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Abstract

We obtain the construction of free abelian extensions in a
congurence-permutable variety V using the construction of a free
abelian extension in a variety of algebras with one ternary Mal’cev
operation and a monoid of unary operations. We also use this
construction to obtain a free solvable V-algebra.
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1. Introduction

The theory of congruence commutators in congruence modular varieties
develops an important tool for a generalization of several important
concepts from the theory of groups and rings such as Abelian algebras,
solvable algebras, a center of an algebra. The appearance of the
commutator theory was prepared by a set of basic results. Historically one
of the first of them was the well known Mal’cev theorem:
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Theorem 1.1 (see, e.g., [5], p. 172, [6]). The variety of algebras V is
congruence-permutable if and only if there exists a ternary basic term
p(x, y, z) such that the following are the identities of V:

p(x, x, y) = p(y, x, x) = y.(1)

The commutator theory is exposed in [4], [6], [7]. For all undefined notations
and terminology the reader can consult [4]. Recall the most important facts
about commutators and Abelian congruences. Throughout section we shall
consider an arbitrary algebra G from a fixed congruence modular variety
M. The commutator is the largest binary operation (α, β) 7→ f(α, β) on the
congruence lattice Con(G) such that

1. f(α, β) ≤ α ∩ β,

2. f(α, β ∨ γ) = f(α, β) ∨ f(α, γ),

3. f(α ∨ β, γ) = f(α, γ) ∨ f(β, γ),

4. ϕ−1(f(α, β)) = f(ϕ−1(α), ϕ−1(β)) ∨ Ker(ϕ) for any epimorphism

ϕ : B → G from an algebra B.

Commutator of congruences α and β is denoted by [α, β]. A congruence α
is Abelian if [α, α] = 0. It is known from [4] (see Theorem 5.5, p. 47) that
there exists a so-called ternary difference term d such that d(x, x, y) = y
is an identity of M . Furthermore, if we denote (a1, ..., an), (b1, ..., bn) and
(c1, ..., cn) by a,b and c, respectively, then a congruence α ∈ Con(G) is
Abelian if and only if

d(t(a), t(b), t(c)) = t(d(a1, b1, c1), . . . , d(an, bn, cn)),

for any basic operation t(x1, . . . , xn) = t(x) and for all elements ai, bi, ci

with ai α bi α ci (1 ≤ i ≤ n). In this case the following properties hold:

1. For any fixed element g the congruence class [g]α is an Abelian group
with respect to the addition

x + y = d(x, g, y)(2)
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with zero element g. Moreover, d(x, y, z) = x−y+z for all x, y, z ∈ [g]α.
The set [g]α with this operation d(x, y, z) is called ternary group and
(2) is called ternary addition.

2. Each term n-ary operation t and each ordered set (g1, . . . , gn) ∈ Gn

define a system of group homomorphisms hi : [gi]α 7→ [t(g1, . . . , gn)]α
such that

t(x1, . . . , xn) =
n∑

i=1

hi(xi) + t(g1, . . . , gn),

where xi ∈ [gi]α. As it is mentioned in [1],

hi(x) = t(g1, . . . , gi−1, x, gi+1, . . . , gn)− t(g1, . . . , gn),(3)

and these homomorphisms are compatible with compositions of
operations.

In particular, the operation p with Mal’cev identities (1) can be taken as
the difference term d in any congruence-permutable variety.

Remark 1.1. It is known from [6] that, for any two elements e and e′

from the same congruence class of an Abelian congruence, the mapping
f(x) = d(e′, e, x) is an isomorphism between the ternary groups defined
on the given congruence class with the help of two zero elements e and e′,
respectively.

A homomorphism of M-algebras is Abelian if its kernel is an Abelian
congruence. We use the following notations from [2]:

I0
G = 1G, I1

G = [1G, 1G], . . . , Ik
G = [Ik−1

G , Ik−1
G ].

An algebra G is solvable of degree at most k if Ik
G = 0G.

