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e-mail: matradi@gold.uni-miskolc.hu

Abstract

We define and study classification systems in an arbitrary CJ-
generated complete lattice L. Introducing a partial order among the
classification systems of L, we obtain a complete lattice denoted by Cls(L).

By using the elements of the classification systems, another lattice is also

constructed: the box lattice B(L) of L. We show that B(L) is an atomistic

complete lattice, moreover Cls(L)=Cls(B(L)). If B(L) is a pseudocomple-

mented lattice, then every classification system of L is independent and

Cls(L) is a partition lattice.
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1. Introduction

The notion of the classification system is related to an application of
Concept Lattices to one of the main problems in Group Technology, namely,
to classify some technological objects on the basis of their common proper-
ties (attributes) (see [3]). The dual of this notion was introduced first in the
literature by R. Wille ([7]).

Although classification systems were defined in concept lattices,
they can be introduced even in an arbitrary complete lattice (see [4]).
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Research (Grant No. T029525 and T034137) and by János Bolyai Grant.
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The basic notions and results are presented in Section 2. In Section 3, clas-
sification systems of a CJ-generated complete lattice L are studied. We
show that they can be ordered in a natural way. In this manner we obtain
a complete lattice, called the classification lattice of the lattice L. This re-
sult is proved in Section 4. Using the notion of the box lattice, it is also
shown that the classification lattice of any lattice can be represented as a
classification lattice of an atomistic lattice. In Section 5 it is proved that
a classification lattice can be considered as a generalization of a partition
lattice. In Section 6 by using independent classification systems we deter-
mine the box lattice and the classification lattice of a CJ-generated complete
pseudocomplemented lattice.

2. Preliminaries

Given a set G of objects and a set M of attributes, a binary relation I j
G×M is defined as follows:

(g,m) ∈ I if and only if the object g ∈ G has the attribute m ∈ M.

The triple (G, M, I) is called a formal context in mathematical literature
(see, e.g., [2]). By defining

A′ = {m ∈ M | (g, m) ∈ I, for all g ∈ A},

B′ = {g ∈ G | (g, m) ∈ I, for all m ∈ B}

for all subsets A j G and B j M , we establish a Galois connection between
G and M . The pairs (A,B) with A′ = B and B′ = A are called the formal
concepts of the context (G,M, I). The formal concepts of (G,M, I) together
with the partial order defined by

(A1, B1) 5 (A2, B2) ⇔ A1 j A2 (or equivalently B2 j B1)

form a complete lattice L(G,M, I) which is called the concept lattice of the
context (G,M, I). The infimum and the supremum in the lattice L(G,M, I)
are given by
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∧

i∈I

(Ai, Bi) =

(⋂

i∈I

Ai,

(⋃

i∈I

Bi

)′′)
,

∨

i∈I

(Ai, Bi) =

((⋃

i∈I

Ai

)′′
,
⋂

i∈I

Bi

)
.

Remark 1.1. We have A′ = A′′′ for each A j G. Therefore, if A = A′′,
then the pair (A,A′) is a formal concept of the context (G, M, I).

For any g ∈ G we define the concept γ(g) = ({g}′′, {g}′). Then for
any concept (A, B) ∈ L(G,M, I) we have (A,B) =

∨
g∈A γ(g) (see [2]). A

nonzero element p of a lattice L is called completely join-irreducible if for
any system of elements xi ∈ L, i ∈ I the equality p =

∨{xi | i ∈ I}
implies p = xi0 for some i0 ∈ I. If any nonzero element of L is a join of
completely join-irreducible elements, then L is called a CJ-generated lattice.
A context (G,M, I) is called row-reduced if every γ(g), g ∈ G is completely
join-irreducible. Therefore the concept lattice of a row-reduced context is a
CJ-generated lattice. In this case the 0 element of the lattice L(G,M, I) is
the concept (∅,M).

A classification of the elements of G means a partition π = {Gj , j ∈ J}
of G, where any block Gj of π is characterized by the common attributes of
its objects, i.e. where G′′

j = Gj , for all j ∈ J . In this case any aj = (Gj , G
′
j)

is a concept of (G,M, I), i.e. ai ∈ L(G,M, I).

