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Abstract

A class of semirings, so called p-semirings, characterized by a nat-
ural number p is introduced and basic properties are investigated. It
is proved that every p-semiring is a union of skew rings. It is proved
that for some p-semirings with non-commutative operations, this union
contains rings which are commutative and possess an identity.
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1. Introduction

Due to their application in theoretical computer science, semirings have been
widely investigated in the last decade. For an extensive list of papers, see
the monographs [7] and [8].

The aim of the present paper is to introduce a class of semirings, based
on semigroups with some particular properties, as follows.

In the paper [5], a notion of an anti-inverse semigroup was introduced
and its properties are described. As a generalization, a p-semigroup, p ∈ N
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is defined and investigated in [2] and [3], so that, for p = 1, anti-inverse
semigroups are obtained.

In the present paper, we define a p-semiring, p ∈ N, whose additive
semigroup is a p-semigroup. The class of p-semirings does not coincide with
any other known class of semirings. A subclass of this class is a variety, as
proved in [4].

Among other properties of p-semirings, we prove that they are regu-
lar, and that each element of a p-semiring possesses his own additive zero
(neutral element). As the main result of the paper, we prove that each
p-semiring is covered by skew rings (i.e., by algebras which differ from rings
by the single fact that their additive group does not have to be commu-
tative). We also investigate particular p-semirings, generally with non-
commutative operations, which are union of rings (commutative, with unit).
Finally, we present some examples, and an algorithm for the construction of
p-semirings.

2. Preliminaries

We recall some notions and properties of p-semigroups. For more details,
see [3].

Let (S; +) be a semigroup and p ∈ N. For x ∈ S denote by px the sum
x + x + . . . + x (p-times). Introduce the relation τp on (S; +) by:

xτpy if and only if x + py + x = y and py + x + py = x.

If xτpy for x, y ∈ S, then py is called a p-element of x.
A semigroup (S, +) is called a p-semigroup if each element has a

p-element.
The following propositions are proved in [3].

Lemma 1. Let S be a semigroup and p ∈ N. Then S is a p-semigroup if
and only if for each x ∈ S there is y ∈ S such that

2x = (p + 1)y, py + x = (2p + 1)x + p2y, (4p + 1)x = x.

Lemma 2. For each element of a p-semigroup S, x + 4px=4px + x = x.

By the preceding lemma, in a p-semigroup S every element x possesses
its own zero 0x := 4px.



On p-semirings 109

Lemma 3. If xτpy in a p-semigroup S, then the following holds:

(i) if p is even, then (a) p2y = 0x; (b) x + y = y + x;

(ii) if p is odd, then p2y = py.

Lemma 4. Let S be a p-semigroup, where p is an odd number. Then xτpy
for each pair x, y ∈ S if and only if S is a group, each element of which is
its own inverse.

Next we recall some definitions concerning semirings.
A semiring is a structure (S; +, ·) with two binary operations on a

nonempty set S, so that both operations are associative, and the second
is distributive with respect to the first; in other words, for all x, y, z ∈ S the
following identities hold:

x + (y + z) = (x + y) + z, x · (y · z) = (x · y) · z,

and

x · (y + z) = (x · y) + (x · z), (x + y) · z = (x · z) + (y · z).

In the sequel, we sometimes omit the sign and parentheses for the second
operation, i.e., in some cases we write xy instead of (x · y) and so on. In
addition, as in the case of semigroups, we denote x + x + . . . + x (n times)
by nx (for any n ∈ N).

By some authors (see [7] and [8]) the first operation is assumed to be
commutative, and also a neutral element with respect to the first operation
(or both) is supposed to exist. We use the most general definition as above,
without these additional requirements.

If A is a nonempty subset of a semiring S, then, as usual, we denote by
〈A〉 the subsemiring generated by A; in particular, if A = {a}, we denote
the corresponding subsemiring by 〈a〉.

Recall that a semiring (S; +, ·) is additively regular if (S; +) is a regular
semigroup, i.e., if for each x ∈ S there is y ∈ S such that x = x + y + x.

We say that a semiring (S; +, ·) is a skew ring if its additive semigroup
(S; +) is a group. Obviously, if (S; +) is an Abelian group, then a semiring
(skew ring) (S; +, ·) is a ring.
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3. Results

Let (S; +, ·) be a semiring, and p ∈ N. Let us define the relation θp on S, as
follows.

xθpy if and only if the following three equalities hold :

x + py + x = y; py + x + py = x; 4px2 = 4px.

