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0. INTRODUCTION

The notion of a half [-group as a generalization of the notion of an /-group

was introduced and studied by M. Giraudet and F. Lucas [4].

R.N. Ball [1] has defined the notion of a cut completion of an I-group.

In this paper we define the notions of a cut completion and a lexico
extension of a half [-group. We prove a theorem on a cut completion of a
half [-group having an abelian increasing part which can be expressed as a
nontrivial lexico extension. A particular case of this theorem is a result of

J. Jakubik [5] dealing with a cut completion of an abelian I-group.
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1. PRELIMINARIES

Let G be an abelian [-group. G is called a lexico extension of its l-subgroup

A £ {0} if

(i) Ais a convex l-subgroup of G,

(i) f0<ge@G, g¢ A, then g > a for each a € A.

If G is a lexico extension of A, we shall write G = (A). If G = (A), then A
is an [-ideal of G and (cf. [3] and [2])

(a) A is comparable to all convex [-subgroups of G (i.e., if A’ is a convex
l-subgroup of G then either A" C A or A C A').

(b) G/A is a linearly ordered group.

Let G be a group and a partially ordered set. Set

Gl={9eG:z<y=g+x<g+yforal z,ye G},

Gl={9eG:z<y=g+axz>g+yforalazyecG}

G 1 (G]) is called the increasing (decreasing) part of G.
G is said to be a half I-group (abbreviated to an hl-group) if the following
conditions are satisfied (cf. [4]):

(i
(ii

(iii

the partial order < on G is non-trivial,

)
) ifz,y,ge Gand x <y, thenz+g<y-+yg,
)
)

(iv) G 1 is an Il-group.

If G 7 is a linearly ordered group, then hi-group G will be called a half
linearly ordered group.
Every l-group G # {0} is a special case of an hl-group with G |= 0.
We denote by HL the class of all hl-groups that fail to be I-groups.
The following results will be applied in the next.
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Proposition 1.1 (cf. [4]). Let G € HL. Then
(i) G 71 is a subgroup of the group G and G 1 has indezx 2,

(i) G 1 and G | are isomorphic groups and also dually isomorphic
lattices,

(iii) ifx € GT andy € G |, then = and y are incomparable,

(iv) the set {g € G: g#0, 29 =0} is nonempty.

Let G be an hl-group. A subgroup A # {0} of G is called a half [-subgroup
(abbreviated to an hl-subgroup) if A |= ANG 1 is an [-subgroup of G 1. If
A is an hl-subgroup (proper hl-subgroup) of G we use the notation A < G
(A < G). We say that an hl-subgroup A of G is convex in G if A 1 is convex
in G 1. A convex hl-subgroup A of G is said to be an hl-ideal of G if A 7 is
a normal subgroup of G. According to 1.1 G T is an hl-ideal of G.

Let G be an hl-group, G € HL and A T an hl-ideal of G, A € HL. We
can form the factor group G = G/A 1. For elements g1 + A 1, g2 + A T€ G,
we put g1 + A 1< go + A 1 if and only if there exist ¢ € g1 + A | and
gh € go + A1 with ¢} < g). Then G is a partially ordered set and to each
g; € g1 + A ] there exists g € go + A ] such that ¢] < ¢5. It can be
easily verified that if A < G, then G is an hl-group with the increasing part
GT1={g+A7T:g€G7} and decreasing part G |={g+AT: g€ G |} .

If A= G then G is trivially ordered. Hence G fails to be an hl-group.

A 1-1 mapping ¢ from an hl-group G onto an hl-group G’ is called
an hl-isomorphism if ¢ is a group homomorphism and if ¢|G 1 is a lattice
homomorphism of G' T onto G’ 7.

2. LEXICO EXTENSION OF AN hl-SUBGROUP

Let G be an hl-group, G € HL with the abelian increasing part G T. Let A
be an hl-subgroup of G, A € HL. If G T is a lexico extension of A T, then
we say that G is a lexico extension of A and we express this situation by
writing G = (A)p.