Definition 2.2. Let L be a complete lattice. A set S = {aj | j ∈ J}, J 6= ∅
of nonzero elements of L is called a classification system of L if the following
conditions are satisfied:

(1) ai ∧ aj = 0, for all i 6= j,

(2) x =
∨

j∈J

(x ∧ aj), for all x ∈ L.

Clearly, (2) implies 1=
∨

j∈J

aj and it is equivalent to

(2′) x 5
∨

j∈J

(x ∧ aj), for all x ∈ Lr{0}.
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If S = {1}, then we say that the classification system S is trivial.

The above definition was motivated by the following result of [3]:

Theorem 2.3. If (G,M, I) is a row-reduced context, then to any classifi-
cation π = {Gj, j ∈ J} of the elements of G corresponds a classification
system aj = (Gj , G

′
j), j ∈ J of the lattice L(G,M, I). Conversely, any

classification system of the lattice L(G,M, I) induces a classification of the
elements of G.

To make our paper self-contained, we present here the proof of the above
theorem.

Proof. As π is a partition of G, we have Gj 6= ∅, and hence aj = (Gj , G
′
j)

6= 0. It is also clear that Gi ∩Gj = ∅ implies ai ∧ aj = 0 (whenever i 6= j).
Thus (1) is satisfied.

Now take x = (A,B) ∈ L(G,M, I), x 6= 0. Then x =
∨

g∈Aγ(g). As π
is a partition of G, for each g ∈ A there exists an jg ∈ J such that g ∈ Gjg .
Hence we get γ(g) 5 (Gjg , G

′
jg

) = ajg and γ(g) 5 x implies γ(g) 5 x ∧ ajg .
Thus we obtain x =

∨
g∈Aγ(g) 5

∨
j∈J(x ∧ aj), i.e. (2′).

Conversely, assume that the system aj ∈ L(G,M, I), j ∈ J satisfies the
conditions (1) and (2). Clearly, any aj is of the form aj = (Aj , Bj), where
Aj j G, Bj j M and A′j = Bj and B′

j = Aj . First, we prove that the sets
Aj , j ∈ J form a partition of G.

Indeed, aj 6= 0 gives Aj 6= ∅, for all j ∈ J . It is also obvious that
ai ∧ aj = 0 implies Ai ∩Aj = ∅, whenever i 6= j.

Let g ∈ G. Since γ(g) is completely join-irreducible, γ(g) =
∨

j∈J

(γ(g) ∧ aj) implies γ(g) = γ(g) ∧ aj0 for some j0 ∈ J . Hence γ(g) 5 aj0 ,
and this gives {g}′′ j Aj0

. As g ∈ {g}′′, we get g ∈ ⋃
j∈JAj , proving

G =
⋃

j∈JAj .
As A′j = Bj and B′

j = Aj implies Aj = A′′j , {Aj, j ∈ J} is a classification
of the elements of G.

3. Classification systems in CJ-generated complete lattices

In what follows let L be a CJ-generated complete lattice. The set of all
completely join-irreducible elements of L is denoted by J(L). For a ∈ L let
J(a) = {p ∈ J(L) | p ≤ a} and set

∨
∅ = 0. Now, a =

∨
J(a) and for any

system of elements ai ∈ L, i ∈ I we have:
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(3) J
(∧

i∈I
ai

)
=

⋂
i∈I

J(ai) and
⋃

i∈I
J(ai) j J

(∨
i∈I

ai

)
.

If every p ∈ J(L) is an atom in L, then L is called atomistic.
A set A j J(L) is called ∨-closed if for any p ∈ J(L) p ≤ ∨

A implies p ∈ A.
Clearly, A is ∨-closed if and only if A = J(a), where a =

∨
A.

Remark 3.1. By using (3) it is easy to see that any nonempty intersection
of ∨-closed sets of J(L) is a ∨-closed set again.

Definition 3.2. A partition π = {Ai, i ∈ I} of J(L) is called ∨-closed if
any block Ai of π is a ∨-closed set.

Proposition 3.3. (i) If S = {ai | i ∈ I} is a classification system of L,
then πS = {J(ai), i ∈ I} is a ∨-closed partition of J(L).

(ii) If π = {Ai, i ∈ I} is a ∨-closed partition of J(L) and ai =
∨

Ai,
then Sπ = {ai | i ∈ I} is a classification system of L with J(ai) = Ai.

