisible f-group;
(ii) A is an f-subgroup of A%;

(iii) if g € A9, then there are a € A, a positive integer n and an integer m
such that ng = ma.

Lemma 3.1. Assume that A is an absolute retract in the class Arch. Then
the (-group A is divisible.

Proof. By way of contradiction, suppose that A fails to be divisible. Thus
there are a1 € A and n € N such that there is no x in A with nz = a;.
Put B = A% In view of the assumption, A is a retract of B; let h be
the corresponding retract homomorphism.
There exists b € B with nb = a;. Then b ¢ A. Denote h(b) = a. We
have

a1 = h(a1) = h(nb) = nh(b) = na,

which is a contradiction. [ ]
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Lemma 3.2. Assume that A is an absolute retract in the class Arch. Then
A is a complete £-group.

Proof. By way of contradiction, suppose that A fails to be complete. Put

B = D(A). Then A is an ¢-subgroup of B and A # B. Thus there is b € B
such that b does not belong to A.

In view of the assumption, A is a retract of B; let h be the corresponding
retract homomorphism. Put h(b) = a.

There exists a subset {a;};c; of A such that the relation

b= \/ai
iel

is valid in B. Hence a; < b for each i € I. This yields

a; = h(a;)) S h(b)=a

for each i € I. Thus b < a.
At the same time, there exists a subset {a}}jc; of A such that the
relation

. /
b=\d
JjeJ

holds in B. Hence b < a; for each j € J, thus by applying the homo-
morphism h we obtain that a = a} for each j € J. Therefore a =< b.
Summarizing, a = b and we arrived at a contradiction. [

Lemma 3.3. Suppose that H is a complete £-group. Then there exists an
L-group K such that

(i) H is a convex £-subgroup of K;

(ii) K is complete and orthogonally complete;

(iii) for each 0 < k € K there exists a disjoint subset {x;}icr of H such
that the relation

i€l

1s valid in K.
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Proof. This is a consequence of results of [5]. |

Lemma 3.4. Assume that A is an absolute retract in the class Arch. Then
the (-group A is orthogonally complete.

Proof. In view of Lemma 3.2, A is complete. Put A = H and let K be as
in Lemma 3.3. According to the assumption, A is a retract of K. Let h be
the corresponding retract homomorphism.

Let 0 < k € K and let {z;}ier be as in Lemma 3.3. Put h(k) = a. Then
a 2 h(z;) = z; for each i € I, whence k < a. Thus the condition (i) of
Lemma 3.3 yields that k € A. Hence K™ C A and then K C A. Therefore
K = A and so A is orthogonally complete. [

From Lemmas 3.1, 3.2 and 3.4 we conclude that («) is valid.

Let G1, G2 € G; their direct product is denoted by G1 x Gs. If g1 € G4,
then the element (g1,0) of G1 X G2 will be identified with g;. Similarly, for
g2 € Ga, the element (0, g2) of G; x G2 will be identified with g. Under
this identification, both G7 and G5 are convex f-subgroups of G x Gb.

Definition 3.5. (Cf. [2].) Let G; € Arch. We say that G has the splitting
property if, whenever H € Arch and (G is a convex f-subgroup of H, then
(1 is a direct factor of H.

Proposition 3.6. (Cf. [4].) Let G; € Arch. Then the following conditions
are equivalent:

(i) G; has the splitting property.

(ii) The ¢-group Gj is complete and orthogonally complete.

Lemma 3.7. Let H € G and let Gy be a direct factor of H. Then G1 is a
retract of H.

Proof. There exists Go € G such that H = G1 x Go. For (g1,¢92) € H we
put ~((g1,92)) = g1. Then h is a retract homomorphism of H onto G;. =

Proof of (). Let A, B € Arch and suppose that A is a convex ¢-subgroup
of B. Further, suppose that A is complete and orthogonally complete. In
view of Proposition 3.6, A is a direct factor of B. Hence according to Lemma
3.7, A is a retract of B. Therefore A is an absolute convex retract in the
class Arch. |
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Lemma 3.8. Let A € Compl. Suppose that A is an absolute convex retract
in the class Compl. Then A is orthogonally complete.

Proof. Put H=A and let K be as in Lemma 3.3. In view of Lemma 3.3 (i),
A is a convex f-subgroup of K. Hence according to the assumption, A is a
retract of K. Now it suffices to apply the same method as in the proof of
Lemma 3.4. [

Lemma 3.9. Let A € Compl. Suppose that A is orthogonally complete.
Then A is an absolute convex retract in the class Compl.

Proof. In view of (), A is an absolute convex retract in the class Arch.
It is well-known that the class Compl is a subclass of Arch. Hence A is an
absolute convex retract in the class Compl. [

From Lemmas 3.8 and 3.9 we conclude that () holds.

Corollary 3.10. Let A € Compl*. Then A is an absolute convex retract in
the class Compl*. ]

4. DIRECT PRODUCTS

Let A; (i € I) be f-groups; consider their direct product

(1) A=]J A

iel

Without loss of generality we can suppose that A;q)N A;2) = {0} whenever
i(1) and i(2) are distinct elements of I. For a € A and i € I, we denote by
a; or by a(A;) the component of a in the direct factor A;.

Let i € I. Put

Al ={a€ A:a; =0}

Then we have

2) A=A x A,

A= [ 4

jen\{i}
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Let i(0) € I and a*®) ¢ Aj(1y- There exists a € A such that

a’® if i = i(0),
a; =
0 otherwise.

