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0. Introduction

The notion of a half l-group as a generalization of the notion of an l-group
was introduced and studied by M. Giraudet and F. Lucas [4].

R.N. Ball [1] has defined the notion of a cut completion of an l-group.
In this paper we define the notions of a cut completion and a lexico

extension of a half l-group. We prove a theorem on a cut completion of a
half l-group having an abelian increasing part which can be expressed as a
nontrivial lexico extension. A particular case of this theorem is a result of
J. Jakub́ık [5] dealing with a cut completion of an abelian l-group.
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1. Preliminaries

Let G be an abelian l-group. G is called a lexico extension of its l-subgroup
A 6= {0} if

(i) A is a convex l-subgroup of G,

(ii) if 0 < g ∈ G, g /∈ A, then g > a for each a ∈ A.

If G is a lexico extension of A, we shall write G = 〈A〉. If G = 〈A〉, then A
is an l-ideal of G and (cf. [3] and [2])

(a) A is comparable to all convex l-subgroups of G (i.e., if A′ is a convex
l-subgroup of G then either A′ ⊆ A or A ⊆ A′).

(b) G/A is a linearly ordered group.

Let G be a group and a partially ordered set. Set

G ↑= {g ∈ G : x ≤ y ⇒ g + x ≤ g + y for all x, y ∈ G},

G ↓= {g ∈ G : x ≤ y ⇒ g + x ≥ g + y for all x, y ∈ G}.

G ↑ (G ↓) is called the increasing (decreasing) part of G.
G is said to be a half l-group (abbreviated to an hl-group) if the following

conditions are satisfied (cf. [4]):

(i) the partial order ≤ on G is non-trivial,

(ii) if x, y, g ∈ G and x ≤ y, then x + g ≤ y + g,

(iii) G = G ↑ ∪G ↓,
(iv) G ↑ is an l-group.

If G ↑ is a linearly ordered group, then hl-group G will be called a half
linearly ordered group.

Every l-group G 6= {0} is a special case of an hl-group with G ↓= ∅.
We denote by HL the class of all hl-groups that fail to be l-groups.
The following results will be applied in the next.
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Proposition 1.1 (cf. [4]). Let G ∈ HL. Then

(i) G ↑ is a subgroup of the group G and G ↑ has index 2,

(ii) G ↑ and G ↓ are isomorphic groups and also dually isomorphic
lattices,

(iii) if x ∈ G ↑ and y ∈ G ↓, then x and y are incomparable,

(iv) the set {g ∈ G : g 6= 0, 2g = 0} is nonempty.

Let G be an hl-group. A subgroup A 6= {0} of G is called a half l-subgroup
(abbreviated to an hl-subgroup) if A ↑= A∩G ↑ is an l-subgroup of G ↑. If
A is an hl-subgroup (proper hl-subgroup) of G we use the notation A ≤ G
(A < G). We say that an hl-subgroup A of G is convex in G if A ↑ is convex
in G ↑. A convex hl-subgroup A of G is said to be an hl-ideal of G if A ↑ is
a normal subgroup of G. According to 1.1 G ↑ is an hl-ideal of G.

Let G be an hl-group, G ∈ HL and A ↑ an hl-ideal of G, A ∈ HL. We
can form the factor group G = G/A ↑. For elements g1 + A ↑, g2 + A ↑∈ G,
we put g1 + A ↑≤ g2 + A ↑ if and only if there exist g′1 ∈ g1 + A ↑ and
g′2 ∈ g2 + A ↑ with g′1 ≤ g′2. Then G is a partially ordered set and to each
g′1 ∈ g1 + A ↑ there exists g′2 ∈ g2 + A ↑ such that g′1 ≤ g′2. It can be
easily verified that if A < G, then G is an hl-group with the increasing part
G ↑= {g + A ↑: g ∈ G ↑} and decreasing part G ↓= {g + A ↑: g ∈ G ↓} .

