Discussiones Mathematicae General Algebra and Applications 22(2002) 87–100

EQUATIONAL BASES FOR WEAK MONOUNARY VARIETIES

Grzegorz Bińczak

Institute of Mathematics, Warsaw University of Technology pl. Politechniki 1, 00–661 Warszawa, Poland e-mail: binczak@mini.pw.edu.pl

Abstract

It is well-known that every monounary variety of total algebras has one-element equational basis (see [5]). In my paper I prove that every monounary weak variety has at most 3-element equational basis. I give an example of monounary weak variety having 3-element equational basis, which has no 2-element equational basis.

Keywords: partial algebra, weak equation, weak variety, regular equation, regular weak equational theory, monounary algebras.

2000 AMS Mathematics Subject Classifications: 08A55, 08B05.

1. INTRODUCTION

Weak equations and varieties were studied by H. Höft [4]. An algebraic characterization of weak varieties, under a condition named "conflict free", is shown in [7]. A completeness theorem for weak equational logic was given by L. Rudak in [6]. G. Bińczak [1] characterized weak varieties as classes closed under homomorphic images and mixed products.

Basic definitions and facts about partial algebras can be found in [3] (Chapter 2) and in [2].

In this section we set up notation and terminology.

Definition 1.1. Let *n* be a natural number and *A* a set. A relation $f \subseteq A^n \times A$ is called an *n*-ary partial operation in the set *A* if and only if for every $a \in A^n$, $b, c \in A$, if $(a, b) \in f$ and $(a, c) \in f$, then b = c. If *f* is an *n*-ary partial operation in a set *A*, then dom $(f) = \{a \in A^n : \exists_{b \in A}(a, b) \in f\}.$

The notation f(a) = b means that $(a, b) \in f$.

Definition 1.2. A pair (F, η) is called a *type* or (*signature*) (of algebras), if F is an arbitrary set and $\eta: F \to \omega$. A type (F, η) is *monounary* if and only if a set F has exactly one element f and $\eta(f) = 1$. Let (F, η) be a type. Then a pair $\underline{A} = (A, (f^{\underline{A}})_{f \in F})$ is called *partial algebra* of type (F, η) if and only if $A \neq \emptyset$ and, for every $f \in F$, $f^{\underline{A}}$ is an $\eta(f)$ -ary partial operation in A. We call A the *support* of \underline{A} . A partial algebra $\underline{A} = (A, (f^{\underline{A}})_{f \in F})$ is called *monounary* if and only if it is of some monounary type.

In the sequel we fix a monounary type (F, η) $(F = \{f\})$ and we will consider only partial algebras of this type.

Let X be a countable set of variables. The usual monounary total term algebra generated by a set X will be denoted by $\underline{T}(X)$. Every monounary term is of the form $x^n = \underbrace{f \dots f}_{n \text{ times}} x$, where $x \in X$, n is a natural number and

f is an operation symbol. If n = 0, then x^n denotes x. If $\underline{A} = (A, f\underline{A})$ is a monounary partial algebra and $p = \underbrace{f \dots f}_{n \text{ times}} x = x^n$ is a term, then the

term operation $p^{\underline{A}}$ is a monounary partial operation in the set A such that $p^{\underline{A}}(a) = \underbrace{f(f(\ldots f(a) \ldots))}_{n \text{ times}}$ if $a \in \operatorname{dom}(p^{\underline{A}})$. The domain of $(x^n)^{\underline{A}}$ is defined

inductively:

 $\operatorname{dom}((x^0)\underline{A}) = A$ and

dom $\left((x^n)^{\underline{A}}\right) = \{a \in A : a \in \operatorname{dom}\left((x^{n-1})^{\underline{A}}\right) \text{ and } (x^{n-1})^{\underline{A}}(a) \in \operatorname{dom}\left(f^{\underline{A}}\right)\}.$

If $p, r \in T(X)$, $z \in X$, $p = x^k$ and $r = y^n$ for some $x, y \in X$ and $k, n \in N$, then

$$p(z/r) = \begin{cases} y^{k+n}, & \text{if } z = x, \\ p, & \text{if } z \neq x. \end{cases}$$

A pair of terms $(p,q) \in T(X)^2$ (where $p = x^k$ and $q = y^m$ for some $x, y \in X$ and $k, m \in N$) is a *weak equation* in a partial algebra \underline{A} ($\underline{A} \vDash p \approx q$) iff for every $a, b \in A$,

if
$$x = y$$
, then $a \in \text{dom}p^{\underline{A}} \cap \text{dom}q^{\underline{A}}$ implies $p^{\underline{A}}(a) = q^{\underline{A}}(a)$

and

if $x \neq y$, then $a \in \text{dom}(p^{\underline{A}})$ and $b \in \text{dom}(q^{\underline{A}})$ implies $p^{\underline{A}}(a) = q^{\underline{A}}(b)$.