Proof. (i) ai 6= 0 implies J(ai) 6= ∅, and for all i 6= j ai ∧ aj = 0 gives
Ai ∩ Aj = ∅. Let p ∈ J(L), then p =

∨
i∈I(p ∧ ai) implies p = p ∧ ai0 ,

i.e. p ∈ J(ai0
) for some i0 ∈ I. Hence J(L) j

⋃
i∈IJ(ai). As the reversed

inclusion is obvious πS = {J(ai), i ∈ I} is a partition of J(L). Since any set
J(ai) is ∨-closed, πS is a ∨-closed partition of J(L).

(ii) Ai 6= ∅ gives ai 6= 0. Let i, j ∈ I, i 6= j. For the ∨-closed sets Ai

and Aj we have Ai = J(ai) and Aj = J(aj). Hence we get J(ai ∧ aj) =
J(ai) ∩ J(aj) = Ai ∩Aj = ∅, and this gives ai ∧ aj = 0.

Let x ∈ Lr{0} and take any p ∈ J(x). As {Ai, i ∈ I} is a partition of
J(L), there is an ip ∈ I such that p ∈ Aip . Thus we get p 5 x ∧ (

∨
Aip) =

x ∧ aip
, and this implies x =

∨{p | p ∈ J(x)} 5
∨

i∈I(x ∧ ai).
As we have proved (1) and (2′), Sπ = {ai | i ∈ I} is a classification

system of L. Since J(ai) = Ai, i ∈ I, the proof is complete.

Remark 3.4. It is implicit in the proof that SπS = S and πSπ = π.

Corollary 3.5. If L is a CJ-generated lattice, then any classification sys-
tem S = {ai | i ∈ I} of L is determined by the partition πS , induced by S
on J(L).

Proof. Let S and T be two classification systems of the lattice L and
suppose that πS = πT . Then, according to Remark 3.4, we obtain S =
SπS = SπT = T .
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4. The classification lattice and the box lattice of a
CJ-generated complete lattice

Definition 4.1. Let L be a CJ-generated complete lattice and let S1 and
S2 be two classification systems of L. We say that the system S1 is finer
then S2 and we write S1 ≤ S2, if the partition πS1 induced by S1 refines the
partition πS2 induced by S2, i.e. if πS1 5 πS2 .

Let Cls(L) denote the set of all classification systems of the lattice L.
It is easy to see that ≤ is a partial order on Cls(L). Indeed, ≤ is reflexive
and transitive by definition. Let S1, S2 with S1 ≤ S2 and S2 ≤ S1. Then
πS1 5 πS2 and πS2 5 πS1 implies πS1 = πS2 . Now applying Corollary 3.5,
we obtain S1 = S2.

Theorem 4.2. (Cls(L),≤) is a complete lattice.

Proof. As the trivial classification S = {1} is the greatest element of
(Cls(L),≤), to prove that (Cls(L),≤) is a complete lattice it is enough to
show that for any nonempty set Sk ∈Cls(L), k ∈ K the infimum

∧
k∈KSk

exists in (Cls(L),≤). Let πSk
stand for the partitions induced by Sk ∈Cls(L),

k ∈ K. As the partitions of a set form a complete lattice, we can consider the
partition

∧
k∈KπSk

of J(L). Since any block of
∧

k∈KπSk
is an intersection

of some blocks of the ∨-closed partitions πSk
, all the blocks of

∧
k∈KπSk

are
∨-closed. Hence, in view of Proposition 3.3 (ii) and Remark 3.4, there exists
a classification system S = {ai | i ∈ I} j L such that πS =

∧
k∈KπSk

. We
claim S =

∧
k∈KSk.

Indeed, πS 5 πSk
, k ∈ K implies S ≤ Sk, k ∈ K. Now take a T ∈Cls(L)

such that T ≤ Sk, k ∈ K. Then πT 5 πSk
, k ∈ K implies πT 5

∧
k∈KπSk

=
πS , whence we get T ≤ S. Thus S =

∧
k∈KSk.

Remark 4.3. (i) (Cls(L),≤) or Cls(L) for short, is called the classification
lattice of the lattice L. Observe, that in the proof of Theorem 4.2 we have
also established that

∧
k∈KπSk

is induced by
∧

k∈KSk.
(ii) Notice that the 0-element of the lattice Cls(L), i.e. the finest

classification system of L, is the same as S0 =
∧{S | S ∈Cls(L)}.