Obviously, xθpy if and only if xτpy in the semigroup (S; +) and 4px2 = 4px.
If xθpy in a semiring (S; +, ·), then we say that py is a p-element of x.

A semiring (S; +, ·) is a p-semiring for fixed p ∈ N if each element in S
possesses a p-element.

Theorem 5. Let S be a semiring and p ∈ N. Then S is a p-semiring if
and only if for each x ∈ S there is y ∈ S so that the following four equalities
hold:

2x = (p + 1)y, py + x = (2p + 1)x + p2y, (4p + 1)x = x, 4px2 = 4px.

Proof. Obvious, by Lemma 1 (since (S; +) is a p-semigroup) and by the
definition of a p-semiring.

Recall that a zero of an element x in S under + is an element 0x, such that
0x + x = x + 0x = x.

Corollary 6. Let (S; +, ·) be a p-semiring, for some p ∈ N. Then:

(i) S is an additively regular semiring;

(ii) each element of S possesses its own zero 0x, where 0x = 4px;

(iii) if xθpy, then 0x = 0y;

(iv) if x is an element in S such that 2px = 0x and if xθpy, then py+x =
x + p2y.

Lemma 7. Let p ∈ N and let S be a p-semiring. If a, b ∈ S, aθpb, and
m ∈ N, then the following holds:

(i) a · 0a = 0a · a = 0a;

(ii) 02
a = 0a;
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(iii) 0a · pb = pb · 0a = 0a;

(iv) 4pam = 0a;

(v) am + 0a = 0a + am = am;

(vi) 4p(pb)m = 0a;

(vii) (pb)m + 0a = 0a + (pb)m = (pb)m.

Proof. Let aθpb. Then:

(i) a · 0a = a · 4pa = 4pa2 = 4pa = 0a.

Similarly, 0a · a = 0a.

(ii) 02
a = 4pa · 0a = 4p(a · 0a) = 4p0a = 0a.

(iii) 0a · pb = 4 0a · pb = 0a · 4pb = 0a · 0b = 0a.

Similarly, pb · 0a = 0a.

For m = 1, equalities (iv) – (vii) are trivial. Let m > 2. Then we have:

(iv) 4pam = am + am + . . . + am = am−1 · (a + a + . . . + a) = am−1(4pa) =
am−1 · 0a = 0a.

(v) am + 0a = am + 4pam = (4p + 1)am = am.

Similarly, 0a + am = am.

(vi) 4p(pb)m = (pb)m+(pb)m+ . . .+(pb)m = (pb)m−1 ·(pb+pb+ . . .+pb) =
(pb)m−1 · 4p(pb) = (pb)m−1 · p(4pb) = (pb)m−1 · 0a = 0a.

(vii) (pb)m + 0a = (pb)m + 4p(pb)m = (4p + 1)(pb)m = (pb)m.

Proposition 8. Let S be a p-semiring, where p is an odd number. Then
xθpy for each pair x, y of elements in S if and only if S is a ring each
element of which is its own additive inverse.
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Proof. Let xθay for all x, y ∈ S. Then by Lemma 4, we have that x+x = 0
for all x ∈ S, and the proof of one implication is complete.

Conversely, if x + x = 0 for all x ∈ S, then again by Lemma 4, x +
py + x = y and py + x + py = x for all x, y ∈ S. Now, since 0 = 2z for all
z ∈ S, we have that 2(2px2) = 0, i.e., 4px2 = 0 = 4px. Therefore, xθpy for
arbitrary x, y ∈ S.

Example 1. Let S = {e, a, b, c}, and let operations + and · be defined by
the following tables:

+ e a b c

e e a b c

a a e c b

b b c e a

c c b a e

· e a b c

e e e e e

a e a e a

b e e b b

c e a b c

It is straightforward to show that it satisfies conditions of Proposition 8. Of
course, each Boolean ring is p-semiring for any p.

Next we investigate particular substructures of p-semirings.

Lemma 9. Let aθabi, i = 1, . . . , m, in a p-semiring S and let x = a1a2 . . . an,
where ai ∈ {a, pb1, . . . , pbn}. Then x possesses an additive zero 0x; more-
over, 0x = 0a.