Instead of (p,q) we will write $p \approx q$. Let $E \subseteq T(X)^2$, K be a class of algebras and $\underline{B} \in K$. We write:

$$K \vDash p \approx q \text{ iff for every } \underline{A} \in K, \qquad \underline{A} \vDash p \approx q,$$
$$\underline{B} \vDash E \text{ iff for every } p \approx q \in E, \qquad \underline{B} \vDash p \approx q.$$

Let $\operatorname{Eq}_w(K) = \{(p,q) \in T(X)^2 \colon K \vDash p \approx q\}$ and $\operatorname{Mod}_w(E) = \{\underline{A} \colon \underline{A} \vDash p \approx q\}$ for every $(p,q) \in E\}$. A class K of algebras is a *weak variety* iff $K = \operatorname{Mod}_w(\operatorname{Eq}_w(K))$. An algebraic characterization of weak varieties is shown in [1].

A set $I \subseteq T(X)$ is an *initial segment* iff for every $x^n \in I$, if $m \in N$ and m < n then $x^m \in I$. A set $E \subseteq T(X)^2$ is an *equational basis* of a weak variety K iff $Mod_w(E) = K$. A set $E \subseteq T(X)^2$ is a *weak equational theory* iff $E = Eq_w(K)$ for some class of algebras K; equivalently (see [6]) it is closed under the following rules:

R1
$$\frac{1}{p \approx p}$$
 (reflexivity);

- R2 $\frac{p \approx q}{q \approx p}$ (symmetry);
- R3 $\frac{p \approx r_1, r_1 \approx r_2, \dots, r_n \approx q}{p \approx q}$ if $r_1, \dots, r_n \in D_E(p, q)$, where $D_E(p, q)$ is the smallest initial segment $I \subseteq T(X)$ such that $X \cup \{p, q\} \subseteq I$; and if $r \in I$, $f(s) \in I$ and $r \approx s \in E$, then $f(r) \in I$ (weak transitivity);

R4
$$\frac{p \approx q}{f(p) \approx f(q)};$$

R5 $\frac{p \approx q}{p(x/r) \approx q(x/r)}$ for some $x \in X$ and $r \in T(X)$ (substitution).

Weak equational theory $E \subseteq T(X)^2$ is nontrivial iff there exist $p, q \in T(X)$ such that $p \neq q$ and $p \approx q \in E$. If $E_1, E_2 \subseteq T(X)^2$, then $E_1 \vdash E_2$ iff E_2 follows from E_1 by above rules, equivalently: for every weak equational theory E, if $E_1 \subseteq E$, then $E_2 \subseteq E$. If E is a weak equational theory, then a subset $E_0 \subseteq E$ is a basis of E iff E_0 is an equational basis of $Mod_w(E)$, equivalently: $E_0 \vdash E$. Moreover, if $E_1, E_2 \subseteq T(X)^2$, $E_1 \vdash E_2$ and $E_2 \vdash E_1$, then E_1 is a basis of E iff E_2 is a basis of E.

Definition 1.3. An equation $p \approx q \in T(X)^2$ is *regular* if and only if $p = x^n$ and $q = x^m$ for some $x \in X$ and $n, m \in N$. A weak equational theory E is *regular* if and only if every equation in E is regular.

2. Regular weak equational theories

In this section we prove (Corollary 2.10) that every regular weak equational theory has a 2-element basis.

Lemma 2.1. Let E be a weak equational theory, $n \ge 1$ and $k \ge 0$. If $x^k \approx x^{k+n} \in E$ and $m \ge k$, then $x^m \approx x^{m+n} \in E$ for every $r \ge 0$.

Proof. By rule R5, $x^k(x/x^{m-k}) \approx x^{k+n}(x/x^{m-k}) \in E$, so $x^m \approx x^{m+n} \in E$, which proves lemma for r = 1. Suppose that we prove lemma for $r \leq l$. Let $x^k \approx x^{k+n} \in E$ and $m \geq k$. Then $x^m \approx x^{m+ln} \in E$ and $x^{m+ln} \approx x^{m+ln+n} \in E$ (since $m + ln \geq k$). By rule R3, $x^m \approx x^{m+ln+n} \in E$, so $x^m \approx x^{m+(l+1)n} \in E$.

Lemma 2.2. Let E be a weak equational theory, $k, n, m \ge 0$. If $x^k \approx x^{k+n} \in E$ and $x^k \approx x^{k+m} \in E$, then $x^k \approx x^{k+n+m} \in E$.

Proof. By Lemma 2.1 $x^{k+m} \approx x^{k+m+n} \in E$ (since $x^k \approx x^{k+n} \in E$ and $k+m \geq k$). Therefore, $x^k \approx x^{k+m} \in E$ and $x^{k+m} \approx x^{k+n+m} \in E$. By rule R3, $x^k \approx x^{k+n+m} \in E$.