Definition 4.4. The 0 of a lattice L and any element of a classification
system of L is called a box element of L. The set of the box elements of L
is denoted by B(L).

Let (B(L),5) denote the partially ordered set which is obtained by
restricting the partial order of L to B(L).
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Theorem 4.5. (B(L),≤) is an atomistic complete lattice whose atoms are
the elements of the finest classification system S0 of L.

Proof. As 1 is an element of the trivial classification system S = {1}, we
have 1∈ B(L). Clearly, 1 is the greatest element of B(L). Therefore, to
prove that B(L) is a complete lattice, it is enough to show that the infimum
of any nonempty system bk ∈ B(L), k ∈ K exists in (B(L),≤). Since the
required infimum is

∧
k∈Kbk whenever

∧
k∈Kbk ∈ B(L), we shall proceed by

proving
∧

k∈Kbk ∈ B(L).
As 0∈ B(L), if

∧
k∈Kbk = 0, then we are done. Suppose that

∧
k∈Kbk

6= 0: Then we have bk 6= 0 for all k ∈ K. In view of Definition 4.4, there
exists a classification system Sk with bk ∈ Sk, for each k ∈ K. Let us
consider now the partitions πSk

induced by the systems Sk, k ∈ K and
let

∧
k∈KSk = {ai | i ∈ I}. Since J

(∧
k∈Kbk

)
=

⋂
k∈KJ(bk) is a block

of the partition
∧

k∈KπSk
induced by

∧
k∈KSk, there exists an element ai0

(i0 ∈ I) of
∧

k∈KSk such that J(ai0) = J
(∧

k∈Kbk

)
. Hence we obtain∧

k∈Kbk = ai0 ∈ B(L) proving that (B(L), 5) is a complete lattice.
Now we prove that (B(L),5) is atomistic. Let t stand for the join

operation in (B(L), 5). Then for any bk ∈ B(L), k ∈ K we have:

(4)
⊔

k∈K
bk =

∧
{b ∈ B(L) | bk 5 b, for all k ∈ K} =

∨
k∈K

bk.

Let S0 = {αi | i ∈ I0} be the finest classification system of L. Observe, that
there is no element b ∈ L which belongs to some S ∈Cls(L) and satisfies
0 < b < αi for some i ∈ I0. (Otherwise, πS ∧ πS0 < πS0 would imply
S ∧ S0 < S0 - a contradiction). Therefore, any αi is an atom in (B(L), 5).
We prove that any b ∈ B(L) is a “t-join” of some subset of {αi | i ∈ I0}.

Since b∧αi ∈ B(L) and since any αi is an atom in B(L), we have either
b ∧ αi = 0 or b ∧ αi = αi for each i ∈ I0. Let M = {i ∈ I0 | b ∧ αi = αi}.
Then αi 5 b, i ∈ M and hence we get

⊔
i∈Mαi 5 b. As {αi | i ∈ I0} is a

classification system in L, by using (4) we obtain:

(5) b =
∨

i∈I0
(b ∧ αi) =

∨
i∈M

αi 5
⊔

i∈M
αi

Thus we get b =
⊔

i∈Mαi. This relation also implies that any atom of B(L)
is an element of S0 and the proof is completed.
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Remark 4.6. We shall use the short notation B(L) for the box lattice of
L in what follows. It is implicit in the above proof that the 0-element and
the meet operation coincide in L and in B(L). In the proof it is also shown
that for any system bk ∈ B(L), k ∈ K we have

∨
k∈Kbk 5

⊔
k∈Kbk and any

b ∈ B(L) is of the form b =
∨

i∈Mαi with some M j I0.

Theorem 4.7. For any CJ-generated complete lattice L we have Cls(L) =
Cls(B(L)).

Proof. Let S = {ai | i ∈ I} be a classification system of the lattice L. We
prove that S is also a classification system of B(L).

Indeed, we have ai ∈ B(L)r{0} for all i ∈ I. As the 0-element and the
∧ operation is the same in L and B(L), for all i 6= j the equality ai ∧ aj =
0 holds in the lattice B(L) also. Now take a b ∈ B(L). Then, in view
of Remark 4.6, we get b =

∨
i∈I(b ∧ ai) 5

⊔
i∈I(b ∧ ai) 5 b. Therefore,

b =
⊔

i∈I(b ∧ ai) also holds in B(L). Thus we obtain Cls(L) jCls(B(L)).
Conversely, take a system S = {bk | k ∈ K} ∈Cls(B(L)). Clearly,

bi ∧ bj = 0, for all i, j ∈ K, i 6= j. Take an x ∈ Lr{0}. Now we show that
S satisfies the inequality (2′) in the lattice L.

