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Abstract

We present a countable infinite chain of conditions which are
essentially weaker then congruence modularity (with exception of
first two). For varieties of algebras, the third of these conditions, the
so called 4-submodularity, is equivalent to congruence modularity.
This is not true for single algebras in general. These conditions are
characterized by Maltsev type conditions.
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A lattice L is modular if it satisfies the equality

(a ∨ b) ∧ c = a ∨ (b ∧ c)

for all a, b, c ∈ L with a ≤ c. Of course, the inequality

(a ∨ b) ∧ c ≥ a ∨ (b ∧ c)

is valid trivially in every lattice whenever a ≤ c; thus we are interested in
the converse one only.

Let A 6= ∅ and L be a lattice of equivalence relations on A, i.e. L is a
sublattice of the equivalence lattice Eq (A).
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It is well-known that for Θ,Φ ∈ L,

(A) Θ ∨ Φ = (Θ · Φ) ∪ (Θ · Φ ·Θ) ∪ (Θ · Φ ·Θ · Φ) ∪ · · ·

where Θ ·Φ denotes the relational product. It motivates us to introduce the
following concepts:

Definition 1. A lattice L of equivalence relations on a set A 6= ∅ is called
k-submodular (k ≥ 2) if for all Θ,Φ, Ψ ∈ L with Θ ⊆ Ψ the condition

(B) (Θ · Φ ·Θ · · · ·︸ ︷︷ ︸
k factors

) ∩Ψ ⊆ Θ ∨ (Φ ∨Ψ)

is satisfied. An algebra A is k-submodular if Con (A) is k-submodular. A
variety V is k-submodular if each A ∈ V has this property.

Remark 1. (a) Due to (A), an algebra A is congruence modular (i.e.
Con (A) is modular) if and only if A is k-submodular for each integer k ≥ 2.

(b) Evidently, if 2 ≤ m ≤ k and A is congruence k-submodular then A is
also m-submodular.

(c) The converse inclusion of (B) is valid in any lattice of equivalence
relations.

(d) The product Θ · Φ · Θ · · · · (k factors) need not to be an equivalence
(or congruence for Θ, Φ ∈ Con (A)). It is an equivalence if and only
if

(C) Θ · Φ ·Θ · · · · = Φ ·Θ · Φ · · · · (with k factors in both sides).

(e) If an algebra A is k-permutable (i.e. (C) is valid for all Θ, Φ ∈
Con (A)), thenA is congruence modular if and only ifA is k-submodular.

Lemma 1. Every lattice L of equivalences on a set A 6= ∅ is 3-submodular
(and hence also 2-submodular).
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Proof. Let Θ, Φ,Ψ ∈ L with Θ ⊆ Ψ. Suppose 〈x, y〉 ∈ (Θ ·Φ ·Θ)∩Ψ. Then
〈x, y〉 ∈ Ψ and there are elements b, c ∈ A with

xΘ b Φ c Θ y.

Since Θ ⊆ Ψ, we have 〈b, x〉 ∈ Ψ, 〈y, c〉 ∈ Ψ and, together with 〈x, y〉 ∈ Ψ,
also 〈b, c〉 ∈ Ψ. Thus 〈b, c〉 ∈ Φ ∩Ψ and hence

xΘ b (Φ ∩Ψ) cΘ y

which yields 〈x, y〉 ∈ Θ · (Φ ∩Ψ) ·Θ ⊆ Θ ∨ (Φ ∩Ψ). We have shown that L
is 3-submodular. By (b) of Remark 1, L is also 2-submodular.

It is worth saying that the proof of Lemma 1 is in fact the same as the proof
of the well-known result by B. Jónsson [3] that every 3-permutable algebra
is congruence modular.

Theorem 1. Let V be a variety of algebras and k ≥ 2 an integer. The
following conditions are equivalent:

(1) V is congruence k-submodular;

(2) there exist an integer n > 0 and (k+1)-ary terms p0, . . . , pn satisfying
the following identities:

p0(x, z1, . . . , zk−1, y) = x, pn(x, z1, . . . , zk−1, y) = y,

pi(x, x, z2, z2, z4, z4, . . .) = pi+1(x, x, z2, z2, z4, z4, . . .) for i even,

pi(x, z1, z1, z3, z3, . . . , y) = pi+1(x, z1, z1, z3, z3, . . . , y) for i odd,

pi(x, x, z2, z2, . . . , zk−3, zk−3, x, x) =

= pi+1(x, x, z2, z2, . . . , zk−3, zk−3, x, x) for i odd and k odd,

pi(x, x, z2, z2, . . . , zk−2, zk−2, x) =

= pi+1(x, x, z2, z2, . . . , zk−2, zk−2, x) for i odd and k even.