Let G ∈ M be generated by a subset X. M-algebra A is an Abelian
extension of G if A is generated by the same set X and there exists an
Abelian epimorphism ψ : A → G which is identical on X. An Abelian
extension AE(G) of G, with an Abelian epimorphism ϕ : AE(G) → G,
is said to be free if for any Abelian extension B of G, with an Abelian
epimorphism ψ : B → G being identical on X, there exists a homomor-
phism τ : AE(G) → B such that ϕ = ψτ. The free Abelian extension can
be obtained as follows. Let F be the free M-algebra generated by X and
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γ ∈ Con(F ) such that G = F/γ. Then AE(G) = F/[γ, γ]. The idea of
Abelian extension is used intensively in commutator theory. For example,
each free solvable algebra of degree k is obtained as a free Abelian extension
of free solvable algebra of degree (k − 1). The construction of free solvable
algebra with one ternary Mal’cev operation p is given in [3]. These results
were generalized in [2] for a general congruence modular variety. The pa-
per [1] contains the general approach to the construction of free Abelian
extensions in any given congruence modular variety.

Now let Ω be a system of operations. We use the ideas from [1] and
apply the results obtained in [8] and [9] for 〈p, S〉–algebras to the construc-
tion of free Abelian extensions in any congruence-permutable variety. The
main result of the present paper is the Theorem 2.14. We also apply this
construction to the structure of free solvable algebras.

2. Construction of the free Abelian extension

Consider a congruence-permutable variety V of Ω-algebras, and let p
be a term operation from Theorem 1.1. We denote the clone of V by
T = {Tn | n ∈ N}, where Tn is the set of all n-ary term operations that
are distinct in V. Recall that T is a system of operations which is closed
under all compositions and contains all projections i.e. the operations pjn

such that pjn(x1, . . . xn) = xj , j = 1, . . . , n. Let A be an arbitrary alge-
bra from V with a fixed Abelian congruence α and a set of generators X.
Consider a set E of representatives of α-cosets such that:
1. if x ∈ X and e ∈ E ∩ [x]α, then e ∈ X;

2. if e ∈ E, then

e = te(x1, . . . , xn)(4)

for some n-ary term te, where x1, . . . , xn ∈ X ∩ E.

Any class [e]α, e ∈ E, will be considered as a ternary group with the zero
element e. Following [1] denote by SΩ the set of all symbols

∂t

∂i
(e),

∂pjn

∂i
(e)

for each positive integer n, for each n-ary term t and for all e = (e1, . . . , en) ∈
En. Let h(x1, . . . , xn), gi(x1, . . . , xmi) be arbitrary term operations on A,
i = 1, . . . , n. Put
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di =





0, i = 0,

m1 + · · ·+ mi, i = 1, . . . , n.

Consider now the following term operations on A:

h = t(g1(x1, . . . , xd1), . . . , gn(xdm−1+1, . . . , xdm)).

It is shown in [1] (see Proposition 2.1) that if ej ∈ Emj , 1 ≤ j ≤ n, e =
(e1, . . . , en), then

∂h

∂i
(e) =

(
∂t

∂j
(g1(e1), . . . , gn(en))

)(
∂gj

∂(i− dj−1)
(ej)

)
,(5)

where dj−1 ≤ i ≤ dj . It means that SΩ is closed under multiplication (5).

Proposition 2.1. Multiplication (5) is associative.

Proof. Let

δ =
∂t

∂i
(a1, . . . , as), β =

∂u

∂j
(b1, . . . , bq), γ =

∂v

∂k
(c1, . . . , cr),(6)

where a1, . . . , as, b1, . . . , bq, c1, . . . , cr ∈ E. Then

βγ =
∂h

∂(j + k − 1)
(b1, . . . , bj−1, c1, . . . , cr, bj+1, . . . , bq),

where h = u(x1, . . . , xj−1, v(xj , . . . , xj+r−1), xj+r, . . . , xq+r−1), and there-
fore

(7) δ(βγ) =

=
∂g

∂(i+j+k−2)
(a1, . . . , ai−1, b1, . . . , bj−1, c1, . . . , cr, bj+1, . . . , bq, ai+1, . . . , as),



204 P. Zhdanovich

where

g = t (x1, . . . , xi−1, u (xi, . . . , xi+j−2, v(xi+j−1, . . . , xi+j+r−2),

xi+j+r−1, . . . , xi+q+r−2) , xi+q+r−1, . . . , xs+q+r−2) .

