Discussiones Mathematicae General Algebra and Applications 22(2002) 131–139

CONGRUENCE SUBMODULARITY

Ivan Chajda and Radomír Halaš

Palacký University of Olomouc Department of Algebra and Geometry Tomkova 40, CZ-77900 Olomouc e-mail: chajda@risc.upol.cz e-mail: halas@aix.upol.cz

Abstract

We present a countable infinite chain of conditions which are essentially weaker then congruence modularity (with exception of first two). For varieties of algebras, the third of these conditions, the so called 4-submodularity, is equivalent to congruence modularity. This is not true for single algebras in general. These conditions are characterized by Maltsev type conditions.

Keywords: congruence lattice, modularity, congruence *k*-submodularity.

2000 Mathematics Subject Classification: 08A30, 08B05, 08B10.

A lattice L is *modular* if it satisfies the equality

$$(a \lor b) \land c = a \lor (b \land c)$$

for all $a, b, c \in L$ with $a \leq c$. Of course, the inequality

$$(a \lor b) \land c \ge a \lor (b \land c)$$

is valid trivially in every lattice whenever $a \leq c$; thus we are interested in the converse one only.

Let $A \neq \emptyset$ and L be a lattice of equivalence relations on A, i.e. L is a sublattice of the equivalence lattice Eq(A).

It is well-known that for $\Theta, \Phi \in L$,

(A)
$$\Theta \lor \Phi = (\Theta \cdot \Phi) \cup (\Theta \cdot \Phi \cdot \Theta) \cup (\Theta \cdot \Phi \cdot \Theta \cdot \Phi) \cup \cdots$$

where $\Theta \cdot \Phi$ denotes the relational product. It motivates us to introduce the following concepts:

Definition 1. A lattice L of equivalence relations on a set $A \neq \emptyset$ is called k-submodular $(k \ge 2)$ if for all $\Theta, \Phi, \Psi \in L$ with $\Theta \subseteq \Psi$ the condition

(B)
$$(\underbrace{\Theta \cdot \Phi \cdot \Theta \cdots}_{k \text{ factors}}) \cap \Psi \subseteq \Theta \lor (\Phi \lor \Psi)$$

is satisfied. An algebra \mathcal{A} is *k*-submodular if $Con(\mathcal{A})$ is *k*-submodular. A variety \mathcal{V} is *k*-submodular if each $\mathcal{A} \in \mathcal{V}$ has this property.

Remark 1. (a) Due to (A), an algebra \mathcal{A} is congruence modular (i.e. $Con(\mathcal{A})$ is modular) if and only if \mathcal{A} is k-submodular for each integer $k \geq 2$.

- (b) Evidently, if $2 \le m \le k$ and \mathcal{A} is congruence k-submodular then \mathcal{A} is also m-submodular.
- (c) The converse inclusion of (B) is valid in any lattice of equivalence relations.
- (d) The product $\Theta \cdot \Phi \cdot \Theta \cdots (k \text{ factors})$ need not to be an equivalence (or congruence for $\Theta, \Phi \in Con(\mathcal{A})$). It is an equivalence if and only if
- (C) $\Theta \cdot \Phi \cdot \Theta \cdots = \Phi \cdot \Theta \cdot \Phi \cdots$ (with k factors in both sides).
 - (e) If an algebra \mathcal{A} is k-permutable (i.e. (C) is valid for all $\Theta, \Phi \in Con(\mathcal{A})$), then \mathcal{A} is congruence modular if and only if \mathcal{A} is k-submodular.

Lemma 1. Every lattice L of equivalences on a set $A \neq \emptyset$ is 3-submodular (and hence also 2-submodular).

Proof. Let $\Theta, \Phi, \Psi \in L$ with $\Theta \subseteq \Psi$. Suppose $\langle x, y \rangle \in (\Theta \cdot \Phi \cdot \Theta) \cap \Psi$. Then $\langle x, y \rangle \in \Psi$ and there are elements $b, c \in A$ with

$$x \Theta b \Phi c \Theta y.$$

Since $\Theta \subseteq \Psi$, we have $\langle b, x \rangle \in \Psi$, $\langle y, c \rangle \in \Psi$ and, together with $\langle x, y \rangle \in \Psi$, also $\langle b, c \rangle \in \Psi$. Thus $\langle b, c \rangle \in \Phi \cap \Psi$ and hence

$$x \Theta b (\Phi \cap \Psi) c \Theta y$$

which yields $\langle x, y \rangle \in \Theta \cdot (\Phi \cap \Psi) \cdot \Theta \subseteq \Theta \vee (\Phi \cap \Psi)$. We have shown that *L* is 3-submodular. By (b) of Remark 1, *L* is also 2-submodular.