134 I. Chajda and R. Halaš

Proof. (1)⇒(2): Consider the free algebra Fv(x, y, z1, . . . , zk−1) of V
generated by k + 1 free generators x, y, z1, . . . , zk−1. Further, let Θ, Φ,Ψ
be the following congruences on this free algebra:

Θ = Θ(〈x, z1〉, 〈z2, z3〉, . . .),

Φ = Θ(〈z1, z2〉, 〈z3, z4〉, . . .),

Ψ = Θ(〈x, y〉, 〈x, z1〉, 〈z2, z3〉 . . .).

Clearly Θ ⊆ Ψ and

〈x, y〉 ∈ (Θ · Φ ·Θ · · · ·︸ ︷︷ ︸
k factors

) ∩Ψ.

Due to k-submodularity, we have also 〈x, y〉 ∈ Θ∨(Φ∩Ψ) and, by (C), there
exist an integer n > 0 and elements p0, p1, . . . , pn of Fv(x, y, z1, · · · , zk−1)
such that p0 = x, pn = y and 〈pi, pi+1〉 ∈ Θ for i even

(D) 〈pi, pi+1〉 ∈ (Φ ∩Ψ) for i odd.

Of course, pi = pi(x, z1, . . . , zk−1, y) for (k + 1)-ary terms pi (i = 0, . . . , n).
Since the factor algebras of Fv(x, y, z1, · · · , zk−1) by Θ or Φ ∩ Ψ are again
free algebras of V, the relations (D) give (2) immediately.

(2)⇒(1): Let V satisfy the identities of (2), let A ∈ V and Θ,Φ, Ψ ∈
Con (A), Θ ⊆ Ψ. Suppose

〈a, b〉 ∈ (Θ · Φ ·Θ · · · ·︸ ︷︷ ︸
k factors

) ∩Ψ.

Then 〈a, b〉 ∈ Ψ and there exist c1, . . . , ck−1 ∈ A such that

aΘ c1 Φ c2 Θ c3 . . . b.
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We have

a = p0(a, c1, · · · , ck−1, b),

b = pn(a, c1, . . . , ck−1, b).

Denote by vi = pi(a, c1, . . . , ck−1, b).

For i odd, we have

vi = pi(a, c1, . . . , ck−1, b) Ψ pi(a, a, c2, c2, . . . , a) =

= pi+1(a, a, c2, c2, . . . , a)Ψ pi+1(a, c1, . . . , ck−1, b)

(since Θ ⊆ Ψ), i.e. 〈vi, vi+1〉 ∈ Ψ.

Further,

a = v0 = p0(a, c1, . . . , ck−1, b)Θ p0(a, a, c2, c2 . . .) =

= p1(a, a, c2, c2, . . .)Θ p1(a, c1, . . . , ck−1, b) = v1 Φ p1(a, c1, c1, c3, c3 . . .) =

= p2(a, c1, c1, c3, c3, . . .)Φ p2(a, c1, . . . , ck−1, b) =

= v2 Θ p2(a, a, c2, c2, . . .) = . . . = b.

Altogether, we have a = v0 Θ v1(Φ ∩ Ψ) v2 Θ v3 (Φ ∩ Ψ) · · · b; thus 〈a, b〉 ∈
Θ ∨ (Φ ∩Ψ) proving k-submodularity of V.

Remark 2. By Lemma 1, the identities (2) of Theorem 1 should be easily
(trivially) satisfied for k = 2 or k = 3. Really, one can check that for k = 2,
we can take n = 3 and

p0(x, z, y) = x,

p1(x, z, y) = z,

p2(x, z, y) = y

are terms which satisfy (2) of Theorem 1.
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Analogously, for k = 3 we can take n = 4 and

p0(x, z1, z2, y) = y,

p1(x, z1, z2, y) = z1,

p2(x, z1, z2, y) = z2,

p3(x, z1, z2, y) = y.