Let p ∈ J(x) and consider the partition {J(αi) | i ∈ I0} induced by
the classification system S0 = {αi | i ∈ I0}. Obviously, we have p ∈ J(αip)
for some ip ∈ I0, i.e. we get p 5 αip . Since αip ∈ B(L) and since S is a
classification system of B(L), we obtain αip =

⊔
k∈K(αip ∧ bk). As αip is

an atom of B(L), there exists a kp ∈ K such that αip = αip ∧ bkp . Hence
p 5 αip 5 bkpand this implies p 5 x ∧ bkp 5

∨
k∈K(x ∧ bk).

Thus we obtain x =
∨{p | p ∈ J(x)} 5

∨
k∈K(x ∧ bk), i.e. (2′).

Therefore, S = {bk | k ∈ K} is a classification system of L. Hence
Cls(B(L)) jCls(L), completing the proof.

We say that L is a classification lattice, if L is isomorphic to some Cls(L)
(where L is a CJ-generated complete lattice). Now, as a consequence of
Theorem 4.7 and Theorem 4.5, we can formulate

Corollary 4.8. Any classification lattice can be represented as the classifi-
cation lattice of an atomistic complete lattice.

5. Classification lattices of atomistic complete lattices

Let L be an atomistic complete lattice and denote by A(L) the set of its
atoms. For x ∈ L let A(x) = {a ∈ A(L) | a ≤ x}. As any atomistic lattice
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is a CJ-generated lattice with J(L) = A(L), S = {ai | i ∈ I} j L is a
classification system of L if and only if πS = {A(ai), i ∈ I} is a ∨-closed
partition of A(L).

Further, observe that for any element x ∈ Lr{0} the set
Sx = {x} ∪ {a ∈ A(L) | a ∧ x = 0} is a classification system of L.

Indeed, let us consider the sets {a} j A(L) with a∧x = 0 and the set A(x).
Since these sets are nonempty and pairwaise disjoint and since their union
is A(L), they form a partition of A(L), denoted by πx. As all these sets
are ∨-closed subsets of A(L), πx is a ∨-closed partition. Now, in virtue of
Proposition 3.3 (ii), the relations x =

∨
A(x) and a =

∨{a} imply that Sx

is a classification system of L with πSx = πx.
Therefore, any x ∈ L is a box element of L and hence B(L) = L.

Moreover, the meet operation is the same in L and B(L) (see Remark 4.6)
and for any a, b ∈ B(L) we have:

a t b =
∧{x ∈ B(L) | a 5 x, b 5 x} =

∧{x ∈ L | a 5 x, b 5 x} = a ∨ b.

As a consequence, we obtain the following

Proposition 5.1. If L is an atomistic complete lattice, then its box lattice
B(L) coincides with L.

Corollary 5.2. In any atomistic complete lattice L the system A(L) of all
atoms of L is the finest classification system of L.

Proof. By Theorem 4.5 the finest classification system of L is S0 =
{α ∈ L | α is an atom in B(L)}. Now B(L) = L gives S0 = A(L).

Remark 5.3. Clearly, Sx < Sy ⇔ x < y and Sx = A(L) ⇔ x ∈ A(L).
Moreover, if x, y /∈ A(L), then Sx = Sy ⇒ x = y. Further, denote by Y the
join operation in Cls(L) and let S = {ai | i ∈ I} be a classification system
of L. Then it is easy to check that S =

∨{Sai | i ∈ I}.
We say that a lattice L satisfies the local Birkhoff condition, if for any

atoms a, b ∈ L we have a, b ≺ a∨ b. (We note that this condition is satisfied
by any semimodular and any 0-modular lattice - see, e.g., [6].) Let L be a
complete lattice and for any p ∈ L let p̃ =

∨{x ∈ L | x < p}. If p ∈ J(L),
then it can be easily seen that p̃ is the unique element of L satisfying p̃ ≺ p.
Hence p̃ = 0 if and only if p is an atom in L. Finally, let Part(A) stand for
the partition lattice of a set A.
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Proposition 5.4. If L is an atomistic complete lattice satisfying the local
Birkhoff condition, then any completely join-irreducible element of Cls(L)
is an atom in Cls(L).