If A = G then G is trivially ordered. Hence G fails to be an hl-group.
A 1-1 mapping ϕ from an hl-group G onto an hl-group G′ is called

an hl-isomorphism if ϕ is a group homomorphism and if ϕ|G ↑ is a lattice
homomorphism of G ↑ onto G′ ↑.

2. Lexico extension of an hl-subgroup

Let G be an hl-group, G ∈ HL with the abelian increasing part G ↑. Let A
be an hl-subgroup of G, A ∈ HL. If G ↑ is a lexico extension of A ↑, then
we say that G is a lexico extension of A and we express this situation by
writing G = 〈A〉h.

Lemma 2.1. Let G = 〈A〉h. Then

(i) A is an hl-ideal of G,

(ii) if A < G, then G = G/A ↑ is a half linearly ordered group.
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Proof. (i) We have to show that A ↑ is normal in G. Since A ↑ is a
convex l-subgroup of G ↑, −g + A ↑ +g (g ∈ G) is a convex subset of
G ↑. It is a routine to verify that −g + A ↑ +g is a subgroup of G ↑. Let
−g +a1 + g, −g +a2 + g ∈ −g +A ↑ +g, g ∈ G, and a1, a2 ∈ A ↑. It is easy
to verify that in G ↑ we have (−g+a1+g)∨(−g+a2+g) = −g+(a1∨a2)+g
for each g ∈ G ↑, (−g + a1 + g) ∨ (−g + a2 + g) = −g + (a1 ∧ a2) + g for
each g ∈ G ↓ and dually. Hence −g + A ↑ +g is a sublattice of G ↑ for each
g ∈ G. By summarizing we have that −g + A ↑ +g is a convex l-subgroup
of G ↑ for each g ∈ G. By (a), A ↑ and −g + A ↑ +g are comparable. The
fact that G ↑ is abelian implies −g + A ↑ +g = A ↑ for all g ∈ G ↑. Suppose
that g ∈ G ↓ and A ↑⊆ −g + A ↑ +g. Let a ∈ A ↑. Then a = −g + a0 + g,
where a0 ∈ A ↑ and hence −g + a + g = −2g + a0 + 2g. Since 2g ∈ G ↑, we
get −g + a + g ∈ A ↑. Thus −g + A ↑ +g ⊆ A ↑ for all g ∈ G. Therefore,
A ↑ is normal in G.

(ii) follows from the property (b) of a lexico extension.

If G = 〈A〉h, then Lemma 2.1 yields that A ↑ is a normal subgroup of G,
but A need not be normal in G.

Examples. Let M be the set of all functions f : R → R; f(x) = ±x+k, k ∈
R. If a binary operation on M is defined as a composition (i.e., fg(x) =
f(g(x)) for all x ∈ R) and a binary relation ≤ on M is defined pointwise,
then M is a half linearly ordered group, with M ↑= {f : f(x) = x + k} and
M ↓= {f : f(x) = −x+k}. Now, let H = {(f1, f2) : f1, f2 ∈ M ↑}. For each
(f1, f2), (f ′1, f

′
2) ∈ H we put (f1, f2) ≤ (f ′1, f

′
2) if and only if either f1 < f ′1

or f1 = f ′1 and f2 ≤ f ′2. Then H is a linearly ordered set that is called the
lexicographic product of the two linearly ordered sets M ↑ and we use the
denotation H = M ↑ ◦M ↑. Analogously we can construct K = M ↓ ◦M ↓.
If a binary operation on H is defined componentwise, then H is a linearly
ordered group. Therefore, G = H ∪K is a half linearly ordered group with
G ↑= H,G ↓= K. Let A1 = {(id, g) ∈ G : g ∈ M ↑} (id is an identity
function) and A2 = {(g1, g) : g1 is a fixed element of M ↓, g ∈ M ↓}. Then
A = A1 ∪ A2 is a half linearly ordered group, A ↑= A1, A ↓= A2. We have
G = 〈A〉h, but A fails to be normal in G. In fact, for all f ∈ M, f 6= id, g1

we have f−1g1f 6= g1, thus (f, f)−1(g1, g)(f, f) /∈ A2 for each (g1, g) ∈ A2.