Corollary 2.3. Let E be a weak equational theory. Let $l \ge 1$, $k, a_i, n_i \ge 0$ for $1 \le i \le l$. If $x^k \approx x^{k+n_1}, \ldots, x^k \approx x^{k+n_l} \in E$, then $x^k \approx x^{k+a_1n_1+\ldots a_ln_l} \in E$. **Lemma 2.4.** Let E be a weak equational theory, $n \ge 1$, $k \ge 0$ and $x \in X$. If $x^k \approx x^{k+n} \in E$, $p,q \ge 0$ and $\max(p,q) \ge k+n$, then for every $s \in N$, $x^s \in D_E(x^p, x^q)$.

Proof. Suppose that there exists $s \in N$ such that $x^s \notin D_E(x^p, x^q)$. Let $r = \min\{s \in N : x^s \notin D_E(x^p, x^q)\}$. Since $x = x^0 \in D_E(x^p, x^q)$, we have r > 0. Moreover, r > p and r > q, since $x^p, x^q \in D_E(x^p, x^q)$ and $D_E(x^p, x^q)$ is an initial segment. Therefore, $r - 1 \ge \max(p, q) \ge k + n$, $r - 1 - n \ge k$ and, by Lemma 2.1,

$$x^{r-1-n} \approx x^{r-1} \in E,$$

since $x^k \approx x^{k+n} \in E$. Moreover, $x^{r-1-n}, x^{r-1} \in D_E(x^p, x^q)$ by definition of r and $f(x^{r-1-n}) = x^{r-n} \in D_E(x^p, x^q)$, since $n \ge 1$. By definition of $D_E(x^p, x^q)$ (cf. [R3]), $f(x^{r-1}) = x^r \in D_E(x^p, x^q)$ and we have a contradiction with definition of r.

Lemma 2.5. Let E be a nontrivial weak equational theory. If $r, d \ge 1$, $s \ge r$, $k, d_0 \ge 0$, $x^k \approx x^{k+rd} \in E$ and $x^{d_0} \approx x^{d_0+d} \in E$, then $x^k \approx x^{k+sd} \in E$.

Proof. There exists $a \geq 1$ such that $k + ard > d_0$. Then $x^{k+ard} \approx x^{k+ard+sd} \in E$, by Lemma 2.1, since $x^{d_0} \approx x^{d_0+d} \in E$. Moreover, $x^k \approx x^{k+ard}, x^{k+sd} \approx x^{k+sd+ard} \in E$, by Lemma 2.1, since $x^k \approx x^{k+rd} \in E$. Therefore,

$$x^k \approx x^{k+ard}, x^{k+ard} \approx x^{k+ard+sd}, x^{k+ard+sd} \approx x^{k+sd} \in E$$

and, by Lemma 2.4, x^{k+ard} , $x^{k+ard+sd} \in D_E(x^k, x^{k+sd})$, since $x^k \approx x^{k+rd} \in E$ and $\max(k, k + sd) = k + sd \geq k + rd$. Hence, by rule R3, $x^k \approx x^{k+sd} \in E$.

Definition 2.6. Let $x \in X$ and E be a nontrivial weak equational theory. Define $R_x(E) = \{n > 0: \text{ there exists } k \ge 0 \text{ such that } x^k \approx x^{k+n} \in E\}$. By rule R5, $R_x(E) = R_y(E)$ for every $x, y \in X$. So, we can write R(E) instead of $R_x(E)$.

Lemma 2.7. Let E be a nontrivial weak equational theory. Then

- 1. if $n_1, n_2 \in R(E)$, then $n_1 + n_2 \in R(E)$,
- 2. if $n_1, n_2 \in R(E)$ and $n_1 n_2 > 0$, then $n_1 n_2 \in R(E)$,
- 3. if $n \in R(E)$ and $r \ge 0$, then $rn \in R(E)$.

Proof.

- 1. If $n_1, n_2 \in R(E)$, then there exist $k_1, k_2 \geq 0$ such that $x^{k_1} \approx x^{k_1+n_1} \in E$ and $x^{k_2} \approx x^{k_2+n_2}$. Let $k = k_1 + k_2$. By Lemma 2.1, $x^k \approx x^{k+n_1} \in E$ and $x^k \approx x^{k+n_2} \in E$. Hence, $x^k \approx x^{k+n_1+n_2} \in E$ by Lemma 2.2. Therefore, $n_1 + n_2 \in R(E)$.
- 2. If $n_1, n_2 \in R(E)$ and $n_1 n_2 > 0$, then there exist $k_1, k_2 \ge 0$ such that $x^{k_1} \approx x^{k_1+n_1} \in E$ and $x^{k_2} \approx x^{k_2+n_2}$. Let $k = k_1 + k_2$. By Lemma 2.1, $x^k \approx x^{k+n_1} \in E$ and $x^k \approx x^{k+n_2} \in E$. Therefore, $x^{k+n_2} \approx x^k \in E$ and $x^k \approx x^{k+n_1} \in E$. By rule R3, $x^{k+n_2} \approx x^{k+n_1} \in E$. Hence, $x^{k+n_2} \approx x^{k+n_2+(n_1-n_2)} \in E$ and $n_1 n_2 \in R(E)$.
- 3. If $n \in R(E)$ and $r \ge 0$, then there exists $k \ge 0$ such that $x^k \approx x^{k+n} \in E$. By Lemma 2.1, $x^k \approx x^{k+rn} \in E$. Hence $rn \in R(E)$.