Proof. Let S be a completely join-irreducible element of Cls(L). Then, in
view of Remark 5.3, there is an element d ∈ Lr{0}, d /∈ A(L) such that
S = Sd. Let us consider now S̃ =

∨{T ∈Cls(L) | T < S}. As A(L) is the
0-element of Cls(L), we have to prove only S̃ = A(L).

In contrary, assume that S̃ contains an element c /∈A(L). As Sc≤ S̃ <Sd,
we get 0 < c < d, according to Remark 5.3. Then there are a, b ∈ A(d) with
a < c and b ∧ c = 0, and a ∨ b 5 d implies Sa∨b ≤ S. Since a ∨ b � c and
since (a ∨ b) ∧ c = a > 0, there is no x ∈ S̃ with a ∨ b 5 x. (Otherwise
a ∨ b 5 x and x, c ∈ S̃, x 6= c would imply 0 = x ∧ c = (a ∨ b) ∧ c > 0, a
contradiction.) Hence Sa∨b does not satisfy Sa∨b ≤ S̃. Therefore, Sa∨b ≤ S
implies Sa∨b = S = Sd. As a ∨ b, d /∈ A(L), in view of Remark 5.3, we get
a ∨ b = d. Finally, by using the local Birkhoff condition, we obtain a ≺ d,
contrary to a < c < d.

Remark 5.5. It is implicit in the above proof, that any atom of Cls(L) is
of the form S = Sa∨b, with a, b ∈ A(L), moreover, if L satisfies the local
Birkhoff condition, then any such an Sa∨b is an atom in Cls(L).

Corollary 5.6. Let L be a complete CJ-generated lattice. If B(L) is finite
and satisfies the local Birkhoff condition, then Cls(L) is a finite atomistic
lattice.

Proof. Since B(L) is finite, A(B(L)) and Part(A(B(L))) are also finite. As
S 7→ πs maps injectively Cls(B(L)) in Part(A(B(L))), Cls(B(L)) is finite,
too. Thus Cls(L) =Cls(B(L)) is a finite lattice. As any element of a finite
lattice is a join of completely join-irreducible elements of it, by applying
Proposition 5.4, we obtain that Cls(L) is atomistic.

Let L1, L2 be two lattices, the map ϕ : L1 −→ L2 is a ∧-homomorphism if for
any a, b ∈ L1 we have ϕ(a∧b) = ϕ(a)∧ϕ(b). Clearly, any ∧-homomorphism
is order preserving. We recall (see e.g. [5]) that L1 and L2 are isomorphic
iff there are order preserving maps ϕ : L1 −→ L2 and ψ : L2 −→ L1,
such that ϕ and ψ are inverses of each other. We show that any bijective
∧-homomorphism ϕ is a lattice isomorphism:
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Indeed, as ϕ is order preserving, it is enough to prove that its inverse ϕ−1

is also order preserving, that is ϕ(a) 5 ϕ(b) =⇒ a 5 b. Assume that
ϕ(a) 5 ϕ(b). Then ϕ(a) = ϕ(a) ∧ ϕ(b) = ϕ(a ∧ b) and hence the injectivity
of ϕ implies a = a ∧ b, i.e. a 5 b.

Lemma 5.7. Let L be an atomistic complete Boolean lattice. Then

(i) any partition of the set A(L) is ∨-closed ;

(ii) the classification lattice of L is isomorphic to Part(A(L)).

Proof. (i) Let π = {Ai, i ∈ I} be a partition of A(L) and take an x ∈ A(L)
such that x 5

∨
Ai for some i ∈ I. We prove x ∈ Ai.

Suppose that x /∈ Ai, then we have x ∧ a = 0 for each a ∈ Ai. As any
complete Boolean lattice is infinitely distributive, we get x = x ∧ (

∨
Ai) =∨

a∈Ai
(x ∧ a) = 0 - a contradiction.

This shows that π = {Ai, i ∈ I} is a ∨-closed partition.
(ii) Let us consider the mapping

ϕ : Cls(L) −→Part(A(L)), ϕ(S) = πS .