Assume that G is an hl-group, G ∈ HL and that A ∈ HL is an hl-ideal
of G such that A is a normal subgroup of G. Define a partial order on the
factor group G/A ( and also on the factor group G ↑ /A ↑ ) analogously
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as above on G/A ↑. Then G/A is a lattice ordered group. The mapping
f : G ↑ /A ↑→ G/A defined by f(g+A ↑) = g+A, g ∈ G ↑ is an isomorphism
of the lattice ordered group G ↑ /A ↑ onto G/A.

Suppose that G = 〈A〉h and that A is normal in G. Then, by the
property (b) of a lexico extension, we have that G/A is a linearly ordered
group.

Lemma 2.2. Let G = 〈A〉h, g1+A ↑, g2+A ↑ ∈ G, and let g1+A ↑< g2+A ↑
Then g1 < g2.

Proof. From g1 + A ↑< g2 + A ↑ it follows that either g1, g2 ∈ G ↑ or
g1, g2 ∈ G ↓. Now, let g1, g2 ∈ G ↑. There exists g′2 ∈ g2 + A ↑ such
that g1 < g′2. Hence g′2 ∈ G ↑ and g′2 − g1 > 0. Since g′2 − g1 /∈ A ↑ and
g′2 − g2 ∈ A ↑, we get g′2 − g1 > g′2 − g2. Hence −g1 > −g2 and g1 < g2.
Suppose that g1, g2 ∈ G ↓. There exists g′′2 ∈ g2 + A ↑ with g1 < g′′2 . Hence
g′′2 ∈ G ↓, g′′2 − g1 ∈ G ↑, g′′2 − g1 /∈ A ↑ and g′′2 − g1 > 0. Further, we
have g′′2 − g2 ∈ A ↑. Then g′′2 − g1 > g′′2 − g2 implies that −g1 < −g2 and so
g1 < g2.

Corollary. Let G = 〈A〉h. Then G is a half linearly ordered group if and
only if A is a half linearly ordered group.

For the remaining part of this section, we assume that G,A and B are
hl-groups from HL such that

(I) G ↑ and B ↑ are abelian l-groups,

(II) G = 〈A〉h, A < G,

(III) A is an hl-subgroup of B,

(IV) G ∩B = A.

According to Proposition 1.1, there exists an element a ∈ A ↓ of order 2.
Form the set

H0 = {(g, b) : either g ∈ G ↑, b ∈ B ↑ or g ∈ G ↓, b ∈ B ↓}.
For elements (g1, b1), (g2, b2) ∈ H0, we set

(g1, b1) ≡ (g2, b2)

if g1 − g2 ∈ A ↑, b1 − b2 ∈ A ↑, g1 − g2 = b2 − b1 and if either g1, g2 ∈
G ↑, b1, b2 ∈ B ↑ or g1, g2 ∈ G ↓, b1, b2 ∈ B ↓.
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The relation ≡ is an equivalence. It is clear that the relation ≡ is re-
flexive and symmetric. To establish the transitivity, suppose that (g1, b1) ≡
(g2, b2), (g2, b2) ≡ (g3, b3). We will consider only the following case. Let
g1, g2 ∈ G ↓, and b1, b2 ∈ B ↓. Then g3 ∈ G ↓, and b3 ∈ B ↓. We have
g1− g2 ∈ A ↑, b2− b1 ∈ A ↑, g1− g2 = b2− b1, g2− g3 ∈ A ↑, b3− b2 ∈ A ↑,
and g2 − g3 = b3 − b2. By (I) and (II), A ↑ is abelian. Then g1 − g3 =
(g1 − g2) + (g2 − g3) = (b2 − b1) + (b3 − b2) = (b3 − b2) + (b2 − b1) = b3 − b1.
Hence g1 − g3 ∈ A ↑ and b3 − b1 ∈ A ↑. Therefore (g1, b1) ≡ (g3, b3)

Denote

(g, b) = {(g′, b′) ∈ H0 : (g, b) ≡ (g′, b′)},
H = {(g, b) : (g, b) ∈ H0}.