On the other hand

δβ =
∂w

∂(i + j − 1)
(a1, . . . , ai−1, b1, . . . , bq, ai+1, . . . , as),

where

w = t(x1, . . . , xi−1, u(xi, . . . , xi+q−1), xi+q, . . . , xs+q−1).(8)

At the final step we calculate (δβ)γ and show that it is equal to (7).

Assign to each element ∂t
∂i (e1, . . . , en) ∈ SΩ the unary operation on A as

follows:

f ∂t
∂i

(e1,...,en)(x) = t(e1, . . . , ei−1, x, ei+1 . . . , en).(9)

Proposition 2.2. The equality (9) defines an action on A of the monoid
SΩ with the multiplication (5).

Proof. Suppose that δ, β are from (6), and x ∈ A. Then

fβ(x) = u(b1, . . . , bj−1, x, aj+1, . . . , bq);

fδ(fβ(x)) = t(a1, . . . , ai−1, u(b1, . . . , bj−1, x, bj+1, . . . , bq), ai+1, . . . , as) =

= f ∂w
∂(i+j−1)

(a1,...,ai−1,b1,...,bq ,ai+1,...,as)
(x) = fδβ(x),

where w is from (8).
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Here are some properties of the action (9):

1. if pin is a projection, then

f ∂pin
∂i

(e)
(x) = x;

2. if e ∈ En and t is an arbitrary n-ary term operation, then

f ∂t
∂i

(e)(ei) = t(e), i = 1, . . . , n.(10)

Let
[

∂t
∂i (e)

]
stand for the homomorphism hi from (3). For all a1 ∈ [e1]α, . . . , an ∈

[en]α we have

t(a1, . . . , an) =
n∑

i=1

[
∂t

∂i
(e)

]
(ai) + t(e1, . . . , en).(11)

Denote by θ the congruence on SΩ generated by all pairs of the form:
(

∂p

∂2
(e, e, e), 1

)
,

(
∂f

∂i
(e),

∂g

∂i
(e)

)
,(12)

(
∂pin

∂i
(e), 1

)
,(13)

(
∂pin

∂j
(e1, . . . , en),

∂pkm

∂l
(e′1, . . . , e

′
m)

)
, for i 6= j, k 6= l, ei = e′k,(14)

(
∂t

∂i
(e1, . . . , ei−1, c, ei+1, . . . , en),

∂t

∂i
(e1, . . . , ei−1, d, ei+1, . . . , en)

)
,(15)

for c, d ∈ E,
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where e ∈ En, and f(x1, . . . , xn) = g(x1, . . . , xn) is a defining identity of V
[1]; (see Theorem 2.4). The monoid SΩ/θ will be denoted by S(E).

Proposition 2.3. Each θ-class generated by ∂pin
∂j (e1, . . . , en) for i 6= j is a

left zero of S(E).

Proof. Without loss of generality, we put j < i. If t(x1, . . . , xn) is a term
operation, then we set

h(x1, . . . , xm+n−1) =

= p(m+i−1),(m+n−1)(x1, . . . , xj−1, t(xj , . . . , xm+j−1), xm+j , . . . , xm+n−1).

Observe that the identity

h(x1, . . . , xm+n−1) = p(m+i−1),(m+n−1)(x1, . . . , xm+n−1)

holds on V. By (12), (14), we have

∂pin

∂j
(e1, . . . , en)

∂t

∂k
(e′1, . . . , e

′
m) =

=
∂h

∂(j + k − 1)
(e1, . . . , ej−1, e

′
1, . . . , e

′
m, ej+1, . . . , en) =

=
∂p(m+i−1)(m+n−1)

∂(j + k − 1)
(e1, . . . , ej−1, e

′
1, . . . , e

′
m, ej+1, . . . , en) θ

∂pin

∂j
(e1, . . . , en).

It has proved that A is a polygon over the monoid S(E). A ternary
operation p satisfying Mal’cev identities (1) is also defined on A. Hence
A is a 〈p, S(E)〉-algebra in the sense of [9]. Moreover, we will prove the
following fact.

Proposition 2.4. X generates the 〈p, S(E)〉-algebra A. If any subset Y
generates the 〈p, S(E)〉-algebra A, then Y ∪ E generates Ω-algebra.