It is worth saying that the proof of Lemma 1 is in fact the same as the proof of the well-known result by B. Jónsson [3] that every 3-permutable algebra is congruence modular.

Theorem 1. Let \mathcal{V} be a variety of algebras and $k \geq 2$ an integer. The following conditions are equivalent:

- (1) \mathcal{V} is congruence k-submodular;
- (2) there exist an integer n > 0 and (k+1)-ary terms p_0, \ldots, p_n satisfying the following identities:

$$p_0(x, z_1, \dots, z_{k-1}, y) = x, \quad p_n(x, z_1, \dots, z_{k-1}, y) = y,$$

$$p_i(x, x, z_2, z_2, z_4, z_4, \dots) = p_{i+1}(x, x, z_2, z_2, z_4, z_4, \dots) \quad for \ i \ even,$$

$$p_i(x, z_1, z_1, z_3, z_3, \dots, y) = p_{i+1}(x, z_1, z_1, z_3, z_3, \dots, y) \quad for \ i \ odd,$$

$$p_i(x, x, z_2, z_2, \dots, z_{k-3}, z_{k-3}, x, x) =$$

$$= p_{i+1}(x, x, z_2, z_2, \dots, z_{k-2}, z_{k-2}, x) \quad for \ i \ odd \ and \ k \ odd,$$

$$p_i(x, x, z_2, z_2, \dots, z_{k-2}, z_{k-2}, x) =$$

$$= p_{i+1}(x, x, z_2, z_2, \dots, z_{k-2}, z_{k-2}, x) \quad for \ i \ odd \ and \ k \ even.$$

Proof. (1) \Rightarrow (2): Consider the free algebra $F_v(x, y, z_1, \ldots, z_{k-1})$ of \mathcal{V} generated by k + 1 free generators $x, y, z_1, \ldots, z_{k-1}$. Further, let Θ, Φ, Ψ be the following congruences on this free algebra:

$$\Theta = \Theta(\langle x, z_1 \rangle, \langle z_2, z_3 \rangle, \ldots),$$

$$\Phi = \Theta(\langle z_1, z_2 \rangle, \langle z_3, z_4 \rangle, \ldots),$$

$$\Psi = \Theta(\langle x, y \rangle, \langle x, z_1 \rangle, \langle z_2, z_3 \rangle \ldots)$$

Clearly $\Theta\subseteq \Psi$ and

$$\langle x, y \rangle \in (\underbrace{\Theta \cdot \Phi \cdot \Theta \cdots}_{k \text{ factors}}) \cap \Psi.$$

Due to k-submodularity, we have also $\langle x, y \rangle \in \Theta \lor (\Phi \cap \Psi)$ and, by (C), there exist an integer n > 0 and elements p_0, p_1, \ldots, p_n of $F_v(x, y, z_1, \cdots, z_{k-1})$ such that $p_0 = x$, $p_n = y$ and $\langle p_i, p_{i+1} \rangle \in \Theta$ for i even

(D)
$$\langle p_i, p_{i+1} \rangle \in (\Phi \cap \Psi)$$
 for i odd.

Of course, $p_i = p_i(x, z_1, \ldots, z_{k-1}, y)$ for (k+1)-ary terms p_i $(i = 0, \ldots, n)$. Since the factor algebras of $F_v(x, y, z_1, \cdots, z_{k-1})$ by Θ or $\Phi \cap \Psi$ are again free algebras of \mathcal{V} , the relations (D) give (2) immediately.