Lemma 2.1. Let G = (A),. Then

(i) A is an hl-ideal of G,
(i) if A< G, then G = G/A T is a half linearly ordered group.
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Proof. (i) We have to show that A T is normal in G. Since A ] is a
convex [-subgroup of G 1, —g+ A T +g (g € G) is a convex subset of
G 7. It is a routine to verify that —g + A T +g is a subgroup of G 7. Let
—g+a1+g, —g+ar+ge—g+AT+g, g€ G, and ar,az € A 7. It is easy
to verify that in G 1 we have (—g+a1+9)V(—g+as+g) = —g+(a1Vaz)+g
foreachg e G 1, (—g+a1+9)V(—g+ar+g) =—g+ (a1 Naz) + g for
each g € G | and dually. Hence —g + A T +g is a sublattice of G 1 for each
g € G. By summarizing we have that —g + A T +g¢ is a convex [-subgroup
of G 1 for each g € G. By (a), A1 and —g+ A | +g¢ are comparable. The
fact that G T is abelian implies —g+ A T +g = A 1 for all g € G T. Suppose
that g€ G | and A1C —g+ A ] +g. Let a€ AT. Then a = —g+ag + g,
where ag € A T and hence —g 4+ a + g = —2g + ag + 2g. Since 2g € G T, we
get —g+a+g€ AT. Thus —g+ AT +g C AT for all g € G. Therefore,
A 7 is normal in G.

(ii) follows from the property (b) of a lexico extension. |

If G = (A)p, then Lemma 2.1 yields that A T is a normal subgroup of G,
but A need not be normal in G.

Examples. Let M be the set of all functions f : R — R; f(x) = ta+k, k €
R. If a binary operation on M is defined as a composition (i.e., fg(z) =
f(g(z)) for all z € R) and a binary relation < on M is defined pointwise,
then M is a half linearly ordered group, with M 1= {f: f(x) =z + k} and
M |={f: f(z) = —x+k}. Now,let H = {(f1, f2) : f1, f2 € M 1}. For each
(1, f2), (f1 £5) € H we put (fi, f2) < (f{. f}) if and only if either f; < /]
or fi = f] and fo < f}. Then H is a linearly ordered set that is called the
lexicographic product of the two linearly ordered sets M T and we use the
denotation H = M 1 oM 7. Analogously we can construct K = M | oM |.
If a binary operation on H is defined componentwise, then H is a linearly
ordered group. Therefore, G = H U K is a half linearly ordered group with
G 1= H,G |= K. Let A; = {(id,g) € G : g € M 1} (id is an identity
function) and As = {(g1,9) : ¢1 is a fixed element of M |, g € M |}. Then
A = Ay U As is a half linearly ordered group, A 1= A;, A |= As. We have
G = (A)p, but A fails to be normal in G. In fact, for all f € M, f # id, g
we have f~lg1f # g1, thus (f, f)" (91, 9)(f, f) & Ag for each (g1,9) € Aa.

Assume that G is an hl-group, G € HL and that A € HL is an hl-ideal
of GG such that A is a normal subgroup of GG. Define a partial order on the
factor group G/A ( and also on the factor group G T /A T ) analogously
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as above on G/A 1. Then G/A is a lattice ordered group. The mapping
f:G1/A1— G/Adefined by f(g+A 1) =g+A,g € G 7 isan isomorphism
of the lattice ordered group G 1 /A T onto G/A.

Suppose that G = (A), and that A is normal in G. Then, by the
property (b) of a lexico extension, we have that G/A is a linearly ordered
group.

Lemma 2.2. Let G = (A),, 1 +A T, go+A T € G, and let g1+ A 1< go+A T
Then g1 < ga.