Corollary 2.8. Let E be a nontrivial weak equational theory. If $a_1, \ldots, a_n \in R(E)$, then $gcd(a_1, \ldots, a_n) \in R(E)$.

Proof. Let $d = \gcd(a_1, \ldots, a_n)$. Then $d = b_1a_1 + \ldots + b_ia_i + c_{i+1}a_{i+1} + \ldots + c_na_n$, where $b_j \ge 0$ and $c_j < 0$. By Lemma 2.7, $d_1 = b_1a_1 + \ldots + b_ia_i \in R(E)$ and $d_2 = -(c_{i+1}a_{i+1} + \ldots + c_na_n) \in R(E)$. Hence, $d = d_1 - d_2 \in R(E)$ by Lemma 2.7.

If E is a nontrivial weak equational theory, then a set R(E) is infinite. Suppose that $R(E) = \{a_1, \ldots, a_n, \ldots\}$. Let $d_n = \gcd(a_1, \ldots, a_n)$ for $n \ge 1$. Then we have a sequence $d_1 \ge d_2 \ge \ldots > 0$. Therefore, there exists $n \ge 1$ such that $d_n = d_{n+1} = \ldots$ By Corollary 2.8, $d = d_n \in R(E)$ and $d = \gcd(R(E))$ (i.e. d|k for every $k \in R(E)$ and if there exists $d_0 \ge 1$ such that $d_0|k$ for every $k \in R(E)$, then $d|d_0$). Moreover, $R(E) = \{kd \in N: k > 0 \text{ and } k \in N\}$. **Lemma 2.9.** Let E be a nontrivial weak equational theory. Let $d = \gcd(R(E))$, $x \in X$ and $d_0 = \min\{k \ge 0: x^k \approx x^{k+d} \in E\}$. Let $k_0 = \min\{k \ge 0: \text{ there exists } n > k \text{ such that } x^k \approx x^n \in E\}$. Let further $l_0 = \min\{k \ge 0: x^{k_0} \approx x^{k_0+k} \in E\}$ and

$$E_0 = \{ x^{k_0} \approx x^{k_0 + l_0}, x^{d_0} \approx x^{d_0 + d} \}.$$

Then $E_0 \subseteq E$ and for every weak equational theory E' such that $E_0 \subseteq E'$ and for every $y^k \approx y^m \in E$, we have $y^k \approx y^m \in E'$.

Proof. Let E' be a weak equational theory such that $E_0 \subseteq E'$ and $y^k \approx y^m \in E$. We show that $y^k \approx y^m \in E'$. By rule R2 (symmetry), we can assume that $m \geq k$. Let m = k + n for some $n \geq 0$. We show that $y^k \approx y^{k+n} \in E'$.

If n = 0, then $y^k \approx y^{k+n} \in E'$ by rule R1.

By rule R5, $E'_0 = \{y^{k_0} \approx y^{k_0+l_0}, y^{d_0} \approx y^{d_0+d}\} \subseteq E' \cap E.$

Suppose that n > 0. Then $n \in R(E)$ and d|n. Hence, there exists $r \ge 1$ such that n = rd.

If $d_0 \leq k$, then $y^k \approx y^{k+rd} \in E'$ by Lemma 2.1, since $y^{d_0} \approx y^{d_0+d} \in E'$. Suppose that $d_0 > k$. Since $k_0 \leq k$ by definition of k_0 , we have $k_0 \leq k < d_0$.

We know that $l_0 \in R(E)$. Hence, there exists $r_0 \geq 1$ such that $l_0 = r_0 d$. Suppose that $r \geq r_0$. Then $y^k \approx y^{k+l_0} \in E'$ by Lemma 2.1, since $y^{k_0} \approx y^{k_0+l_0} \in E'$ and $k_0 \leq k$. Therefore, $y^k \approx y^{k+rd} \in E'$ by Lemma 2.5, since $y^k \approx y^{k+r_0d} \in E'$, $y^{d_0} \approx y^{d_0+d} \in E'$ and $r \geq r_0$. Hence, $y^k \approx y^{k+n} \in E'$, since n = rd.

Suppose that $r_0 > r$. We show that $k + n \ge d_0 + d$.