Congruence modular varieties were characterized by A. Day in [2]. Analysing
his proof, we can find out that he properly proved the following assertion:

Proposition (A. Day). A variety V is congruence modular if and only if
the free algebra Fv(x, z1, z2, y) of V satisfies

(Φ ·Θ · Φ) ∩Ψ ⊆ Θ ∨ (Φ ∩Ψ)

for each Θ,Φ, Ψ ∈ Con (A) with Θ ⊆ Ψ.

This result enables us to state

Theorem 2. A variety V is congruence modular if and only if it is
congruence 4-submodular.

Proof. Of course, if V is congruence modular then, by Remark 1, V is
also 4-submodular. Conversely, let V be 4-submodular and Fv(x, z1, z2, y)
be the free algebra of V generated by the free generators x, z1, z2, y. Let
Θ, Φ,Ψ ∈ Con (Fv(x, z1, z2, y)) with Θ ⊆ Ψ. Then Φ · Θ · Φ ⊆ Θ · Φ · Θ · Φ
thus also

(Φ ·Θ · Φ) ∩Ψ ⊆ (Θ · Φ ·Θ · Φ) ∩Ψ ⊆ Θ ∨ (Φ ∩Ψ).

Applying the Proposition, V is congruence modular.

As a corollary of Theorem 1 and Theorem 2, we can derive a Maltsev
condition for congruence modularity different from that of A. Day [2]:

Corollary A variety V is congruence modular if and only if there exist an
integer n > 0 and 5-ary terms p0, . . . , pn such that V satisfies the following
identities:
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p0(x, z1, z2, z3, y) = x, pn(x, z1, z2, z3, y) = y,

pi(x, x, z, z, y) = pi+1(x, x, z, z, y) for i even,

pi(x, z, z, y, y) = pi+1(x, z, z, y, y) for i odd,

pi(x, x, z, z, x) = pi+1(x, x, z, z, x) for all i = 0, 1, . . . , n− 1.

One can mention that our terms occuring in the Corollary are more
complex then that of A. Day [2], because they are 5-ary but Day’s terms
are only 4-ary. However, they can become very simple in particular cases as
shown in the following:

Example 1. For a variety of groups, one can take n = 2 and

p0(x, z1, z2, z3, y) = x,

p1(x, z1, z2, z3, y) = z1 · z−1
2 · z3,

p2(x, z1, z2, z3, y) = y.

More generally, if V is a congruence permutable variety and t(x, y, z) its
Maltsev term (i.e. t(x, z, z) = x and t(x, x, z) = z), then we can take n = 2
and

p0(x, z1, z2, z3, y) = x,

p1(x, z1, z2, z3, y) = t(x, y, z),

p2(x, z1, z2, z3, y) = y

which is a bit more simple than for Day’s terms.

Now, we show that our Theorem 2 cannot be stated for a single algebra
instead of a variety:

Example 2. Let A = (A,F ) be a unary algebra with A = {a, b, c, d, e, f, g}
and with 3 unary operations s1, s2, s3 defined as follows:
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s1 s2 s3

a c e d

b d e c

c e e b

d e f a

e e g a

f e g b

g d f c

It is an easy excercise to verify that A has just five congruences, i.e. the
identity congruence ω, the full square A2 and Θ, Φ, Ψ determined by their
partitions as follows

Θ........{a, b}, {c, d}, {e, f}, {g};

Φ........{b, c}, {d, e}, {f, g}, {a};

Ψ........{a, b, g}, {c, d}, {e, f}.

Of course, Θ ⊆ Ψ and one can check easily

Θ ∩ Φ = ω = Ψ ∩ Φ, Θ ∨ Φ = A2 = Ψ ∨ Φ;

thus Con (A) ' N5 (the non-modular five element lattice).
Moreover, Θ · Φ ·Θ · Φ is not a congruence on A since, e.g., 〈a, e〉 ∈

Θ · Φ ·Θ · Φ but 〈e, a〉 6∈ Θ · Φ ·Θ · Φ.
On the contrary, one can check

(Θ · Φ ·Θ · Φ) ∩Ψ = Θ ⊆ Θ ∨ (Φ ∩Ψ).

The checking for other combinations of congruences is trivial; thus A is
congruence 4-submodular.
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