Proof. From g1 + A 1< go + A 7 it follows that either g1,g2 € G T or
91,92 € G |. Now, let g1,92 € G 1. There exists g5 € g2 + A T such
that g1 < g5. Hence g5 € G T and g5 — g1 > 0. Since gb — g1 ¢ A 1 and
95— 92 € AT, we get gy — g1 > g5 — g2. Hence —g1 > —go and g1 < go.
Suppose that g1,92 € G |. There exists g§ € go + A ] with ¢g; < ¢g5. Hence
beGl, ¢5—qe€eGT, g8 —q1 ¢ A1 and g§ — g1 > 0. Further, we
have g —go € A 1. Then g5 — g1 > ¢g5 — g2 implies that —g; < —g2 and so
g1 < g2. u

Corollary. Let G = (A),. Then G is a half linearly ordered group if and
only if A is a half linearly ordered group.

For the remaining part of this section, we assume that G, A and B are
hl-groups from HL such that

(I) G 1 and B 1 are abelian [-groups,
() G=(Ay, A<G,
(ITIT) A is an hl-subgroup of B,
(IV) GNnB=A.

According to Proposition 1.1, there exists an element a € A | of order 2.
Form the set

H():{(g,b): either g€ G 1,b€ B orgeGl’beBl}.
For elements (g1, 1), (g2,b2) € Hy, we set

(91,b1) = (g2, b2)

ifgr—go € AT, by —bo € AT, g1 —go = by — by and if either ¢g1,92 €
G1,bi,bp€BTlorg,geG]|, bi,bs€B |
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The relation = is an equivalence. It is clear that the relation = is re-
flexive and symmetric. To establish the transitivity, suppose that (g1,b1) =
(92,b02), (g2,b2) = (g3,b3). We will consider only the following case. Let
gi,92 € G |, and by,bg € B |. Then g3 € G |, and b3 € B |. We have
G1—92 €A, ba—b1€AT, g1—ga=ba—b1, go—9g3 € AT, b3—ba € AT,
and g2 — g3 = bz — be. By (I) and (II), A 7 is abelian. Then g1 — g3 =
(91— 92) + (92 — g3) = (b2 — b1) + (bg — b2) = (b3 — ba) + (b2 — b1) = b3 — b1.
Hence g1 — g3 € A1 and bs — by € A 1. Therefore (g1,b1) = (g3, b3)

Denote

W = {(glab/) € Ho: (gab) = (glvb/)}y

H= {(g, b) : (g,b) S Ho}.
Let (g1,b1), (g2, b2) € H. We put

(91,01) + (g2,b2) = (g1 + g2, b1 + b2).

The binary operation + on H is correctly defined; (0,0) is a neutral element

and (—g, —b) is an inverse to (g, b).

We have

Lemma 2.3. (H,+) is a group. u

Let (g1,b1), (g2,b2) € H. We put

(91,b1) < (g2, b2)

if either g1 < goand g1 —g2o ¢ ATor g1 —go€ AT and g1 — g2 < b — by.
The definition implies that either gi1,9o € G T or g1,92 € G |. Now we

verify that the relation < is correctly defined. Let (¢}, b)) = (g1, b1), (g5, b5) =

(g2, b2).

Assume that g1 < g2, 1 —92 ¢ A 1. Then g1 + A 1< g2 + A ] and
91,92 € G Torgi,go € G| Since g1 —¢g; € AT and g2 —gy € AT,
we get 1 +AT=¢]+A 7T and g2+ A 1= g5+ A 7. With respect to
Lemma 2.2, we get g < g5. Suppose that ¢f —gh € A 7. Then g1 — g2 =
(g1 —9gy) + (g) — gb) + (g5 — g2) € A1, a contradiction. Hence ¢) —gh ¢ A 1.
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Assume that g1 —go € A 1,91 —g2 < bo—b1. Then ¢} —g5 = (9] — 1) +
(91— 92) + (92— g5) < (b1 —b1)+ (b2 —b1) + (b5 — ba) = (b1 — ) + (b5 — ba) +
(b2 — bl) = (b1 — b/l) + (b’g — bl) = (bIQ — bl) + (bl — bll) = bIQ — bll We also
have shown that ¢} — g, € A 1.