Suppose that $k + n < d_0 + d$. Then $d_0 - 1 + d \ge k + n$ and $y^{d_0 - 1 + nd} \in D_E(y^{d_0 - 1}, y^{d_0 - 1 + d})$ by Lemma 2.4, since $d_0 - 1 + d \ge k + n$. By Lemma 2.1, we have $y^{d_0 - 1} \approx y^{d_0 - 1 + nd} \in E$ and $y^{d_0 - 1 + nd} \approx y^{d_0 - 1 + d} \in E$, since $d_0 - 1 \ge k$, $d_0 - 1 + d \ge d_0$, $n - 1 \ge 0$, $y^k \approx y^{k+n} \in E$ and $y^{d_0} \approx y^{d_0 + d} \in E$. We have

$$y^{d_0-1} \approx y^{d_0-1+nd}, y^{d_0-1+nd} \approx y^{d_0-1+d} \in E$$

and $y^{d_0-1+nd} \in D_E(y^{d_0-1}, y^{d_0-1+d})$. By rule R3, we obtain $y^{d_0-1} \approx y^{d_0-1+d} \in E$ and we have a contradiction with definition of d_0 .

We know that $y^k \approx y^{k+r_0d} \in E'$, since $k \geq k_0$ and $y^{k_0} \approx y^{k_0+r_0d} = y^{k_0} \approx y^{k_0+l_0} \in E'_0 \subseteq E'$. Moreover, $k+rd = k+n \geq d_0 + d > d_0$ and $k+r_0d-(k+rd) = (r_0-r)d \geq 0$ implies $y^{k+rd} \approx y^{k+r_0d} \in E'$ by Lemma 2.1. We have $y^{k+r_0d} \in D_{E'}(y^k, y^{k+n})$, by Lemma 2.4, since $k+n \geq d_0 + d$ and $y^{d_0} \approx y^{d_0+d} \in E'_0 \subseteq E'$. Therefore,

$$y^k \approx y^{k+r_0d}, y^{k+r_0d} \approx y^{k+rd} \in E', y^{k+r_0d} \in D_{E'}(y^k, y^{k+rd})$$

and, by rule R3, $y^k \approx y^{k+rd} = y^k \approx y^{k+n} \in E'$.

Corollary 2.10. Every regular weak equational theory E has a 2-element basis.

Proof. If E is not nontrivial weak equational theory, then $E = \{(p, p) \in T(X)^2 : p \in T(X)\}$ and every 2-element subset of E is a basis of E.

Suppose that E is nontrivial regular weak equational theory. Let $d = \gcd(R(E)) \in R(E)$. Fix $x \in X$. Then the set $\{k \ge 0: x^k \approx x^{k+d} \in E\}$ is not empty. Let $d_0 = \min\{k \ge 0: x^k \approx x^{k+d} \in E\}$. Let $k_0 = \min\{k \ge 0$: there exists n > k such that $x^k \approx x^n \in E\}$. Let $l_0 = \min\{k \ge 0: x^{k_0} \approx x^{k_0+k} \in E\}$. We show that

$$E_0 = \{x^{k_0} \approx x^{k_0 + l_0}, x^{d_0} \approx x^{d_0 + d}\}$$

is a basis of E.

We know that $E_0 \subseteq E$ by definitions of d_0, l_0, k_0 .

Let E' be a weak equational theory such that $E_0 \subseteq E'$. We show that $E \subseteq E'$. Let $z^k \approx y^m \in E$. Then z = y, since E is regular and, by Lemma 2.9, we have $y^k \approx y^m \in E'$. Therefore, $E \subseteq E'$ and E_0 is a basis of E.

3. Main Theorem

Lemma 3.1. Let E be a weak equational theory, $p, q \in N$, $x, y \in X$ and $x \neq y$. If $x^p \approx y^q \in E$, $p' \geq p$ and $q' \geq q$, then $x^{p'} \approx y^{q'} \in E$.

Proof. If $x^p \approx y^q \in E$, then $x^p(x/x^{p'-p}) \approx y^q(x/x^{p'-p}) = x^{p'} \approx y^q \in E$ by rule R5. Hence, $x^{p'}(y/y^{q'-q}) \approx y^q(y/y^{q'-q}) = x^{p'} \approx y^{q'} \in E$ by rule R5.

Lemma 3.2. Let E be a weak equational theory, $n \ge 1$, $x, y \in X$ and $x \ne y$. Let $p, q, k \in N$. If $x^k \approx x^{k+n}, x^p \approx y^q \in E$, then $x^p \approx y^{k+n} \in E$.

Proof. There exists $a \ge 1$ such that k + an > p. By Lemma 3.1, $x^{k+an} \approx y^q \in E$. Hence $y^{k+an} \approx y^q \in E$ by rule R5 and $y^q \approx y^{k+an} \in E$ by rule R2.

By rule R5, $y^k \approx y^{k+n} \in E$ (since $x^k \approx x^{k+n} \in E$). Therefore, $y^{k+n} \approx y^{k+an} \in E$ by Lemma 2.1, since $k+n \geq k$, k+an = k+n+(a-1)n and $a-1 \geq 0$. By rule R2, we have $y^{k+an} \approx y^{k+n} \in E$. We have

$$x^p \approx y^q, y^q \approx y^{k+an}, y^{k+an} \approx y^{k+n} \in E$$

and $y^q, y^{k+an} \in D_E(x^p, y^{k+n})$ by Lemma 2.4, since $y^k \approx y^{k+n} \in E$. Hence, $x^p \approx y^{k+n} \in E$ by rule R3.

