A SCHEME FOR CONGRUENCE SEMIDISTRIBUTIVITY

IVAN CHAJDA*

Department of Algebra and Geometry
Palacký University of Olomouc
Tomkova 40, CZ-77900 Olomouc, Czech Republic
e-mail: chajda@risc.upol.cz

AND

ESZTER K. HORVÁTH[†]

Bolyai Institute, University of Szeged

Aradi vértanúk tere 1, H-6720 Szeged, Hungary

e-mail: horeszt@math.u-szeged.hu

Abstract

A diagrammatic statement is developed for the generalized semidistributive law in case of single algebras assuming that their congruences are permutable. Without permutable congruences, a diagrammatic statement is developed for the \land -semidistributive law.

Keywords: \land -semidistributivity, generalized semidistribitive law, triangular scheme.

2000 Mathematics Subject Classification: 08A30, 08B10, 06D99.

Some attempts show that instead of identities in congruence lattices, certain diagrammatic statements are reasonable to consider, see [2] and [5]. The aim of the present paper is to show that this phenomenon can be extended to lattice Horn sentences as well.

Definition 1. A lattice L is \land -semidistributive if it satisfies the following implication for all $\alpha, \beta, \gamma \in L$:

$$\alpha \wedge \beta = \alpha \wedge \gamma \quad \Rightarrow \quad \alpha \wedge (\beta \vee \gamma) = \alpha \wedge \beta.$$

^{*}The research was supported by the Czech Government MSM 153 100011.

[†]The research was supported by OTKA T037877.

The \wedge -semidistributive law above is often denoted by SD_{\wedge} . More general (in fact, weaker) Horn sentences have been investigated in Geyer [4] and Czédli [3]. For $n \geq 2$ put $\mathbf{n} = \{0, 1, \dots, n-1\}$ and let $P_2(\mathbf{n})$ denote the set $\{S : S \subseteq \mathbf{n} \text{ and } |S| \geq 2\}$.

Definition 2. For $\emptyset \neq H \subseteq P_2(\mathbf{n})$ we define the *generalized meet* semidistributive law $SD_{\wedge}(n, H)$ for lattices as follows: for all $\alpha, \beta_0, \ldots, \beta_{n-1}$

$$\alpha \wedge \beta_0 = \alpha \wedge \beta_1 = \dots = \alpha \wedge \beta_{n-1} \quad \Rightarrow \quad \alpha \wedge \beta_0 = \alpha \wedge \bigwedge_{I \in H} \bigvee_{i \in I} \beta_i.$$

As a particular case, when $H = \{S : S \subseteq \mathbf{n} \text{ and } |S| = 2\}$, $SD_{\wedge}(n, H)$ is denoted by $SD_{\wedge}(n, 2)$.

Notice that $SD_{\wedge}(n,2)$ is the following lattice Horn sentence:

$$\alpha \wedge \beta_0 = \alpha \wedge \beta_1 = \dots = \alpha \wedge \beta_{n-1} \quad \Rightarrow \quad \alpha \wedge \bigwedge_{0 \le i < j < n} (\beta_i \vee \beta_j) = \alpha \wedge \beta_0,$$

which was originally studied by Geyer [4], and $SD_{\wedge}(2,2)$ is the \wedge -semidistributivity law defined in Definition 1. Czédli [3] has noticed that $SD_{\wedge}(n,2)$ is strictly weakening in n, i. e. $SD_{\wedge}(n,2)$ implies $SD_{\wedge}(n+1,2)$ but not conversely.

Our goal is to study $SD_{\wedge}(n,H)$ in congruence lattices of single algebras. Although it is usual to consider lattice identities and Horn sentences in congruence lattices of all algebras of a variety, this is not our case. The reason is that, for an arbitrary variety \mathcal{V} , if $SD_{\wedge}(n,H)$ holds in $\{Con(A):A\in\mathcal{V}\}$ then so does SD_{\wedge} . (This was proved by Czédli [3] and an anonymous referee of [3] who pointed out that both Kearnes and Szendrei [6] and Lipparini [7] contain implicitly the statement that if a lattice Horn sentence λ can be characterized by a weak Mal'cev condition and, for each nontrivial module variety \mathcal{M} , λ fails in $Con(A):A\in\mathcal{V}$, then so does SD_{\wedge} , cf. the last paragraph in [3].) In particular, for any variety \mathcal{V} and any $n\geq 2$, $SD_{\wedge}(n,2)$ and SD_{\wedge} are equivalent for the class $\{Con(A):A\in\mathcal{V}\}$. Hence $SD_{\wedge}(n,2)$ does not deserve a separate study for varieties.