It is evident that the relation < is reflexive.

Let (g1,b1) < (92,02), (g2,b2) < (91,01). Then g1 —g2 € AT, g1 — g2 <
by —b1 and ga —g1 < by —be. Hence g1 — g2 = ba— b1 and so (g1, b1) = (g2, b2).

The antisymmetry is satisfied.

Let (g1,b1) < (g2,b2), (g2,b2) < (g3,03).

(o) Assume that g1 < g2, g1 —92 ¢ AT, g2 < g3, and go —gs € A T.
We will consider only the case that ¢g1,92 € G |. Then also g3 € G | and
g1 < g3. Assume that g1 —g3 € AT. Then g1+ A T =93+ A T. Since
g1+ A T is aconvex subset of G | and g1 < g2 < g3, we obtain go € g1 + A T.
Hence g1 — go € A T, a contradiction.

(B) Assume that g1 —go € AT, g1 — g2 <ba— b1, go—g3 € AT, and
g2 — 93 < b3 —ba. Then g1 —g3 = (91 —9g2) + (92 —g3) €E AT, and g1 — g3 =
(91— 92) + (92 — 93) < (b2 —b1) + (b3 — b2) = (b3 — ba) + (b2 — b1) = b3 — b1.

(v) Assume that g1 < g2, g1—92 ¢ AT,92—93 € AT, and go—g3 < bs—
ba. We will consider only the case g1,92 € G |. Hence g5 € G |, g2 —g1 > 0
and go—g1 ¢ A 1. From this it follows that ga—g1 > g2—g3, —g1 < —g3 and
g1 < g3. Suppose that g1 —g3 € A 1. Then g1—g2 = (g1—g3)+(93—g2) € AT,
a contradiction.

(0) Suppose that g1 —g2 € AT, g1 —g2 < by — b1, g2 < g3, and
g2 — g3 ¢ A 1. The case is analogous to (7).

In all cases (a)-(6) we get (g1,b1) < (g3,b3), i.e the relation < is
transitive.
We have shown that the following lemma is valid.

Lemma 2.4. (H, <) is a partially ordered set. [ |

Lemma 2.5. Let (gl,bl),(gg,bg),(gg,bg) € H, (g1,bl) < (gg,bg). Then
(91,01) + (g3,03) < (g2,b2) + (g3, b3).

Proof. We will consider only the case that g, g2,93 € G |.
Suppose that g1 < g2 and g1 — g2 ¢ A 1. Then g1 + g3 < g2 + g3 and
(91+93) —(92+93) =g1—g2 ¢ AT



148 S. CERNAK AND M. DEMKO

Assume that g1 — g2 € A ] and g1 — g2 < by — by. Then (g1 +g3) — (g2 +
g3) € AT and (g1 +93) — (92+93) = g1 — g2 < bo — b1 = (ba +b3) — (b1 + b3).

Therefore (g1,b1) + (g3,b3) < (g2,b2) + (g3, b3). u

Form the sets

HT:{(gvb) gGGT,bEBT}, Hl:{<g,b) gEGl,bGBl}

Then we have
Lemma 2.6. H = (H T)U(H |). |

Lemma 2.7. H | is an increasing part and H | is a decreasing part of H.

Proof. Assume that (g1,b1), (92,b2) € H, (g1,b1) < (g2, b2) and (g3,b3) €
H |. We intend to show that H | is a decreasing part of H, i.e., that

(gg, b3) + (gg, bg) < (gg, b3) + (91, bl) is valid.

Let g1 < g2, g1 — g2 ¢ A 1. Then g3 + g1 > g3 + g2. Suppose that
(93+92) — (93+g1) € AT. With respect to Lemma 2.1, A 1 is normal in G.
Thus go —g1 € —gs+ AT +g93 C AT. Hence g1 — go € A T, a contradiction.