Let (g1, b1), (g2, b2) ∈ H. We put

(g1, b1) + (g2, b2) = (g1 + g2, b1 + b2).

The binary operation + on H is correctly defined; (0, 0) is a neutral element

and (−g,−b) is an inverse to (g, b).

We have

Lemma 2.3. (H, +) is a group.

Let (g1, b1), (g2, b2) ∈ H. We put

(g1, b1) ≤ (g2, b2)

if either g1 < g2 and g1 − g2 /∈ A ↑ or g1 − g2 ∈ A ↑ and g1 − g2 ≤ b2 − b1.

The definition implies that either g1, g2 ∈ G ↑ or g1, g2 ∈ G ↓. Now we

verify that the relation≤ is correctly defined. Let (g′1, b
′
1) = (g1, b1), (g′2, b

′
2) =

(g2, b2).
Assume that g1 < g2, g1 − g2 /∈ A ↑. Then g1 + A ↑< g2 + A ↑ and

g1, g2 ∈ G ↑ or g1, g2 ∈ G ↓. Since g1 − g′1 ∈ A ↑ and g2 − g′2 ∈ A ↑,
we get g1 + A ↑= g′1 + A ↑ and g2 + A ↑= g′2 + A ↑. With respect to
Lemma 2.2, we get g′1 < g′2. Suppose that g′1 − g′2 ∈ A ↑. Then g1 − g2 =
(g1− g′1)+ (g′1− g′2) + (g′2− g2) ∈ A ↑, a contradiction. Hence g′1− g′2 /∈ A ↑.
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Assume that g1− g2 ∈ A ↑, g1− g2 ≤ b2− b1. Then g′1− g′2 = (g′1− g1)+
(g1−g2)+(g2−g′2) ≤ (b1− b′1)+(b2− b1)+(b′2− b2) = (b1− b′1)+(b′2− b2)+
(b2 − b1) = (b1 − b′1) + (b′2 − b1) = (b′2 − b1) + (b1 − b′1) = b′2 − b′1. We also
have shown that g′1 − g′2 ∈ A ↑.

It is evident that the relation ≤ is reflexive.

Let (g1, b1) ≤ (g2, b2), (g2, b2) ≤ (g1, b1). Then g1 − g2 ∈ A ↑, g1 − g2 ≤
b2−b1 and g2−g1 ≤ b1−b2. Hence g1−g2 = b2−b1 and so (g1, b1) = (g2, b2).

The antisymmetry is satisfied.

Let (g1, b1) ≤ (g2, b2), (g2, b2) ≤ (g3, b3).
(α) Assume that g1 < g2, g1 − g2 /∈ A ↑, g2 < g3, and g2 − g3 /∈ A ↑.

We will consider only the case that g1, g2 ∈ G ↓. Then also g3 ∈ G ↓ and
g1 < g3. Assume that g1 − g3 ∈ A ↑. Then g1 + A ↑ = g3 + A ↑. Since
g1 +A ↑ is a convex subset of G ↓ and g1 < g2 < g3, we obtain g2 ∈ g1 +A ↑.
Hence g1 − g2 ∈ A ↑, a contradiction.

(β) Assume that g1 − g2 ∈ A ↑, g1 − g2 ≤ b2 − b1, g2 − g3 ∈ A ↑, and
g2 − g3 ≤ b3 − b2. Then g1 − g3 = (g1 − g2) + (g2 − g3) ∈ A ↑, and g1 − g3 =
(g1 − g2) + (g2 − g3) ≤ (b2 − b1) + (b3 − b2) = (b3 − b2) + (b2 − b1) = b3 − b1.

(γ) Assume that g1 < g2, g1−g2 /∈ A ↑, g2−g3 ∈ A ↑, and g2−g3 ≤ b3−
b2. We will consider only the case g1, g2 ∈ G ↓. Hence g3 ∈ G ↓, g2− g1 > 0
and g2−g1 /∈ A ↑. From this it follows that g2−g1 > g2−g3, −g1 < −g3 and
g1 < g3. Suppose that g1−g3 ∈ A ↑. Then g1−g2 = (g1−g3)+(g3−g2) ∈ A ↑,
a contradiction.