 $(2) \Rightarrow (1)$: Let \mathcal{V} satisfy the identities of (2), let $\mathcal{A} \in \mathcal{V}$ and $\Theta, \Phi, \Psi \in Con(\mathcal{A}), \Theta \subseteq \Psi$. Suppose

$$\langle a, b \rangle \in (\underbrace{\Theta \cdot \Phi \cdot \Theta \cdots}_{k \text{ factors}}) \cap \Psi.$$

Then $\langle a, b \rangle \in \Psi$ and there exist $c_1, \ldots, c_{k-1} \in A$ such that

$$a \Theta c_1 \Phi c_2 \Theta c_3 \dots b.$$

We have

$$a = p_0(a, c_1, \cdots, c_{k-1}, b),$$

$$b = p_n(a, c_1, \ldots, c_{k-1}, b).$$

Denote by $v_i = p_i(a, c_1, \dots, c_{k-1}, b)$. For *i* odd, we have

$$v_i = p_i(a, c_1, \dots, c_{k-1}, b) \Psi p_i(a, a, c_2, c_2, \dots, a) =$$
$$= p_{i+1}(a, a, c_2, c_2, \dots, a) \Psi p_{i+1}(a, c_1, \dots, c_{k-1}, b)$$

(since $\Theta \subseteq \Psi$), i.e. $\langle v_i, v_{i+1} \rangle \in \Psi$.

Further,

$$a = v_0 = p_0(a, c_1, \dots, c_{k-1}, b) \Theta p_0(a, a, c_2, c_2 \dots) =$$

= $p_1(a, a, c_2, c_2, \dots) \Theta p_1(a, c_1, \dots, c_{k-1}, b) = v_1 \Phi p_1(a, c_1, c_1, c_3, c_3 \dots) =$
= $p_2(a, c_1, c_1, c_3, c_3, \dots) \Phi p_2(a, c_1, \dots, c_{k-1}, b) =$
= $v_2 \Theta p_2(a, a, c_2, c_2, \dots) = \dots = b.$

Altogether, we have $a = v_0 \Theta v_1(\Phi \cap \Psi) v_2 \Theta v_3(\Phi \cap \Psi) \cdots b$; thus $\langle a, b \rangle \in \Theta \lor (\Phi \cap \Psi)$ proving k-submodularity of \mathcal{V} .

Remark 2. By Lemma 1, the identities (2) of Theorem 1 should be easily (trivially) satisfied for k = 2 or k = 3. Really, one can check that for k = 2, we can take n = 3 and

$$p_0(x, z, y) = x,$$
$$p_1(x, z, y) = z,$$
$$p_2(x, z, y) = y$$

are terms which satisfy (2) of Theorem 1.

Analogously, for k = 3 we can take n = 4 and

 $p_0(x, z_1, z_2, y) = y,$ $p_1(x, z_1, z_2, y) = z_1,$ $p_2(x, z_1, z_2, y) = z_2,$ $p_3(x, z_1, z_2, y) = y.$

Congruence modular varieties were characterized by A. Day in [2]. Analysing his proof, we can find out that he properly proved the following assertion:

Proposition (A. Day). A variety \mathcal{V} is congruence modular if and only if the free algebra $F_v(x, z_1, z_2, y)$ of \mathcal{V} satisfies

$$(\Phi \cdot \Theta \cdot \Phi) \cap \Psi \subseteq \Theta \lor (\Phi \cap \Psi)$$

for each $\Theta, \Phi, \Psi \in Con(\mathcal{A})$ with $\Theta \subseteq \Psi$.

This result enables us to state

Theorem 2. A variety \mathcal{V} is congruence modular if and only if it is congruence 4-submodular.

Proof. Of course, if \mathcal{V} is congruence modular then, by Remark 1, \mathcal{V} is also 4-submodular. Conversely, let \mathcal{V} be 4-submodular and $F_v(x, z_1, z_2, y)$ be the free algebra of \mathcal{V} generated by the free generators x, z_1, z_2, y . Let $\Theta, \Phi, \Psi \in Con(F_v(x, z_1, z_2, y))$ with $\Theta \subseteq \Psi$. Then $\Phi \cdot \Theta \cdot \Phi \subseteq \Theta \cdot \Phi \cdot \Theta \cdot \Phi$ thus also

$$(\Phi \cdot \Theta \cdot \Phi) \cap \Psi \subseteq (\Theta \cdot \Phi \cdot \Theta \cdot \Phi) \cap \Psi \subseteq \Theta \lor (\Phi \cap \Psi).$$

Applying the Proposition, \mathcal{V} is congruence modular.