Proof. Recall that for any x ∈ X the zero of the ternary Abelian group
[x]α belongs to X. Let u ∈ A. Then for some operation t and x1, . . . , xn ∈ X
we have
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u = t(x1, . . . , xn) =

=
n∑

i=1

(
f ∂t

∂1
(e1,...,en)(xi)− f ∂t

∂i
(e1,...,en)(ei)

)
+ f ∂t

∂1
(e1,...,en)(e1).

(16)

Note that e1 ∈ X and if e ∈ E ∩ [u]α, then e = te(x′1, . . . , x
′
n) for some

x′1, . . . , x
′
n ∈ X. Now let a set Y generate A as a 〈p, S(E)〉-algebra. Each

operation from S(E) is a polynomial of the Ω-algebra A. Since each element
from X is the value of some term for the elements of Y ∪ E, then it is also
true for an arbitrary element u from (16).

Proposition 2.5. Congruence α is Abelian on the 〈p, S(E)〉-algebra A.

Proof. Assume that (u, v) ∈ α. From (15) we get

α 3 (t(e1, . . . , ei−1, u, ei+1, . . . , en), t(e1, . . . , ei−1, v, ei+1, . . . , en)) =

=
(
f ∂t

∂i
(e)(u), f ∂t

∂i
(e)(v)

)
.

Consequently α is a congruence with respect to the new operations. We
know from [7] that the commutator [α, α] on 〈p, S(E)〉-algebra A is generated
by all pairs of the form

(
p(p(u1, u2, u3), p(v1, v2, v3), p(w1, w2, w3)),

p(p(u1, v1, w1), p(u2, v2, w2), p(u3, v3, w3))
)
,

(17)

(
p(f ∂t

∂i
(e)(u), f ∂t

∂i
(e)(v), f ∂t

∂i
(e)(w)), f ∂t

∂i
(e)(p(u, v, w))

)
,(18)

where ui, vi, wi, u, v, w are congruent modulo α, i = 1, 2, 3. In terms of
Ω-algebra the congruence [α, α] is generated by pairs (17), and also by the
pairs:
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(
p(t(u1, . . . , un), t(v1, . . . , vn), t(w1, . . . , wn)),

t(p(u1, v1, w1), . . . , p(un, vn, wn))
)
,

(19)

where ui, vi, wi are congruent modulo α, i = 1, . . . , n. But, as one can see,
the pairs from (18) belong to the set of those from (19) and that all the pairs
from (17), (18) generate the smallest congruence on A. Hence α is Abelian.

Remark 2.1. Let B be a V-algebra such that there exists a homomorphism
λ from A onto B and Ker(λ) ⊆ α. Then, by the basic properties of com-
mutators, λ(α) is an Abelian congruence. For each e ∈ En, t ∈ Tn, b ∈ B
we put

f ∂t
∂i

(e)(b) = t(λ(e1), . . . , λ(ei−1), b, λ(ei+1), . . . , λ(en)).

Thus B becomes a 〈p, S(E)〉-algebra. Moreover, λ is an Abelian homomor-
phism between the two 〈p, S(E)〉-algebras.

Rremark 2.2. We can generalize the preceding remark. In fact, E can be
viewed as an Ω-algebra isomorphic to A/α. By Remark 2.1, each Abelian
extension of E (including E itself) is a 〈p, S(E)〉-algebra where the elements
from E are fixed by (4). The obtained algebra is an Abelian extension of E.

Let D be a 〈p, S(E)〉-algebra generated by X and there exists an epimor-
phism ξ : D → A such that ξ(X) = X and the congruence β = ξ−1(α) is
Abelian. Since Ker(ξ) ⊆ β then D is an Abelian extension of A. Consider
a set E′ of all elements f ∂te

∂1
(x1...,xn)(x1). Certainly, ξ(E′) = E. Since there

is only one element of E′ in each β-class, then we can treat each element
from E′ as the zero element of the corresponding ternary group.

Proposition 2.6. The restriction of ξ to each β-class is a group epimor-
phism.

Proof. First we note that ξ preserves the operation p. As mentioned
above, ξ(E′) = E and hence ξ preserves the addition on each β-class as
ternary group.
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Proposition 2.7.