Then the element a of A will be identified with the element a’(©) of Aj(0)-
Under this identification, each A; turns out to be a convex ¢-subgroup of A.

Lemma 4.1. Let B be an £-group and let A be an £-subgroup of B. Suppose
that (1) is valid. Let i be a fived element of I and assume that A; is a retract
of B; the corresponding retract homomorphism will be denoted by h;. Then
for each a € A the relation

hl(a) = a;
1s valid.

Proof. a) At first let 0 < o’ € A, and 0 £ @’ € A;. Then a’ Aa’ = 0, thus

0 = hi(a') A hi(a') = hi(d') A d.
Since this is valid for each a’ € A; and h;(a’) € A; we conclude that h;(a’) =
0. Then h;(—a’) = 0 as well and this yields that h;(a”) = 0 for each a” € AL.
b) Let a € A. In view of (2) we have
a=a; +a(4)).
Thus

hi(a) = hi(a;) + hi(a(43)).
According to a), hi(a(A})) = 0. Thus h;(a) = a;. ]
Lemma 4.2. Let B be an £-group and let A be an (-subgroup of B. Sup-
pose that (1) is valid and that for each i € I, A; is a retract of B; the

corresponding retract homomorphism will be denoted by h;. For b € B we
put

h(b) =b' € A,
where b} = h;(b) for each i € I. Then
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(i) h is a homomorphism of B into A;
(ii) h(a) =a for each a € A.

Proof. The definition of h and the relation (1) immediately yield that (i)
is valid. Let a € A and i € I. Put h(a) = a'. We have

a=a; +a(Ab),

thus by applying (i),

h(a) = h(a;) + h(a(Aj),

aj = hi(a;) + hi(a(A})).

Since hi(a;) = a; and because (a(A4})); = 0, according to Lemma 4.1, we
obtain
=a; foreachi€l,

1
a;

thus o' = a. [}

Corollary 4.3. Let the assumptions of Lemma 4.2 be valid. Then A is a re-
tract
of B. [

From Corollary 4.3 we immediately conclude

Proposition 4.4. Assume that C is a class of £-groups which is closed with
respect to direct products. Let A; (i € I) be absolute retracts in C and let (1)
be valid. Then A is an absolute retract in C. [ ]

Proposition 4.5. Assume that C is a class of £-groups which is closed with
respect to direct products. Let A; (i € I) be absolute convex retracts in C
and let (1) be valid. Then A is an absolute convex retract in C.

Proof. Let B € C and suppose that A is a convex ¢-subgroup of B. Then
all A; are convex f-subgroups of B. Hence in view of the assumption, all
A; are retracts of B. Thus according to Corollary 4.3, A is a retract of B.
Therefore A is an absolute convex retract in the class C. [
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5. AN EXAMPLE

The assertions of the following two lemmas are easy to verify; the proofs
will be omitted.

Lemma 5.1. Let A be an £-group which is complete and divisible. Then

(i) we can define (in a unique way) a multiplication of elements of A
with reals such that A turns out to be a vector lattice;

(ii)) ofr >0idsareal, 0 <ae€ A X ={q1 € Q:0<q =7},
Y ={q € R:r < g2}, then the relations

sup(qia) = ra = inf(ga)
are valid in A;

(iii) if Ay is an C-subgroup of A such that Ay is complete and divisible,
and a1 € A, then for each real v the multiplication raj in Ay gives
the same result as the multiplication ray in A. [

Lemma 5.2. Let A be as in Lemma 5.1 and suppose that A = [[,.; As.
Then all A; are complete and divisible; moreover, for each real r, each a € A
and each © € I we have

(ra); = ra;. u

Let R be the additive group of all reals with the natural linear order. We
denote by Cr the class of all lattice ordered groups which can be expressed
as direct products of ¢-groups isomorphic to R.

We remark that if B € Cr and if A is an f-subgroup of B which is
isomorphic to R, then A need not be a convex f¢-subgroup of B. In fact,
suppose that

B=]]B,
i€l

where each B; is isomorphic to R; let ¢; be and isomorphism of R onto B;.
For each r € R put

o(r) = (...,0i(r),... ier,
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A = p(R).

A is an ¢-subgroup of B; if I has more than one element, then A fails to be
convex in B.

Let B be as above; suppose that A is an {-group isomorphic to R and
that A is an f-subgroup of B. Let 0 < a € A. Then a; = a(B;) = 0 for each
i € I and there exists i(0) € I with a;g) > 0. Thus, in view of Lemma 5.1,
we have (ra);y > 0 for each r € R with r # 0. Further, for each a; € A
there exists a uniquely determined element r» € R with a; = ra. This yields
that the mapping

Pi(0) * a1 — (a1)i(o)
is an isomorphism of A into B(g).
Let b € Bj(q). There exists a unique € R such that
b= T(Zi(o) .

Then, in view of Lemma 5.2, b = (ra);(o) and hence the mapping ¢;(g) is an
isomorphism of A onto Bj ).
For each b € B we put

h) = o7 (bio)-

Then h is a homomorphism of B into A. For a; € A the definition of ;)
yields

h(ay) = a;.

Thus we obtain

Lemma 5.3. Let B € Cr and let A be an {-subgroup of B such that A is
isomorphic to R. Then A is a retract of B. [

Corollary 5.4. Let A be an £-group isomorphic to R. Then A is an absolute
retract in the class Cr. [ |
From Lemma 5.4 and Corollary 4.5 we conclude

Proposition 5.5. Fach element of Cr is an absolute retract in the class
CR. |
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