Let g1 —go € AT and g1 — go < by — b1. By using the normality of A T
in G, we obtain g3 + g2 — (93 + 91) = g3 + (92 — 91) — 93 € A 1. There exist
elements g5 € G T and by € B 1 such that g3 = a + ¢4, bs = a + bs. From
go — g1 > by — bo, it follows a+g§—g§,—|—gz—g1+a < a+b§—bg+b1—b2+a,
(a+g3+92)—(a+g3+g1) < (a+bs3+b1)—(a+bs+b2) and (g3+92)—(g93+91) <
(bs + b1) — (bs + b2).

In an analogous way, we show that H T is an increasing part of H. m

H 1 is a group (subgroup of H) and a partially ordered set (a partial
order is inherited from H). Then according to Lemmas 2.5 and 2.7, H 1 is
a partially ordered group.

Lemma 2.8. H T is an [-group.

Proof. Tt is sufficient to prove that there exists sup{(0,0), (¢g,b)} for each

(9g,b) € H 1. If g ¢ A7 then g > 0or g < 0. Hence (¢,b) and (0,0)
are comparable. If g € A 1 then g+ b € B 1 and (g,b) = (0,9 +b). Let
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b = sup{0,g + b} in B ]. By using the same procedure as in the proof of

Lemma 2.4 in [5], we obtain (0, ') = sup{(0,0), (g,b)}. |

From Lemmas 2.3-2.8 it follows
Lemma 2.9. H is an hl-group, H € HL. |

Recall that there is a € A |, an element of order 2 (by Proposition 1.1),

and that, by (IV), A C B. Define the mapping ¢ of G into H by ¢(g) = (g,0)

if g€ G 1 and ¢(g) = (g,a) if g € G |. Then ¢ is an hl-isomorphism of the
hl-group G into H.

If we put ¥(b) = (0,b) for each b € B 1 and 9(b) = (a,b) for each
b€ B |, then v is an hl-isomorphism of the hl-group B into H.

If € GN B then p(z) = ¥(z). In fact, if z € (GNB) 1= (G 1)N(B 1),
then ¢(z) = (2,0) = (0,2) = ¥(2); and if 2 € (GN B) |= (G |)N (B |),
then p(z) = (z,a) = (a,2) = ¥(x).

In the next, we shall identify elements g and ¢(g) for each g € G and
also b and 1(b) for each b € B. Then G and B are hl-subgroups of H.

Lemma 2.10. H = (B)y,.

Proof. B is an hl-subgroup of H. We have to prove that H 7= (B 7).
Assume that (¢g,b) € H 1, (0,¢/) € B 1, (0,0) < (g,b) < (0,0'). Then
geAJC Blandsog+be BT, (9,b) =(0,9+b) € BT. Hence B 1 is

a convex l-subgroup of H 7. Let (0,0) < (9,b) € H 1, (g,b) ¢ B 1. Then
g ¢ A 1. Therefore, g > 0 and thus (0,') < (g,b) for each (0,0') e B1. m

By using Lemmas 2.10 and 2.1, B is an hl-ideal of H. Therefore, we
can form the factor hl-group H = H/B 1.

Lemma 2.11. Half l-groups G and H are hl-isomorphic.
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Proof. Define the mapping f : G — H by f(9g+ A1) =g+ B T. Let
g+Al=¢g+A7. Theng—g € AJc B1. Thusg+ B =4 + B 1.
Therefore the mapping f is correctly defined.

Let g1+A T, g2+AT€ G. Then f((g1+A T)+(92+A 1)) = f((g1+92)+
AT )=(n+g)+BT1=(+B1)+(2+B1)=f(a+A1)+flg2+AT).

Assume that ¢g1,920 € G and f(g1 + A T) = f(g2+ A 7). From ¢ +
B 1= g9 + B 1, we infer that either g1,99 € G T or ¢g1,92 € G |. Hence
gi—geGINBI=ATandsogi +AT=¢g+AT.