ξ

([
∂t

∂i
(e)

]
(u)

)
=

[
∂t

∂i
(e)

]
(ξ(u))

for each term operation t(x1, . . . , xn) and for all e ∈ En.

Proof. For e′i ∈ ξ−1(ei) ∩ E′ we get

ξ

([
∂t

∂i
(e)

]
(u)

)
= ξ

(
f ∂t

∂i
(e)(u)− f ∂t

∂i
(e)(e

′
i)

)
=

= f ∂t
∂i

(e)(ξ(u))− f ∂t
∂i

(e)(ei) =
[
∂t

∂i
(e)

]
(ξ(u)).

Let ω be a congruence on D generated by pairs of the form

(
f ∂t(g1,...,gn)

∂i
(e)

(u),

n∑

j=1

f ∂hj
∂(i+j−1)

(g1,...,gj−1,e,gj+1...,gn)
(u)− (n− 1)f ∂t

∂1
(g1,...,gn)(g

′
1)


 ;

(20)

(
f ∂g

∂1
(e)

(e′1), f ∂g
∂j

(e)
(e′j)

)
, j = 2, . . . , m;(21)

(
f ∂pjm

∂i
(e)

(u), e′j

)
, j 6= i.(22)

Here g is an m-ary term operation, e = (e1, . . . , em) ∈ Em, e′i ∈ E′,
ξ(e′i) = ei, u ∈ [e′i]β, i = 1, . . . , m,

hj = t(x1, . . . , xj−1, gj(xj , . . . , xj+m−1), xj+m, . . . , xn+m−1),

gi = E ∩ [gi(e)]α, and g′i ∈ E′ such that ξ(g′i) = gi. The sum in (20) is
denoting the addition in the group [t(g1, . . . , gn)(e′1, . . . , e

′
m)]β.
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Proposition 2.8. ω ≤ Ker(ξ).

Proof. A direct calculation shows that pairs (21), (22) are in Ker(ξ). If
e1, . . . , em ∈ E then we have

t(g1, . . . , gn)(e1, . . . , em) = t(g1(e1, . . . , em), . . . , gn(e1, . . . , em)).(23)

Therefore each pair of the form (20) belongs to Ker(ξ).

It follows immediately from Proposition 2.8 that the congruence ω is Abelian
and D/ω is an Abelian extension of A. Let ρ be the fractional congruence
β/ω. For each a ∈ A, we denote by ρ(a) the ρ-class corresponding to a.

Proposition 2.9. ρ is an Abelian congruence.

Proof. Let ε : D → D/ω be the natural homomorphism. Then,

ε−1([ρ, ρ]) = [ε−1(ρ), ε−1(ρ)] ∨ ω = [β, β] ∨ ω = ω.

Since all pairs (21) belong to ω then we can write t̃(e′1, . . . , e
′
n) for f ∂t

∂j
(e)(e

′
j),

j = 1, . . . , n where e, e′j are such as in (21). Let t be an arbitrary term n-ary
operation from Ω. Put

t(b1, . . . , bn) =
n∑

i=1

[
∂t

∂i
(e1, . . . , en)

]
(bi) + t̃(e′1, . . . , e

′
n)(24)

for all b1, . . . , bn from ρ(e1), . . . , ρ(en) respectively.

Proposition 2.10. D/ω is a V-algebra with respect to the operations (24).

Proof. We have to check that (24) defines a homomorphism from the clone
T of all term operations on V to the clone O(D/ω) of operations on D/ω.
From (22), (13), we see that

pim(u1, . . . , um) =
m∑

j=1

[
∂pim

∂j
(e)

]
(ui) + p̃im(e′) = ui + me′i = ui
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for u ∈ ρ(ei). By (20), (5), for t, hi, e, e′ and u such as in (20), we get

[
∂t(g1, . . . , gn)

∂i
(e)

]
(u) = f ∂t(g1,...,gn)

∂i
(e)

(u)− f ∂t(g1,...,gn)
∂i

(e)
(e′i) =

=
n∑

j=1

f ∂hj
∂(i+j−1)

(g1,...,gj−1,e,gj+1...,gn)
(u)− (n− 1)f ∂t

∂1
(g1,...,gn)(g

′
1)−

−
n∑

j=1

f ∂hj
∂(i+j−1)

(g1,...,gj−1,e,gj+1...,gn)
(e′i) + (n− 1)f ∂t

∂1
(g1,...,gn)(g

′
1) =

=
n∑

j=1

[
∂hj

∂(i + j − 1)
(g1, . . . , gj−1, e, gj+1 . . . , gn)

]
(u) =

=
n∑

j=1

[
∂t

∂j
(g1, . . . , gn)

] [
∂gj

∂i
(e)

]
(u).