Lemma 3.3. Let E be a weak equational theory, $x, y \in X$ and $x \neq y$. If $m < l, x^n \approx y^k \in E$ and $x^m \approx y^l \in E$, then $x^n \approx y^l \in E$.

Proof. By rule R5, $x^m \approx x^l \in E$. Hence, $x^n \approx y^l$ by Lemma 3.2, since l = m + (l - m) and $l - m \ge 1$.

Theorem 3.4. Every monounary weak variety of partial algebras has an at most 3-element equational basis.

Proof. Let V be a weak monounary variety and $E = \text{Eq}_w(V) \subseteq T_F(X)^2$. We show that E has at most 3-element basis.

If E is a trivial weak equational theory, then $E = \{(p, p) \in T(X)^2: p \in T(X)\}$ and every 3-element subset of E is a basis of E.

If E is a regular weak equational theory, then E has a 2-element basis by Corollary 2.10.

Suppose that E is not regular. Then there exist $x, y \in X$, $p,q \in N$ such that $x^p \approx y^q \in E$ and $x \neq y$. By Lemma 3.1, $x^{\max(p,q)} \approx y^{\max(p,q)} \in E$ and the set $\{n \geq 0: x^n \approx y^n \in E\}$ is not empty. Let $m = \min\{n \ge 0: x^n \approx y^n \in E\}$ and $d = \gcd(R(E)) \in R(E)$.

Observe that the set $\{k \geq 0: x^k \approx x^{k+d} \in E\}$ is not empty. Let $d_0 = \min\{k \geq 0: x^k \approx x^{k+d} \in E\}$ and let $k_0 = \min\{k \geq 0:$ there exists n > k such that $x^k \approx x^n \in E\}$. Let further $l_0 = \min\{k \geq 0: x^{k_0} \approx x^{k_0+k} \in E\}$, $k_1 = \min\{k \geq 0:$ there exists $n \geq k$ such that $x^k \approx y^n \in E\}$ and let $l_1 = \min\{k > 0: x^{k_1} \approx y^{k_1+k} \in E\}$.

We show that

$$E_1 = \{x^{k_0} \approx x^{k_0 + l_0}, x^{d_0} \approx x^{d_0 + d}, x^m \approx y^m, x^{k_1} \approx y^{k_1 + l_1}\}$$

is a basis of E.

Obviously, $E_1 \subseteq E$ by definitions of l_1, d_0, l_0 .

Let E' be a weak equational theory such that $E_1 \subseteq E'$. Let $z^p \approx t^q \in E$ for some $z, t \in X$ and $p, q \ge 0$. If z = t, then $z^p \approx t^q \in E'$ by Lemma 2.9. Suppose that $z \ne t$. By rule R5, $x^p \approx y^q \in E$. By rule R2 (symmetry), we can assume that $q \ge p$.

- 1. If q = p, then $m \leq q$ and $x^m \approx y^m \in E_1 \subseteq E'$. Hence, $x^p \approx y^q \in E'$ by Lemma 3.1 and $z^p \approx t^q \in E'$ by rule R5.
- 2. If q > p, then $x^{k_1} \approx y^q \in E$ by Lemma 3.3, since $x^{k_1} \approx y^{k_1+l_1} \in E_1 \subseteq E$. Hence, $k_1 + l_1 \leq q$ by definition of l_1 . Moreover, $k_1 \leq p$ by definition of k_1 . Therefore, $x^p \approx y^q \in E'$ by Lemma 3.1, since $x^{k_1} \approx y^{k_1+l_1} \in E_1 \subseteq E'$, $k_1 \leq p$ and $k_1 + l_1 \leq q$. Hence, $z^p \approx t^q \in E'$ by rule R5.

We proved that $E \subseteq E'$ and E_1 is a 4-element basis of E.

Now we show some connections between exponents of equations in E_1 .

By Lemma 3.1, $x^m \approx y^{m+1} \in E$, since $x^m \approx y^m \in E_1 \subseteq E$. Hence, $x^m \approx x^{m+1} \in E$ by rule R5. Therefore, $1 \in R(E)$ and d = 1. Moreover, $k_1 \leq m$ by definition of k_1 , since $x^m \approx y^{m+1} \in E$.

We show that $m \leq k_1 + l_1 \leq m + 1$ and $m \leq d_0 + 1 \leq m + 1$.

a) By Lemma 3.1, $x^{k_1+l_1} \approx y^{k_1+l_1} \in E$ (since $x^{k_1} \approx y^{k_1+l_1} \in E$). Hence, $m \leq k_1 + l_1$ by definition of m.