Let (g,b) + B 7€ H. Assume that (¢,b) € H |. Hence g € G |. Recall
that g is identified with (g,a). As for (g,a) — (9,b) = (0,a —b) € B 1, we

have (g,a) + B 1= (g,b) + B 1. Therefore f(¢+ A 1) = (9,0) + B 1. If

(g,b) € H 1, the proof is similar.

We have shown that f is a group isomorphism of G onto H.

Assume that g1 + A T, o+ A 1€ Gand g1 + A 1< o+ A 1. If
g +AT=g2+ AT, then f(g1+A7T)=f(ga+AT). Let i + AT< g2+ AT.
By Lemma 2.2, g1 < g2. Hence f(g1+A 1) = g1+ B 1< g2+B 1= f(g2+A 7).
The converse is similar. [

Summarizing the previous results, we have

Theorem 2.12. Let A, B and G be hl-groups from HL satisfying (I)—(IV).
Then there exists an hl-group H € HL such that

(i) H = (B)n,
(ii) G is an hl-subgroup of H,
(iii) hl-groups G/A T and H/B 1 are hi-isomorphic.

3. CUT COMPLETION OF A LEXICO EXTENSION

Let G be an hl-group. A subset X of GG T is said to be a cut of G T if X is
an order closed (i.e., g =\ S for S C X implies g € X) lattice ideal of G
such that g+ X # X # X +gforany 0 < g € G. A cut of G | is defined in
the same way. If X is a cut either of G T or of G |, then X is called a cut
of G.

G 7 (G ]) is said to be cut complete if every cut of G 1 (G |) has a
supremum in G T (G |).

Remark that if Z C G 1 (Z C G |), then sup(Z) exists in G 1 (G |) if
and only if sup(Z) exists in G, and sup(Z) in G is equal to sup(Z) in G |
G 1).
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G is called cut complete provided that every cut of G has a supremum in G.
An hl-subgroup G’ of G will be said to be order dense in G if for every
element 0 < g € G there exists ¢ € G’ with 0 < ¢’ < g.
An hl-group G¢ is said to be a cut completion of G if the following
conditions are satisfied:

(i) G is cut complete;
(ii) G is an order dense hl-subgroup of G¢;

(iii) if K is an hl-subgroup of GY such that G < K < G, then K is not
cut complete.

Since G T and G | are dually isomorphic lattices, we have

Lemma 3.1. For any hl-group G, G € HL 1is cut complete if and only if
G T is cut complete. [

Lemma 3.2 ([5], Lemma 3.1). Let G be an abelian l-group, G = (A),
A #{0}. If A is cut complete, then G is cut complete. [ |

Lemma 3.3. Let H and B be hl-groups from HL such that H T is abelian
and H = (B)y, . If B is cut complete, then H is cut complete.

Proof. The assumption that B is cut complete and Lemma 3.1 yield that
B 1 is cut complete. From H 1= (B 1), B 1# {0} and Lemma 3.2, we obtain
that H T is cut complete. Hence H is cut complete. [

Lemma 3.4. Let A, B,G satisfy the conditions (I)-(IV) and H be such as
in Theorem 2.12. Suppose that B = A®. Then H = G€.

Proof. In view of Lemma 2.10, we have H = (B);,. A is order dense in B
and B is order dense in H. This yields that A is order dense in H. Thus
G is order dense in H. From Lemma, 3.3, it follows that H is cut complete.
Assume that K is an hl-subgroup of H such that G < K < H. Then K 7
is an [-subgroup of H T with G 1< K T< H 1. In the same way as in the
proof of Lemma 3.2 in [5], it can be shown that K 1 fails to be cut complete.
Then, by Lemma 3.1, K is not cut complete. Therefore H = G©. |

Theorem 3.5. Let G = (A)y, and A < G. Then
(i) GY={A%,,
(ii) hl-groups G/A T and G¢/AC 1 are hl-isomorphic.
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Proof. (i): Put B = A®. Let H be as in Theorem 2.12. Then H = (B)}
holds. Applying Lemma 3.4, we get that G¢ = (A}, is valid.
(ii): Immediately follows from Theorem 2.12. |
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