Furthermore,

˜t(g1, . . . , gn)(e) = f ∂t(g1,...,gn)
∂1

(e)
(e′1) =

=
n∑

j=1

f ∂hj
∂j

(g1,...,gj−1,e,gj+1...,gn)
(e′1)− (n− 1)f ∂t

∂1
(g1,...,gn)(g

′
1) =

=
n∑

j=1

f ∂t
∂j

(g1,...,gn)

(
f ∂gj

∂1
(e)

(e′1)
)
− (n− 1)f ∂t

∂1
(g1,...,gn)(g

′
1) =

=
n∑

j=1

[
∂t

∂j
(g1, . . . , gn)

](
f ∂gj

∂1
(e)

(e′1)
)

+ f ∂t
∂1

(g1,...,gn)(g
′
1) =

=
n∑

j=1

[
∂t

∂j
(g1, . . . , gn)

]
(g̃j(e)) + f ∂t

∂1
(g1,...,gn)(g

′
1).
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Consequently,

t(g1, . . . , gn)(u1, . . . , um) =

=
m∑

i=1

[
∂t(g1, . . . , gn)

∂i
(e)

]
(ui) + ˜t(g1, . . . , gn)(a) =

=
m∑

i=1

n∑

j=1

[
∂t

∂j
(g1, . . . , gn)

] [
∂gj

∂i
(e)

]
(ui) +

n∑

j=1

[
∂t

∂j
(g1, . . . , gn)

]
(g̃j(e))+

+f ∂t
∂1

(g1,...,gn)(g
′
1) =

n∑

j=1

[
∂t

∂j
(g1, . . . , gn)

](
m∑

i=1

[
∂gj

∂i
(e)

]
(ui) + g̃j(e)

)
=

+f ∂t
∂1

(g1,...,gn)(g
′
1) = t(g1(u1, . . . , um), . . . , gn(u1, . . . , um)).

Hence, (23) holds on D/ω. Finally, if the equality f1(x1, . . . , xk) =
f2(x1, . . . , xk) holds in T, then, by (12), it also holds on D/ω.

In particular, we observe the following important fact.

Proposition 2.11. The operation

p′(u1, u2, u3) =

=
[
∂p

∂1
(e1, e2, e3)

]
(u1) +

[
∂p

∂2
(e1, e2, e3)

]
(u2)+

+
[
∂p

∂3
(e1, e2, e3)

]
(u3) + p̃(e′1, e

′
2, e

′
3),

where ui ∈ [e′i]β and ei = ξ(e′i) ∈ E, satisfies the Mal’cev identities (1).
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Proof. Let f = p(p12, p12, p22). Then f(x, y) = p22(x, y) is an identity
of V. By (12), (14) and (20), we get

p′(a, a, b) =

=
[
∂p

∂1
(e1, e1, e2)

]
(a) +

[
∂p

∂2
(e1, e1, e2)

]
(a)+

+
[
∂p

∂3
(e1, e1, e2)

]
(b) + p̃(e′1, e

′
1, e

′
2) =

=
[
∂p

∂1
(p12(e1, e2), p12(e1, e2), p22(e1, e2))

] [
∂p12

∂1
(e1, e2)

]
(a)+

+
[
∂p

∂2
(p12(e1, e2), p12(e1, e2), p22(e1, e2))

] [
∂p12

∂1
(e1, e2)

]
(a)+

+
[
∂p

∂3
(p12(e1, e2), p12(e1, e2), p22(e1, e2))

] [
∂p22

∂1
(e1, e2)

]
(a)+

+
[
∂p

∂1
(p12(e1, e2), p12(e1, e2), p22(e1, e2))

] [
∂p12

∂2
(e1, e2)

]
(b)+

+
[
∂p

∂2
(p12(e1, e2), p12(e1, e2), p22(e1, e2))

] [
∂p12

∂2
(e1, e2)

]
(b)+

+
[
∂p

∂3
(p12(e1, e2), p12(e1, e2), p22(e1, e2))

] [
∂p22

∂2
(e1, e2)

]
(b) + e′2 =

=
[
∂f

∂1
(e1, e2)

]
(a) +

[
∂f

∂2
(e1, e2)

]
(b) + f̃(e′1, e

′
2) = e′2 + 1(b) + e′2 = b.