(δ) Suppose that g1 − g2 ∈ A ↑, g1 − g2 ≤ b2 − b1, g2 < g3, and
g2 − g3 /∈ A ↑. The case is analogous to (γ).

In all cases (α)-(δ) we get (g1, b1) ≤ (g3, b3), i.e the relation ≤ is
transitive.

We have shown that the following lemma is valid.

Lemma 2.4. (H,≤) is a partially ordered set.

Lemma 2.5. Let (g1, b1), (g2, b2), (g3, b3) ∈ H, (g1, b1) ≤ (g2, b2). Then

(g1, b1) + (g3, b3) ≤ (g2, b2) + (g3, b3).

Proof. We will consider only the case that g1, g2, g3 ∈ G ↓.
Suppose that g1 < g2 and g1 − g2 /∈ A ↑. Then g1 + g3 < g2 + g3 and

(g1 + g3)− (g2 + g3) = g1 − g2 /∈ A ↑.
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Assume that g1− g2 ∈ A ↑ and g1− g2 ≤ b2− b1. Then (g1 + g3)− (g2 +
g3) ∈ A ↑ and (g1 + g3)− (g2 + g3) = g1− g2 ≤ b2− b1 = (b2 + b3)− (b1 + b3).

Therefore (g1, b1) + (g3, b3) ≤ (g2, b2) + (g3, b3).

Form the sets

H ↑= {(g, b) : g ∈ G ↑, b ∈ B ↑}, H ↓= {(g, b) : g ∈ G ↓, b ∈ B ↓}.

Then we have

Lemma 2.6. H = (H ↑) ∪ (H ↓).

Lemma 2.7. H ↑ is an increasing part and H ↓ is a decreasing part of H.

Proof. Assume that (g1, b1), (g2, b2) ∈ H, (g1, b1) ≤ (g2, b2) and (g3, b3) ∈
H ↓. We intend to show that H ↓ is a decreasing part of H, i.e., that

(g3, b3) + (g2, b2) ≤ (g3, b3) + (g1, b1) is valid.
Let g1 < g2, g1 − g2 /∈ A ↑. Then g3 + g1 > g3 + g2. Suppose that

(g3 + g2)− (g3 + g1) ∈ A ↑. With respect to Lemma 2.1, A ↑ is normal in G.
Thus g2 − g1 ∈ −g3 + A ↑ +g3 ⊆ A ↑. Hence g1 − g2 ∈ A ↑, a contradiction.

Let g1 − g2 ∈ A ↑ and g1 − g2 ≤ b2 − b1. By using the normality of A ↑
in G, we obtain g3 + g2 − (g3 + g1) = g3 + (g2 − g1)− g3 ∈ A ↑. There exist
elements g′3 ∈ G ↑ and b′3 ∈ B ↑ such that g3 = a + g′3, b3 = a + b′3. From
g2−g1 ≥ b1−b2, it follows a+g′3−g′3 +g2−g1 +a ≤ a+b′3−b′3 +b1−b2 +a,
(a+g′3+g2)−(a+g′3+g1) ≤ (a+b′3+b1)−(a+b′3+b2) and (g3+g2)−(g3+g1) ≤
(b3 + b1)− (b3 + b2).

In an analogous way, we show that H ↑ is an increasing part of H.

H ↑ is a group (subgroup of H) and a partially ordered set (a partial
order is inherited from H). Then according to Lemmas 2.5 and 2.7, H ↑ is
a partially ordered group.

Lemma 2.8. H ↑ is an l-group.