First, we consider congruence permutable algebras.

Theorem 1. Let A be a congruence permutable algebra. Then Con (A) satisfies $SD_{\wedge}(n,2)$ if and only if A satisfies the scheme depicted in Figure 1 for $\alpha, \beta_0, \ldots, \beta_{n-1} \in \text{Con }(A)$ and $x_0, \ldots, x_k, y, z \in A$, where $k = \frac{n(n-1)}{2} - 1$ and δ stands for $\beta_0 \cap \beta_1 \cap \cdots \cap \beta_{n-1}$.

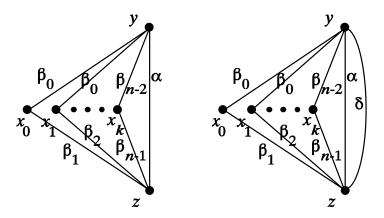


Figure 1

Proof. Suppose $SD_{\Lambda}(n,2)$ holds. Using the premise of $SD_{\Lambda}(n,2)$ we obtain

$$\alpha \cap \beta_0 = (\alpha \cap \beta_0) \cap \cdots \cap (\alpha \cap \beta_{n-1}) = \alpha \cap (\beta_0 \cap \cdots \cap \beta_{n-1}) \subseteq \delta$$

whence Con(A) satisfies the Horn sentence

$$\alpha \cap \beta_0 = \dots = \alpha \cap \beta_{n-1} \quad \Rightarrow \quad \alpha \cap \bigcap_{0 \le i < j < n} (\beta_i \vee \beta_j) \le \delta.$$

This implies the scheme, for the situation on the left hand side in Figure 1 then gives

$$(y,z) \in \alpha \cap \bigcap_{0 \le i < j < n} (\beta_i \circ \beta_j) \subseteq \alpha \cap \bigcap_{0 \le i < j < n} (\beta_i \vee \beta_j) \subseteq \delta.$$

To show the converse, suppose that the scheme given by Figure 1 holds, $\alpha, \beta_0, \ldots, \beta_{n-1} \in \operatorname{Con}(A)$ with $\alpha \cap \beta_0 = \cdots = \alpha \cap \beta_{n-1}$, and suppose that $(y, z) \in \alpha \cap \bigcap_{0 \leq i < j < n} (\beta_i \vee \beta_j)$. Since $\beta_i \vee \beta_j = \beta_i \circ \beta_j$ by congruence permutability, there exist x_0, x_1, \ldots, x_k of A such that for each j $(1 \leq j \leq k)$ there exist u, v such that $(z, x_j) \in \beta_u$ and $(x_j, y) \in \beta_v$ (according to the left hand side of Figure 1). Then the scheme applies and we conclude $(y, z) \in \delta$. Since $\delta \subseteq \beta_0, (y, z) \in \beta_0$. Hence $(y, z) \in \alpha \cap \beta_0$. This proves the " \leq " part of $SD_{\wedge}(n, 2)$. The reverse part is simpler and does not need the scheme: $\alpha \supseteq \alpha \cap \beta_0$ and $\beta_i \vee \beta_j \supseteq \beta_i \supseteq \alpha \cap \beta_i = \alpha \cap \beta_0$ clearly give

$$\alpha \cap \bigcap_{0 \le i < j < n} (\beta_i \vee \beta_j) \supseteq \alpha \cap \beta_0,$$

proving the theorem.

In the particular case when n=2, we trivially conclude the following assertion:

Theorem 2. Let A be a congruence permutable algebra. Then Con(A) is \land -semidistributive if and only if A satisfies the so-called triangular scheme in Figure 2 for any $\alpha, \beta, \gamma \in Con(A)$ and $x, y, z \in A$.

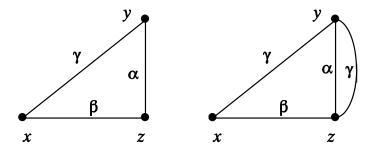


Figure 2

Proof. If Con (A) is \wedge -semidistributive, then the premise of the Triangular Scheme gives $(y, z) \in \beta \cap \gamma \subseteq \gamma$ by Theorem 1. Conversely, if the Triangular Scheme holds for A then its premise, after interchanging the role of β and γ , implies $(y, z) \in \beta \cap \gamma$, so $SD_{\wedge}(2, 2)$, which is the usual \wedge -semidistributivity, holds in Con (A) by Theorem 1.