Proposition 2.12. p′ coincides with p on each ρ-class.

Proof. Let a, b, c ∈ [e′]ρ, e′ ∈ E′, and e∗ = ξ(e′). Since p commutes with
p′ on [e′]ρ, then by (11), (21)
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p′(a, b, c) = p′(p(a, e′, e′), p(e′, b, e′), p(e′, e′, c)) =

= p(p′(a, e′, e′), p′(e′, b, e′), p′(e′, e′, c)) =

= a +
[
∂p

∂2
(e∗, e∗, e∗)

]
(b) + c = a + b + c.

Let F be the subalgebra in D/ω generated by X with respect to the
operations (24).

Theorem 2.13. ξ induces an Abelian epimorphism of Ω-algebras F → A.

Proof. Since ω ⊆ Ker(ξ) then there is an epimorphism of 〈p, S(E)〉-
algebras ϕ : D/ω → A, [u]ω 7→ ξ(u). Observe that

ϕ(t̃(e′1, . . . , e
′
n) = ϕ(f ∂t

∂1
(e1,...,en)(e

′
1)) = t(e1, . . . , en),

by (10) and thus, by (11), (24), the mapping ϕ commutes with each
operation from Ω. Moreover,

Ker(ϕ) = Ker(ξ)/ω ⊆ β/ω = ρ.(25)

Thus Ker(ϕ) is Abelian.

Now let G be an Ω-algebra with a set of generators X. According to Remark
2.2, we define the structure of a 〈p, S(G)〉-algebra on both G and it’s free
Abelian extension A generated by X. By Proposition 2.4, the 〈p, S(G)〉-
algebra G has a free Abelian extension D generated by X. As the 〈p, S(G)〉-
algebra A is an Abelian extension of G, there exists an Abelian epimorphism
ξ of 〈p, S(G)〉-algebras from D onto A which identically maps X onto itself.
By α we mean the kernel of the Abelian homomorphism from A onto G.
Let F be obtained from D as described above. In terms of Theorem 2.13,
β is the Abelian kernel of the epimorphism form D onto G. Now the following
main result follows immediately from Theorem 2.13:

Corollary 2.14. F ∼= A.

Note that the construction of S and F depends only on G. Hence we obtain
the construction of AE(G) in terms of G.
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3. Free solvable algebra

Finally we combine the results from [8] and the technique used in the pre-
vious section to obtain a construction of the free solvable V-algebra. Let Fk

be a free solvable Ω-algebra of degree k over a given set X. Let α = Ik−1
Fk

.
We construct the set E for α and consider the free solvable algebra Dk

of degree k generated by X. We begin with the construction of the free
solvable Abelian algebra F1. In this case E = {e} for a fixed element e
from F1 and SΩ consists of all elements of the form ∂t

∂i (e, . . . , e) for each
operation t from T . By Proposition 2.5, the 〈p, S{e}〉-algebra F1 is Abelian.
Let ω be a congruence of D1 defined by (20)–(22). Then, as it was shown
in the previous section, F ′

1 = D1/ω becomes a V-algebra with respect to
the operations (24).

Theorem 3.1. F ′
1
∼= F1.

Proof. At first we note that F ′
1 is generated by X. Then we observe that

α = 1F1 , β = ξ−1(α) = 1D1 and, from (25), we see that F ′
1 × F ′

1 ⊆ ρ; thus
F ′

1 is an Abelian Ω-algebra generated by X. Now the desired conclusion
follows from Theorem 2.13.

Now the construction of the free solvable Ω-algebra Fk can be obtained by
induction on k as the free Abelian extension of Fk−1.
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