Proof. It is sufficient to prove that there exists sup{(0, 0), (g, b)} for each

(g, b) ∈ H ↑. If g /∈ A ↑ then g > 0 or g < 0. Hence (g, b) and (0, 0)

are comparable. If g ∈ A ↑ then g + b ∈ B ↑ and (g, b) = (0, g + b). Let
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b′ = sup{0, g + b} in B ↑. By using the same procedure as in the proof of

Lemma 2.4 in [5], we obtain (0, b′) = sup{(0, 0), (g, b)}.

From Lemmas 2.3–2.8 it follows

Lemma 2.9. H is an hl-group, H ∈ HL.

Recall that there is a ∈ A ↓, an element of order 2 (by Proposition 1.1),

and that, by (IV), A ⊆ B. Define the mapping ϕ of G into H by ϕ(g) = (g, 0)

if g ∈ G ↑ and ϕ(g) = (g, a) if g ∈ G ↓. Then ϕ is an hl-isomorphism of the

hl-group G into H.

If we put ψ(b) = (0, b) for each b ∈ B ↑ and ψ(b) = (a, b) for each

b ∈ B ↓, then ψ is an hl-isomorphism of the hl-group B into H.

If x ∈ G∩B then ϕ(x) = ψ(x). In fact, if x ∈ (G∩B) ↑= (G ↑)∩ (B ↑),
then ϕ(x) = (x, 0) = (0, x) = ψ(x); and if x ∈ (G ∩ B) ↓= (G ↓) ∩ (B ↓),
then ϕ(x) = (x, a) = (a, x) = ψ(x).

In the next, we shall identify elements g and ϕ(g) for each g ∈ G and
also b and ψ(b) for each b ∈ B. Then G and B are hl-subgroups of H.

Lemma 2.10. H = 〈B〉h.

Proof. B is an hl-subgroup of H. We have to prove that H ↑= 〈B ↑〉.
Assume that (g, b) ∈ H ↑, (0, b′) ∈ B ↑, (0, 0) ≤ (g, b) ≤ (0, b′). Then

g ∈ A ↑⊆ B ↑ and so g + b ∈ B ↑, (g, b) = (0, g + b) ∈ B ↑. Hence B ↑ is

a convex l-subgroup of H ↑. Let (0, 0) < (g, b) ∈ H ↑, (g, b) /∈ B ↑. Then

g /∈ A ↑. Therefore, g > 0 and thus (0, b′) < (g, b) for each (0, b′) ∈ B ↑.

By using Lemmas 2.10 and 2.1, B is an hl-ideal of H. Therefore, we

can form the factor hl-group H = H/B ↑.

Lemma 2.11. Half l-groups G and H are hl-isomorphic.
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Proof. Define the mapping f : G → H by f(g + A ↑) = g + B ↑. Let
g + A ↑= g′ + A ↑. Then g − g′ ∈ A ↑⊂ B ↑. Thus g + B ↑= g′ + B ↑.
Therefore the mapping f is correctly defined.

Let g1+A ↑, g2+A ↑∈ G. Then f((g1+A ↑)+(g2+A ↑)) = f((g1+g2)+
A ↑ ) = (g1 +g2)+B ↑= (g1 +B ↑)+(g2 +B ↑) = f(g1 +A ↑)+f(g2 +A ↑).

Assume that g1, g2 ∈ G and f(g1 + A ↑) = f(g2 + A ↑). From g1 +
B ↑= g2 + B ↑, we infer that either g1, g2 ∈ G ↑ or g1, g2 ∈ G ↓. Hence
g1 − g2 ∈ G ↑ ∩B ↑= A ↑ and so g1 + A ↑= g2 + A ↑.

Let (g, b) + B ↑∈ H. Assume that (g, b) ∈ H ↓. Hence g ∈ G ↓. Recall

that g is identified with (g, a). As for (g, a) − (g, b) = (0, a− b) ∈ B ↑, we

have (g, a) + B ↑= (g, b) + B ↑. Therefore f(g + A ↑) = (g, b) + B ↑. If

(g, b) ∈ H ↑, the proof is similar.
We have shown that f is a group isomorphism of G onto H.
Assume that g1 + A ↑, g2 + A ↑∈ G and g1 + A ↑≤ g2 + A ↑. If

g1 +A ↑= g2 +A ↑, then f(g1 +A ↑) = f(g2 +A ↑). Let g1 +A ↑< g2 +A ↑.
By Lemma 2.2, g1 < g2. Hence f(g1+A ↑) = g1+B ↑< g2+B ↑= f(g2+A ↑).
The converse is similar.

