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Abstract

In this note we explain why the group of n X n upper triangular
matrices is defined usually over commutative ring while the full general
linear group is defined over any associative ring.
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1. INTRODUCTION

The following three results on n x n matrices with real entries can be found
in standard textbooks on linear algebra.

Theorem 1. The inverse of an invertible lower triangular matrix is lower
triangular, and the inverse of an invertible upper triangular matriz is upper
triangular.

Theorem 2. A triangular matrix is invertible if and only if all its diagonal
entries are invertible.

Theorem 3. Two n xn matrices A and B are inverses of each other if and
only if BA=1 or AB = I, where I denotes identity matrix.
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For this result, see, for example, [1], Theorem 1.7.1, p. 68 and [2]. These
results can be generalized for matrices with entries from the wider classes
of commutative rings (by using of determinant theory).

In handbooks on group theory for graduates, the definition of the group
of invertible upper triangular matrices T'(n, R) is given for commutative
rings with 1 only (see [6], p. 124, and [5], p. 5). This definition requires
validity of theorems 1 and 2 for such rings.

It is interesting that, from the other side, a definition of a general linear
group GL(n, R) as the group of all invertible n x n matrices is given for
matrices with entries from any associative ring R with 1 (see [6], p. 5). In
commutative case T'(n, R) is a very natural subgroup of GL(n, R), so it is
an intriguing question why one cannot define 7'(n, R) for noncommutative
rings.

In this note we explain this phenomenon and prove the following

Theorem 4. There exist a noncommutative ring R and two 2 X 2 matrices
A, B with coefficients from R such that A is upper triangular, B is lower
triangular and AB = BA = 1.

2. DEDEKIND-FINITE RINGS.

Let R be an associative ring with unit 1. We say that R is Dedekind-
finite if xy = 1 implies yx = 1 for all x,y in R. The following rings can
serve as examples of Dedekind-finite rings: finite rings, commutative rings,
Endg(K™), i.e. the ring of endomorphisms of a vector space K™ (for any
field K). If R is commutative, then the ring M (n, R) of n x n matrices over
R is Dedekind-finite too [3]. This follows from the determinant theory. In
[2] one can find the various elementary proofs of this fact for matrices over
a field. If R is Dedekind-finite, then the polynomials ring R[t] and the ring
of formal power series R|[[t]] are Dedekind-finite [3].

If R is not Dedekind-finite, then there exist two elements x and y such
that xy = 1 and yx # 1 and Theorem 3 fails. The rings R[t] and R[[t]] are
not Dedekind-finite in this case. The following example shows that M (n, R)
is not Dedekind-finite for n > 2 (we restrict us to n = 2; for the general case
one can uses a similar example):
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z 0 y 0 10 y 0 z 0 10
- , #
0 1 0 1 01 0 1 01 01
Moreover:
y 1 T 1 z 1 y 1 10
0 —x 1l—yx —y 1l—yx —y 0 —x 01

This last example, taken from [7], was an inspiration for our paper. It shows
that the inverse of an upper triangular matrix need not be upper triangular.
It follows that Theorems 1 and 2 fail for rings which are not Dedekind-finite.
Thus, the group T'(n, R) cannot be defined for such rings.

Infinite matrices give an example of the ring which is not Dedekind-
finite. Let RCFM(R) be a ring of row and column finite infinite matrices [4]
(indexed by positive integers) over an associative ring R with 1. Let

0 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0
a=]1 0 1 0 0 ...Jand c=] 0 0 0 1
0 0 1 0 0 0 0 0

It is clear that ca = e where e denotes infinite identity matrix
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1 0 0

0 1 O
e =

0o 0 1

and ac has a first row entirely of zeros and so ac # e. Thus, Theorem 3 fails
for infinite matrices.

3. EXAMPLE
Examples in previous section give arise to the following question:

Can the inverse of an wupper triangular matriz be lower
triangular?

In the case of 2 x 2 matrices the positive answer forces two conditions:

These equations are equivalent to two systems of equations:

(
ad+bf = 1 da = 1
bg =0 db =0
and
cf =0 fa =0
{ cg = 1 { fo+gc = 1
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If the ring of coefficients is commutative, then such matrices must be
diagonal.

Now we describe an example, announced in Theorem 4, which gives
positive answer to our question.

Let A= < a b be a 2 X 2 matrix with entries in the ring RCFM(R)

0
where a, ¢ are infinite matrices defined in previous section and b is a matrix
with the only nontrivial entry b;; = 1 and all other entries equal to 0:

1 0 0

0 0 O
b=

0 0 O

Cc

Weputh(b

2 ) Easy calculations show that AB = BA = I, where

I= ( 8 (e)’ > is a unit matrix in M (2, RCFM(R)), so A is invertible (and

B too). Moreover, A is upper triangular, while B is lower triangular. It is
clear that the diagonal entries of A and B are not invertible. [

We note here that the ring R of coefficients of infinite matrices in the
above example can be any field, a ring of integers, or a ring of integers
modulo p. An interesting open problem is the existence of such example for
noncommutative Dedekind-finite ring.
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