Proof. Let x = a1a2 . . . an. Then 0x = 4px = a1a2 . . . an + a1a2 . . . an +
. . . + a1a2 . . . an = a1a2 . . . an−1(an + an + . . . + an) = a1a2 . . . an−1 · 4pan =
a1a2 . . . an−1 · 0a = . . . = 0a, after repeating the procedure n times.

Further, x + 0a = x + 0x = x, and similarly, 0a + x = x.

Let a be an arbitrary element of a p-semiring S. Denote by Ba the set of all
p-elements of a:

Ba := {px ∈ S | aθpx}.
In addition, for any subset Ia of Ba, denote by GIa the subsemiring of S,
generated by {a} ∪ Ia:

GIa := 〈{a} ∪ Ia〉.
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Theorem 10. Let S be a p-semiring for an arbitrary p ∈ N, and let a ∈ S.
Then for each subset Ia of Ba, the subsemiring GIa = 〈{a} ∪ Ia〉 is a skew
ring.

Proof. Let S be a p-semiring, a ∈ S and x ∈ GIa. Then x = x1 +
x2 + . . . + xk, where xi = ai

1a
i
2 . . . ai

mi
, and ai

t = a, or ai
t = pb ∈ Ia. By

Lemma 9, 0xi = 0a and xi + 0a = 0a + xi = xi, i = 1, 2, . . . , k. Therefore,
x + 0a = 0a + x = x, and 0a is the additive zero in GIa.

Further, let

x′ = (4p− 1)xk + (4p− 1)xk−1 + . . . + (4p− 1)x1.

Then,

x + x′ = x1 + x2 + . . . + xk + (4p− 1)xk + (4p− 1)xk−1 + . . . + (4p− 1)x1

= x1 + x2 + . . . + xk−1 + 0a + (4p− 1)xk−1 + . . . + (4p− 1)x1

= x1 + x2 + . . . + xk−1 + (4p− 1)xk−1 + . . . + (4p− 1)x1

= . . . = 0a.

Similarly, x′ + x = 0a and every element has the additive inverse. Hence,
GIa is a skew ring.

Corollary 11. If p ∈ N and S is a p-semiring, then

S =
⋃

a∈S

〈a〉.

In other words, every p-semiring is a union of skew rings.

From the above, it is clear that a p-semiring whose additive semigroup is
commutative, is a union of rings. The converse is not true in general, i.e.,
the fact that a p-semiring is a union of rings does not imply additive com-
mutativity. This is shown by the class of p-semirings constructed in the
following example.

Example 2. We describe a construction of a disjoint union of rings which is
a p-semiring, but not a ring. Let (Si,+i, ·i), i = 1, 2 be two rings, which are
also p-semirings. Let 01 and 02 be additive zeros in S1 and S2, respectively.
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On the set S = S1∪S2 define operations + and · as follows: for xi ∈ Si, yj ∈
Sj , i, j = 1, 2

xi + yj :=





xi +i yj , if i = j

yj , if i < j

xi, if j < i.

xi · yj :=





xi ·i yj , if i = j

0i, if i 6= j.

It is easy to check that (S, +, ·) is a p-semiring, but not a ring.
Let S be a semiring with the property that for every x ∈ S there is

n ∈ N such that xn+1 = x. Obviously, in terms of semigroups, elements
of such semiring are periodic under multiplication, with index 1. Therefore
we say that S is a multiplicatively periodic semiring. In the following we
investigate multiplicatively periodic p-semirings.

Lemma 12. Every multiplicatively periodic skew ring is a commutative ring.

Proof. Let S be an multiplicatively periodic skew ring. We have to prove
that both operations are commutative.

Let x, y ∈ S. Then, there are m,n ∈ N, such that xn+1 = x, and
ym+1 = y. Further,

(x + y)(ym + xn) = x · (ym + xn) + y · (ym + xn)

= x · ym + xn+1 + ym+1 + y · xn

= x · ym + x + y + y · xn.

On the other hand,

(x + y)(ym + xn) = (x + y) · ym + (x + y) · xn

= x · ym + ym+1 + xn+1 + y · xn

= x · ym + y + x + y · xn.
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Hence, since S is a group under addition, we get x + y = y + x, and S is a
ring.

The second part is a well known Theorem of Jacobson, (see, e.g., [9]):
A ring in which every element x satisfies the equality xn+1 = x for some
n ∈ N, is commutative.

Corollary 13. Let S be a multiplicatively periodic p-semiring. Then, for
each a ∈ S, GIa is a commutative ring.