One may observe that this scheme in Theorem 2 is the same as that in [2] characterising congruence distributivity in the congruence permutable case. This implies that: in presence of congruence permutability, congruence \land -semidistributivity is equivalent to congruence distributivity.

This follows also from another direction. Let A be congruence permutable and satisfying SD_{\wedge} . In this case A is congruence distributive, since otherwise its congruence lattice, being modular due to congruence permutability, contains M_3 but with the choice α, β, γ on Figure 3 we see that SD_{\wedge} fails.

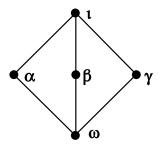


Figure 3

Remark. For $SD_{\wedge}(n, H)$, a similar scheme can be derived as in Theorem 1.

Without congruence permutability, for the case $SD_{\wedge}(2,2) = SD_{\wedge}$, the following theorem can be stated:

Theorem 3. Let A be an algebra. The congruence lattice Con (A) is \land -semidistributive if and only if for each n, A satisfies the scheme in Figure 4 for $\alpha, \beta, \gamma \in \text{Con}(A)$ and $x, y, z \in A$, where $\Lambda_0 = \beta$ and $\Lambda_{m+1} = \Lambda_m \circ \gamma \circ \beta$.

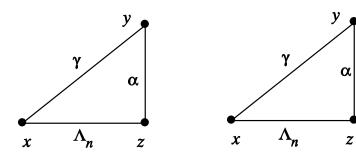


Figure 4

Proof. Suppose that Con (A) is \wedge - semidistributive and $\alpha, \beta, \gamma \in \text{Con } (A)$ with $\alpha \cap \beta = \alpha \cap \gamma$. Let $x, y, z \in A$ and let $(x, y) \in \gamma$, $(y, z) \in \alpha$ and $(x, z) \in \Lambda_n$. Then

$$(y,z) \in \alpha \cap (\Lambda_n \circ \gamma) \subseteq \alpha \cap (\beta \vee \gamma) = \alpha \cap \beta = \alpha \cap \gamma$$

due to the \land -semidistributivity. Thus $(y, z) \in \gamma$, proving the validity of the scheme.

Conversely, let A satisfy the scheme for each $n \in \mathbb{N}_0$, let $\alpha, \beta, \gamma \in \text{Con}(A)$ with $\alpha \cap \beta = \alpha \cap \gamma$. Suppose $(z, y) \in \alpha \cap (\beta \vee \gamma)$. Then there exists $n \in \mathbb{N}_0$ such that $(z, y) \in \alpha \cap (\Lambda_n \circ \gamma)$ and hence $(x, y) \in \gamma$ and $(y, z) \in \alpha$ and $(x, z) \in \Lambda_n$ for some $x \in A$. Due to the scheme, we conclude $(x, y) \in \alpha \cap \gamma$, i.e. $\alpha \cap (\beta \vee \gamma) \subseteq \alpha \cap \gamma \subseteq \alpha \cap \beta$. The converse inclusion is trivial, thus Con(A) is \wedge -semidistibutive.

References

- [1] I. Chajda, G. Eigenthaler and H. Länger, Congruence Classes in Universal Algebra, Heldermann Verlag, Lemgo 2003.
- [2] I. Chajda and E.K. Horváth, A triangular scheme for congruence distributivity, Acta Sci. Math. (Szeged) 68 (2002), 29–35.
- [3] G. Czédli, Weak congruence semidistributivity laws and their conjugates, Acta Math. Univ. Comenian. 68 (1999), 153–170.
- [4] W. Geyer, Generalizing semidistributivity, Order 10 (1993), 77–92.
- [5] H.P. Gumm, Geometrical methods in congruence modular algebras, Mem. Amer. Math. Soc. 45 (1983), no. 286, viii+79 pp.
- [6] K.A. Kearnes and Á. Szendrei, The relationship between two commutators, Internat. J. Algebra Comput. 8 (1998), 497–53.
- [7] P. Lipparini, Characterization of varieties with a difference term, II: neutral = meet semidistributive, Canadian Math. Bull. 41 (1988), 318–327.

Received 23 September 2002 Revised 14 May 2003