- b) By Lemma 3.1, $x^m \approx y^{m+1} \in E$, since $x^m \approx y^m \in E$. Hence, $x^m \approx x^{m+1} \in E$ by rule R5. Therefore, $x^{k_1} \approx y^{m+1} \in E$ by Lemma 3.2, since $x^{k_1} \approx y^{k_1+l_1} \in E$. Hence, $k_1 + l_1 \leq m + 1$ by definition of l_1 .
- c) We know that $x^m \approx x^{m+1} \in E$. Hence, $d_0 \leq m$ by definition of d_0 , since d = 1.
- d) By Lemma 3.2, $x^m \approx y^{d_0+1} \in E$, since $x^m \approx y^m \in E$ and $x^{d_0} \approx x^{d_0+1} \in E$. By rule R5, $y^m \approx x^{d_0+1} \in E$ and $x^{d_0+1} \approx y^m \in E$ by rule R2. Therefore, $x^{d_0+1} \approx y^{d_0+1}$ by Lemma 3.2, since $x^{d_0+1} \approx y^m \in E$ and $x^{d_0} \approx x^{d_0+1} \in E$. Hence, $m \leq d_0 + 1$ by definition of m.

Consider the following cases:

- 1. $m = k_1 + l_1$. Then $E_1^1 = E_1 \setminus \{x^m \approx y^m\}$ is a 3-element basis for E, because $\{x^{k_1} \approx y^{k_1+l_1}\} \vdash \{x^m \approx y^m\}$ by Lemma 3.1, $x^{k_1} \approx y^{k_1+l_1} \in E_1^1$ and $E_1^1 \vdash E_1$.
- 2. $m+1 = k_1 + l_1$ and $k_1 = m$. Then $E_1^2 = E_1 \setminus \{x^{k_1} \approx y^{k_1+l_1}\}$ is a 3-element basis for E, because $\{x^m \approx y^m\} \vdash x^{k_1} \approx y^{k_1+l_1}$ by Lemma 3.1, $x^m \approx y^m \in E_1^2$ and $E_1^2 \vdash E_1$.
- 3. $m + 1 = k_1 + l_1, k_1 < m$ and $m = d_0$. Then $E_1^3 = E_1 \setminus \{x^{d_0} \approx x^{d_0+1}\}$ is a 3-element basis for E, because $\{x^m \approx y^m\} \vdash \{x^m \approx y^{m+1}\} \vdash \{x^{d_0} \approx x^{d_0+1}\}$ by Lemma 3.1 and rule R5 $(d_0 = m), x^m \approx y^m \in E_1^3$ and $E_1^3 \vdash E_1$.
- 4. $m + 1 = k_1 + l_1, k_1 < m$ and $m = d_0 + 1$. We show that $E_1^4 = \{x^{k_0} \approx x^{k_0+l_0}, x^{d_0} \approx x^{d_0+1}, x^{k_1} \approx y^m\}$ is a 3-element basis of E. By Lemma 3.1, $\{x^{k_1} \approx y^m\} \vdash \{x^m \approx y^m, x^{k_1} \approx y^{k_1+l_1}\}$, since $k_1 \leq m$ and $m \leq m + 1 = k_1 + l_1$. Hence, $E_1^4 \vdash E_1$. By Lemma 3.2, $\{x^{d_0} \approx x^{d_0+1}, x^{k_1} \approx y^{k_1+l_1}\} \vdash \{x^{k_1} \approx y^m\}$, since $m = d_0 + 1$. Hence, $E_1 \vdash E_1^4$ and E_1^4 is a 3-element basis of E.

Example 3.5. The weak monounary variety $V = Mod_w(\{x^2 \approx y^2, x^1 \approx y^3, x^0 \approx x^3\})$ has no 2-element basis.

Proof. Define the following monounary algebras (digits denote elements of the support and arrows show how the unique partial 1-ary operation acts):

$$\underline{A}_1: 0 \qquad 1^{\checkmark}, \qquad \underline{A}_2: 0 \qquad > 1, \qquad ,$$

It is easy to see that $\underline{A}_1 \in V$ and $\underline{A}_4 \in V$. Let $E = Eq_w(V)$. Observe that

(*)
$$x^0 \approx y^n \notin E$$
 for every $n \in N$,

because $\underline{A}_1 \nvDash x^0 \approx y^n$ for every $n \in N$ (since $x^0(0) = 0 \neq 1 = y^n(1)$) and $\underline{A}_1 \in V$. Hence, any basis of E cannot contain an equation $x^0 \approx y^n$ for some $n \in N$.