Proof. By Theorem 10 and Lemma 12.

Due to Corollary 11, it is obvious that every multiplicatively periodic
p-semiring is a union of commutative rings.

Next we prove more, namely that each multiplicatively periodic p-semiring
is a union of commutative rings with identity.

We use the following lemma.

Lemma 14. Let S be a multiplicatively periodic p-semiring. Then 2px =
0x for each x ∈ S.

Proof. Let S be a multiplicatively periodic p-semiring for some p ∈ N.
Since xn+1 = x for some n ∈ N, we have

2x = (x + x)n+1 = xn+1 + xn+1 + . . . + xn+1 = x + x + . . . + x = 2n+1x.

So we have 2x = 2n+1x. Now since 4px = 0x, it follows that 4k(px) = 0x

for each k ∈ N, hence also for k = 2n−1. Therefore, 4p(2n−1x) = 0x, i.e.,
p(2n+1x) = 0x, and hence p(2x) = 0x, finally 2px = 0x.

Proposition 15. Let S be a multiplicatively periodic p-semiring for some
p ∈ N. If aθpb in S and Ia = {pb}, then GIa is a commutative ring with
identity.

Proof. GIa is a commutative ring by Corollary 13 and we prove that it
has an identity.

By Lemma 14, we have 2pb = 0b, and by Corollary 6 (iii), 2pb = 0a,
since aθpb. Therefore, for any r, s ∈ N, we have 2ar(pb)s = ar(pb)s−1(2pb) =
ar(pb)s−1 · 0a = 0a, where ar(pb)0 = ar. In addition, for s > 1 we have
2(pb)s = (pb)s−1(2pb) = (pb)s−1 · 0a = 0a.
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Since S is multiplicatively periodic, we have that am+1 = a and (pb)n+1 =
pb, for some m,n ∈ N. We prove that the identity in the ring GIa is
am + (pb)n + am(pb)n.

Observe that each element of the ring GIa can be represented by

x = j
(0)
1 a+j

(0)
2 a2+. . .+j(0)

m am+j1a
u1(pb)v1 +j2a

u2(pb)v2 +. . .+jta
ut(pb)vt =

=
m∑

i=1

j
(0)
i ai +

t∑

i=1

jia
ui(pb)vi ,

where j
(0)
i ∈ {0, 1, . . . , k−1}, i = 1, . . . , m (k is the smallest positive integer

such that ka = 0a), ji ∈ {0, 1}, ui ∈ {0, 1, . . . , n}, vi ∈ {0, 1, . . . ,m}, i =
1, 2, . . . , t, t ∈ N. We also define 0ai = 0a, 0aui(pb)vi = 0a, jia

0(pb)vi =
ji(pb)vi , jia

ui(pb)0 = jia
ui , jia

0(pb)0 = 0a (i ∈ N). Further,

x · (am + (pb)n + am(pb)n) = x · am + x · (pb)n + x · am(pb)n

=
m∑

i=1

j
(0)
i am+i +

t∑

i=1

jia
m+ui(pb)vi +

m∑

i=1

j
(0)
i ai(pb)n

+
t∑

i=1

jia
ui(pb)n+vi +

m∑

i=1

j
(0)
i am+i(pb)n +

t∑

i=1

jia
m+ui(pb)n+vi

=
m∑

i=1

j
(0)
i ai +

t∑

i=1

jia
ui(pb)vi +

m∑

i=1

j
(0)
i ai(pb)n

+
t∑

i=1

jia
ui(pb)vi +

m∑

i=1

j
(0)
i ai(pb)n +

t∑

i=1

jia
ui(pb)vi

=
m∑

i=1

j
(0)
i ai + 2

t∑

i=1

jia
ui(pb)vi + 2

m∑

i=1

j
(0)
i ai(pb)n +

t∑

i=1

jia
ui(pb)vi

=
m∑

i=1

j
(0)
i ai +

t∑

i=1

ji(2aui(pb)vi) +
m∑

i=1

j
(0)
i (2ai(pb)n) +

t∑

i=1

jia
ui(pb)vi

=
m∑

i=1

j
(0)
i ai + 0a + 0a +

t∑

i=1

jia
ui(pb)vi = x.
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Thus, GIa is a commutative ring with identity am + (pb)n + am(pb)n.

Corollary 16. Every multiplicatively periodic p-semiring is a union of com-
mutative rings with identity.
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