We prove that ϕ is a isomorphism, by showing that it is a bijective
∧-homomorphism.

Take any S1, S2 ∈Cls(L). In view of Remark 4.3 (i), the classification
system S1 ∧ S2 induces the partition πS1 ∧ πS2 of A(L). Therefore, we have
ϕ(S1 ∧ S2) = ϕ(S1) ∧ ϕ(S2) and hence ϕ is a ∧- homomorphism.

Further, assume that ϕ(S1) = ϕ(S2) for some S1, S2 ∈Cls(L). In view
of Corollary 3.5, πS1 = πS2 implies S1 = S2. Hence ϕ is injective.

Take a partition π = {Ai, i ∈ I} of A(L) and let ai =
∨

Ai, i ∈ I. As π
is ∨-closed according to (i), Proposition 3.3 (ii) gives that Sπ = {ai | i ∈ I}
is a classification system in L. Using Remark 3.4, we get that the partition
induced by Sπ coincides with π, i.e. ϕ(Sπ) = π. Thus ϕ is surjective and
the proof is completed.

Combining Theorem 4.5, Theorem 4.7 and this result, we obtain

Corollary 5.8. Let L be a CJ-generated complete lattice. If B(L) is a
Boolean lattice, then Cls(L) is isomorphic to a partition lattice.

Finally, we show that the notion of the classification lattice can be
considered as a generalization of the notion of the partition lattice:
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Proposition 5.9. Any partition lattice can be represented as the classifica-
tion lattice of an atomistic complete Boolean lattice.

Proof. Consider the partition lattice of an arbitrary nonempty set A. Since
the power-set lattice P(A) of the set A is an atomistic complete Boolean
lattice and since the atoms of this lattice are the sets {a}, a ∈ A, Lemma
5.7 gives Cls(P(A)) ∼=Part({{a} | a ∈ A}) ∼=Part(A).

6. Independent classification systems and pseudocomplemented
lattices

Let L be a complete lattice. A classification system S = {ai | i ∈ I} of L is
called independent if aj ∧ (

∨
i∈Ir{j}ai) = 0 holds for all j ∈ I.

The following lemma from [4] will be useful in our proofs.

Lemma 6.1. Let S = {ai | i ∈ I} be an independent classification system
of a complete lattice L. Then for any K j I, K 6= ∅ and b =

∨
i∈Kai,

S∗ = {ai | i ∈ IrK} ∪ {b} is also a classification system.

Corollary 6.2. Let S = {ai | i ∈ I} be an independent classification system
and K j I. Then:

(i)
∨

i∈K

ai ∈ B(L);

(ii) aj 5
∨

i∈K

ai implies j ∈ K;

(iii) for any J j I, we have
( ∨

i∈J

ai

)
∧

( ∨
i∈K

ai

)
=

∨
i∈J∩K

ai.

Proof. As
∨
∅ = 0∈ B(L), (i) is an easy consequence of Lemma 6.1.

(ii) Let b =
∨

i∈K

ai and suppose that j ∈ IrK. Then Lemma 6.1 implies

aj ∧ b = 0, contrary to 0 < aj 5 b.

(iii) Let b1 =
∨
i∈J

ai, b2 =
∨

i∈K

ai, c = b1 ∧ b2 and Ic = {i ∈ I | ai ∧ c 6= 0}.

Clearly, J ∩K j Ic. Further, Lemma 6.1 gives ai ∧ b1 = 0 for any i ∈ IrJ
and ai∧ b2 = 0 for any i ∈ IrK. If ai∧ c 6= 0, then ai∧ b1 6= 0 and ai∧ b2 6=
0 imply i ∈ J ∩K. Thus we get Ic j J ∩K and hence Ic = J ∩K. Since S
is a classification system in L, and since ai 5 b1 ∧ b2 = c for all i ∈ J ∩K,
we can write:
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(∨

i∈J

ai

)
∧

( ∨

i∈K

ai

)
= c =

∨

i∈I

(c ∧ ai) =
∨

i∈J∩K

(c ∧ ai) =
∨

i∈J∩K

ai.

A lattice L with 0 is called a pseudocomplemented lattice if any element
x ∈ L has a pseudocomplement x∗, that is, for any x ∈ L there exists
an element x∗ ∈ L such that y ∧ x = 0 ⇔ y 5 x∗. An element a of a
pseudocomplemented lattice L is called a semicentral element ([1]) if

(6) x = (x ∧ a) ∨ (x ∧ a∗) holds for all x ∈ L.