Suppose that E_0 is a 2-element basis of E. Consider the following three cases:

- 1. E_0 has two not regular equation. Then we can assume that $E_0 = \{x^n \approx y^m, x^k \approx y^l\}$ for some $x, y \in X, x \neq y$ and $n, m, k, l \in N$. Moreover $n, m, k, l \geq 1$ by (*). Therefore, $\underline{A}_2 \models E_0$, since $\underline{A}_2 \models x^p \approx y^q$ for every $p, q \geq 1$. Hence, $\underline{A}_2 \in V$, since E_0 is a basis of E. But $\underline{A}_2 \notin V$, since $\underline{A}_2 \nvDash x^0 \approx x^3$ $((x^0)^{\underline{A}_2}(0) = 0 \neq 1 = (x^3)^{\underline{A}_2}(0))$, a contradiction.
- 2. E_0 has exactly one regular equation. Then we can assume that $E_0 = \{x^n \approx x^{n+k}, x^m \approx y^{m+l}\}$ for some $x, y \in X, x \neq y$ and $n, k, m, l \in N$.

If k = 0, then $E'_0 = \{x^m \approx y^{m+l}\}$ is a basis of E, which is impossible by the previous case. Thus $k \ge 1$. Moreover, $m \ge 1$ by (*). Then $\underline{A}_2 \vDash x^m \approx y^{m+l}$ and $\underline{A}_2 \notin V$. Therefore, $\underline{A}_2 \nvDash x^n \approx x^{n+k}$, since E_0 is a basis of E. But $\underline{A}_2 \vDash x^p \approx x^q$ for $p, q \ge 1$. Hence n = 0.

Observe that $\underline{A}_4 \in V$, $\underline{A}_4 \nvDash x^0 \approx x^1$ $((x^0)\underline{A}_4(0) = 0 \neq 1 = (x^1)\underline{A}_4(0))$ and $\underline{A}_4 \nvDash x^0 \approx x^2$ $((x^0)\underline{A}_4(0) = 0 \neq 2 = (x^2)\underline{A}_4(0))$. Hence $k \geq 3$. Then $\underline{A}_5 \vDash x^0 \approx x^k$ and $\underline{A}_5 \notin V$, since $\underline{A}_5 \nvDash x^1 \approx y^3$ $((x^1)\underline{A}_5(1) = 2 \neq 0 = (y^3)\underline{A}_5(0))$. Thus $\underline{A}_5 \nvDash x^m \approx y^{m+l}$, since E_0 is a basis of E. But $\underline{A}_5 \vDash x^p \approx y^q$ for $p, q \geq 2$. Hence m = 1.

 $\begin{array}{l} \text{Moreover}, \ \underline{A}_4 \in V, \ \underline{A}_4 \nvDash x^1 \approx y^1 \ ((x^1)\underline{A}_4(0) = 1 \neq 2 = (y^1)\underline{A}_4(1)) \\ \text{and} \ \underline{A}_4 \nvDash x^1 \approx y^2 \ ((x^1)\underline{A}_4(0) = 1 \neq 2 = (y^2)\underline{A}_4(0)). \ \text{Hence} \ l \geq 2. \\ \text{Therefore}, \ E_0 = \{x^0 \approx x^k, x^1 \approx y^{1+l}\}, \ k \geq 3 \ \text{and} \ l \geq 2. \ \text{Then} \ \underline{A}_6 \vDash E_0 \\ \text{and} \ \underline{A}_6 \in V, \ \text{since} \ E_0 \ \text{is a basis of} \ E. \ \text{But} \ \underline{A}_6 \notin V, \ \text{since} \ \underline{A}_6 \nvDash x^2 \approx y^2 \\ ((x^2)\underline{A}_6(0) = 2 \neq 5 = (y^2)\underline{A}_6(3)), \ \text{a contradiction}. \end{array}$

3. E_0 has two regular equation. Then we can assume that $E_0 = \{x^n \approx x^m, x^k \approx x^l\}$ for some $x \in X$ and $n, m, k, l \in N$. Therefore, $\underline{A}_3 \models E_0$ and $\underline{A}_3 \in V$, since E_0 is a basis of E. But $\underline{A}_3 \notin V$, since $\underline{A}_3 \nvDash x^2 \approx y^2$ $((x^2)^{\underline{A}_3}(0) = 0 \neq 1 = (y^2)^{\underline{A}_3}(1))$, a contradiction.

From this example we know that there exists a weak monounary variety with 3-element basis, which has no 2-element basis.

References

- G. Bińczak, A characterization theorem for weak varieties, Algebra Universalis 45 (2001), 53–62.
- [2] P. Burmeister, A Model Theoretic Oriented Approach to Partial Algebras, Akademie-Verlag, Berlin 1986.
- [3] G. Grätzer, Universal Algebra, (the second edition), Springer-Verlag, New York 1979.
- [4] H. Höft, Weak and strong equations in partial algebras, Algebra Universalis 3 (1973), 203–215.
- [5] E. Jacobs and R. Schwabauer, The lattice of equational classes of algebras with one unary operation, Amer. Math. Monthly 71 (1964), 151–155.

- [6] L. Rudak, A completness theorem for weak equational logic, Algebra Universalis 16 (1983), 331–337.
- [7] L. Rudak, Algebraic characterization of conflict-free varieties of partial algebras, Algebra Universalis 30 (1993), 89–100.

Received 19 April 2002 Revised 2 July 2002