Summarizing the previous results, we have

Theorem 2.12. Let A, B and G be hl-groups from HL satisfying (I)–(IV).
Then there exists an hl-group H ∈ HL such that

(i) H = 〈B〉h,
(ii) G is an hl-subgroup of H,

(iii) hl-groups G/A ↑ and H/B ↑ are hl-isomorphic.

3. Cut completion of a lexico extension

Let G be an hl-group. A subset X of G ↑ is said to be a cut of G ↑ if X is
an order closed (i.e., g =

∨
S for S ⊆ X implies g ∈ X) lattice ideal of G

such that g +X 6= X 6= X + g for any 0 < g ∈ G. A cut of G ↓ is defined in
the same way. If X is a cut either of G ↑ or of G ↓, then X is called a cut
of G.

G ↑ (G ↓) is said to be cut complete if every cut of G ↑ (G ↓) has a
supremum in G ↑ (G ↓).

Remark that if Z ⊆ G ↑ (Z ⊆ G ↓), then sup(Z) exists in G ↑ (G ↓) if
and only if sup(Z) exists in G, and sup(Z) in G is equal to sup(Z) in G ↑
(G ↓).
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G is called cut complete provided that every cut of G has a supremum in G.
An hl-subgroup G′ of G will be said to be order dense in G if for every

element 0 < g ∈ G there exists g′ ∈ G′ with 0 < g′ ≤ g.
An hl-group GC is said to be a cut completion of G if the following

conditions are satisfied:

(i) GC is cut complete;

(ii) G is an order dense hl-subgroup of GC ;

(iii) if K is an hl-subgroup of GC such that G ≤ K < GC , then K is not
cut complete.

Since G ↑ and G ↓ are dually isomorphic lattices, we have

Lemma 3.1. For any hl-group G, G ∈ HL is cut complete if and only if
G ↑ is cut complete.

Lemma 3.2 ([5], Lemma 3.1). Let G be an abelian l-group, G = 〈A〉,
A 6= {0}. If A is cut complete, then G is cut complete.

Lemma 3.3. Let H and B be hl-groups from HL such that H ↑ is abelian
and H = 〈B〉h . If B is cut complete, then H is cut complete.

Proof. The assumption that B is cut complete and Lemma 3.1 yield that
B ↑ is cut complete. From H ↑= 〈B ↑〉, B ↑6= {0} and Lemma 3.2, we obtain
that H ↑ is cut complete. Hence H is cut complete.

Lemma 3.4. Let A,B, G satisfy the conditions (I)–(IV) and H be such as
in Theorem 2.12. Suppose that B = AC . Then H = GC .

Proof. In view of Lemma 2.10, we have H = 〈B〉h. A is order dense in B
and B is order dense in H. This yields that A is order dense in H. Thus
G is order dense in H. From Lemma 3.3, it follows that H is cut complete.
Assume that K is an hl-subgroup of H such that G ≤ K < H. Then K ↑
is an l-subgroup of H ↑ with G ↑≤ K ↑< H ↑. In the same way as in the
proof of Lemma 3.2 in [5], it can be shown that K ↑ fails to be cut complete.
Then, by Lemma 3.1, K is not cut complete. Therefore H = GC .

Theorem 3.5. Let G = 〈A〉h, and A < G. Then
(i) GC = 〈AC〉h,
(ii) hl-groups G/A ↑ and GC/AC ↑ are hl-isomorphic.
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Proof. (i): Put B = AC . Let H be as in Theorem 2.12. Then H = 〈B〉h
holds. Applying Lemma 3.4, we get that GC = 〈AC〉h is valid.

(ii): Immediately follows from Theorem 2.12.
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