Let Sem(L) stand for the set of semicentral elements of L.

Remark 6.3. Clearly, if L is a bounded lattice, then 0,1∈Sem(L). In view
of [4], if L is a complete pseudocomplemented lattice, then any classification
system of L is independent and consist of semicentral elements.

Proposition 6.4. If L is a CJ-generated complete pseudocomplemented
lattice then Sem(L) = B(L).

Proof. It is clear that 0,1∈ B(L). Let a ∈Sem(L)r{0,1}. Since, in view of
(6), the set {a, a∗} is a classification system of L, we have a ∈ B(L). Hence,
Sem(L) j B(L). As by Remark 6.3 any box element of L is a semicentral
element, we obtain Sem(L) = B(L).

Theorem 6.5. Let L be a CJ-generated complete lattice.

(i) If the finest classification system of L is independent, then B(L) is
an atomistic complete Boolean sublattice of L.

(ii) If B(L) is a pseudocomplemented lattice, then it is a Boolean sublat-
tice of L and every classification system of L is independent.

Proof. (i) First we prove that B(L) is a sublattice of L. As b1 ∧ b2 ∈ B(L)
for any b1, b2 ∈ B(L), we have to show only b1 t b2 = b1 ∨ b2.

Let S0 = {αi | i ∈ I0} be the finest classification system of L. In view
of Remark 4.6, there exist J1, J2 j I0 with b1 =

∨
i∈J1

αi and b2 =
∨

i∈J2
αi.

Then b1 ∨ b2 =
∨

i∈J1∪J2
αi. Since S0 is independent, Corollary 6.2 (i) gives

b1 ∨ b2 ∈ B(L). Hence b1 t b2 =
∧{b ∈ B(L) | b1, b2 5 b} = b1 ∨ b2.
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Now let us consider the map Φ : P(I0) → B(L), Φ(J) =
∨

i∈Jαi, J j
I0. Since Corollary 6.2 (iii) implies Φ(J ∩ K) = Φ(J) ∧ Φ(K), Φ is a
∧-homomorphism. As any b ∈ B(L) is of the form b =

∨
i∈Mαi for some

M j I0 (see Remark 4.6), Φ is onto. We prove that Φ is one-to-one:
Assume that Φ(J1) = Φ(J2), i.e.

∨
i∈J1

αi =
∨

i∈J2
αi. Then for any

j ∈ J1 we have αj 5
∨

i∈J2
αi and Corollary 6.2 (ii) gives i ∈ J2. Thus

J1 j J2. Symmetrically we prove J2 j J1. Hence J1 = J2.
Thus Φ is a lattice isomorphism and P(I0) ∼= B(L). Therefore, B(L) is

an atomistic complete Boolean lattice.

(ii) Let S = {ai | i ∈ I} be an arbitrary classification system of L. Since
S ∈Cls(B(L)) and since B(L) is a pseudocomplemented lattice, S is inde-
pendent in B(L). Therefore, we get aj ∧ (

∨
i∈Ir{j}ai) 5 aj ∧ (

⊔
i∈Ir{j}ai) =

0, proving that S is independent in L. Since every classification system of
L is independent, S0 is also independent. Hence, according to the above (i),
B(L) is a Boolean sublattice of L.

As a consequence of Theorem 6.5 and Corollary 5.8 we obtain:

Corollary 6.6. If the finest classification system of a CJ-generated com-
plete lattice L is independent, then every classification system of L is inde-
pendent and Cls(L) is isomorphic to a partition lattice.

Combining Theorem 6.5, Proposition 6.4 and Corollary 6.6 we obtain:

Corollary 6.7. Let L be a CJ-generated complete pseudocomplemented
lattice. Then the semicentral elements of L form an atomistic complete
Boolean sublattice of L which coincides with the box lattice of L. The
classification lattice of L is isomorphic to a partition lattice.

Problems

Since any partition lattice is a particular geometric lattice, the problems
below arise naturally:

1) Is it true that every geometric lattice is isomorphic to a classification
lattice ?

2) Characterize those atomistic complete lattices whose classification
lattices are geometric lattices (partition lattices).
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