As a corollary of Theorem 1 and Theorem 2, we can derive a Maltsev condition for congruence modularity different from that of A. Day [2]:

Corollary A variety \mathcal{V} is congruence modular if and only if there exist an integer n > 0 and 5-ary terms p_0, \ldots, p_n such that \mathcal{V} satisfies the following identities:

$$p_0(x, z_1, z_2, z_3, y) = x, \quad p_n(x, z_1, z_2, z_3, y) = y,$$

$$p_i(x, x, z, z, y) = p_{i+1}(x, x, z, z, y) \text{ for } i \text{ even},$$

$$p_i(x, z, z, y, y) = p_{i+1}(x, z, z, y, y) \text{ for } i \text{ odd},$$

$$p_i(x, x, z, z, x) = p_{i+1}(x, x, z, z, x) \text{ for all } i = 0, 1, \dots, n-1.$$

One can mention that our terms occuring in the Corollary are more complex then that of A. Day [2], because they are 5-ary but Day's terms are only 4-ary. However, they can become very simple in particular cases as shown in the following:

Example 1. For a variety of groups, one can take n = 2 and

$$p_0(x, z_1, z_2, z_3, y) = x,$$

$$p_1(x, z_1, z_2, z_3, y) = z_1 \cdot z_2^{-1} \cdot z_3,$$

$$p_2(x, z_1, z_2, z_3, y) = y.$$

More generally, if \mathcal{V} is a congruence permutable variety and t(x, y, z) its Maltsev term (i.e. t(x, z, z) = x and t(x, x, z) = z), then we can take n = 2 and

$$p_0(x, z_1, z_2, z_3, y) = x,$$

$$p_1(x, z_1, z_2, z_3, y) = t(x, y, z),$$

$$p_2(x, z_1, z_2, z_3, y) = y$$

which is a bit more simple than for Day's terms.

Now, we show that our Theorem 2 cannot be stated for a single algebra instead of a variety:

Example 2. Let $\mathcal{A} = (A, F)$ be a unary algebra with $A = \{a, b, c, d, e, f, g\}$ and with 3 unary operations s_1, s_2, s_3 defined as follows:

	s_1	s_2	s_3	
a	c	e	d	
b	d	e	c	
c	e	e	b	
d	e	f	a	
e	e	g	a	
f	e	g	b	
g	d	f	c	

It is an easy excercise to verify that \mathcal{A} has just five congruences, i.e. the identity congruence ω , the full square A^2 and Θ, Φ, Ψ determined by their partitions as follows

$$\begin{split} &\Theta......\{a,b\},\{c,d\},\{e,f\},\{g\};\\ &\Phi......\{b,c\},\{d,e\},\{f,g\},\{a\};\\ &\Psi......\{a,b,g\},\{c,d\},\{e,f\}. \end{split}$$

Of course, $\Theta \subseteq \Psi$ and one can check easily

$$\Theta \cap \Phi = \omega = \Psi \cap \Phi, \quad \Theta \lor \Phi = A^2 = \Psi \lor \Phi;$$

thus $Con(\mathcal{A}) \simeq N_5$ (the non-modular five element lattice).

Moreover, $\Theta \cdot \Phi \cdot \Theta \cdot \Phi$ is not a congruence on \mathcal{A} since, e.g., $\langle a, e \rangle \in \Theta \cdot \Phi \cdot \Theta \cdot \Phi$ but $\langle e, a \rangle \notin \Theta \cdot \Phi \cdot \Theta \cdot \Phi$.

On the contrary, one can check

$$(\Theta \cdot \Phi \cdot \Theta \cdot \Phi) \cap \Psi = \Theta \subseteq \Theta \lor (\Phi \cap \Psi).$$

The checking for other combinations of congruences is trivial; thus \mathcal{A} is congruence 4-submodular.

References

- I. Chajda and K. Głazek, A Basic Course on General Algebra, Technical University Press, Zielona Góra (Poland), 2000.
- [2] A. Day, A characterization of modularity for congruence lattices of algebras, Canad. Math. Bull. 12 (1969), 167–173.
- [3] B. Jónsson, On the representation of lattices, Math. Scand. 1 (1953), 193–206.

Received 18 March 2002