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Abstract

It is well-known that every monounary variety of total algebras has
one-element equational basis (see [5]). In my paper I prove that every
monounary weak variety has at most 3-element equational basis. I give
an example of monounary weak variety having 3-element equational
basis, which has no 2-element equational basis.
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1. INTRODUCTION

Weak equations and varieties were studied by H. Hoft [4]. An algebraic
characterization of weak varieties, under a condition named “conflict free”,
is shown in [7]. A completeness theorem for weak equational logic was given
by L. Rudak in [6]. G. Biiiczak [1] characterized weak varieties as classes
closed under homomorphic images and mixed products.

Basic definitions and facts about partial algebras can be found in [3]
(Chapter 2) and in [2].

In this section we set up notation and terminology.
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Definition 1.1. Let n be a natural number and A a set. A relation
f € A"™ x A is called an n-ary partial operation in the set A if
and only if for every a € A", b,c € A, if (a,b) € f and (a,c) € f,
then b = ¢. If f is an m-ary partial operation in a set A, then
dom(f) ={a € A™: Fpcala,b) € f}.

The notation f(a) = b means that (a,b) € f.

Definition 1.2. A pair (F,n) is called a type or (signature) (of algebras), if
F is an arbitrary set and n: F' — w. A type (F,n) is monounary if and only
if a set F' has exactly one element f and n(f) = 1. Let (F,n) be a type.
Then a pair A = (A, (fA)fEF) is called partial algebra of type (F,n) if and
only if A # @ and, for every f € F, f4 is an n(f)-ary partial operation in
A. We call A the support of A. A partial algebra A = (A, (fé)fep) is called
monounary if and only if it is of some monounary type.

In the sequel we fix a monounary type (F,n) (F = {f}) and we will
consider only partial algebras of this type.

Let X be a countable set of variables. The usual monounary total term
algebra generated by a set X will be denoted by T'(X). Every monounary
term is of the form z" = f... f x, where x € X, n is a natural number and

—
n times
f is an operation symbol. If n = 0, then 2™ denotes . If A = (A, f4)
is a monounary partial algebra and p = f... fx = 2™ is a term, then the
—

n times
term operation p4 is a monounary partial operation in the set A such that

pA(a) = f(f(... f(a)...)) if a € dom(p4). The domain of (z")4 is defined
—_——

n times
inductively:

dom((2°)4) = A and

dom ((ac”)é> ={a€ A:aedom ((a:"*l)é> and (:z"fl)é(a) € dom (fé)}.

If pr e T(X), z€ X, p=2" and r = y" for some z,y € X and k,n € N,
then

Yyt if 2z =,

p(z/r) =

P, if z# .
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A pair of terms (p, q) € T(X)? (where p = z* and ¢ = y™ for some z,y € X
and k,m € N) is a weak equation in a partial algebra A (A F p =~ q) iff for
every a,b € A,

if z =y, then a € domp?Ndomg? implies pé(a) = qé(a)

and
if x+#vy, then a € dom (pA) and b € dom (qé) implies p2(a) = ¢2(b).

Instead of (p, q) we will write p ~ q.
Let E C T(X)?, K be a class of algebras and B € K. We write:

K FEp~qiff for every A € K, AEpmq,

BF FE iff for every p~q € E, BFEp=q.

Let Ba,,(K)={(p,q) € T(X)% K & p ~ q} and Mod,, (E)={A: AF p~q
for every (p,q) € E}. A class K of algebras is a weak variety iff K =
Mod, (Eq,,(K)). An algebraic characterization of weak varieties is shown
in [1].

A set I C T(X) is an initial segment iff for every z™ € I, if m € N and
m < n then 2™ € I. A set E C T(X)? is an equational basis of a weak
variety K iff Mod,(E) = K. A set E C T(X)? is a weak equational theory
ifft £ = Eq,,(K) for some class of algebras K; equivalently (see [6]) it is
closed under the following rules:

R1 5 (reflexivity);

~
~

bS]

R2 P2 (symmetry);

R3 PEMLIET2Tn=G f oy, € Dg(p,q), where Dg(p,q) is the

~

pq
smallest initial segment I C T'(X) such that X U {p,q} C I; and
ifrel, f(s)elandr~seFE, then f(r) € I (weak transitivity);

pRq .
R4 flp)=f(q)’

R5 Nq(x/r) for some z € X and r € T'(X) (substitution).

pN
p(z/r)~q
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Weak equational theory E C T(X)? is nontrivial iff there exist p,q € T(X)
such that p # g and p ~ ¢ € E. If Ey,Ey C T(X)?, then Ey - B iff
E, follows from FEj by above rules, equivalently: for every weak equational
theory FE, if B4 C F, then Ey C E. If E is a weak equational theory, then
a subset Ey C F is a basis of E iff Ey is an equational basis of Mod,,(FE),
equivalently: Eq = E. Moreover, if By, Ey C T(X)?, E1 F Ey and Ey - Ey,
then F; is a basis of F iff F5 is a basis of FE.

Definition 1.3. An equation p ~ q € T(X)? is regular if and only if p = 2"
and g = x" for some x € X and n,m € N. A weak equational theory F is
regular if and only if every equation in F is regular.

2. REGULAR WEAK EQUATIONAL THEORIES

In this section we prove (Corollary 2.10) that every regular weak equational
theory has a 2-element basis.

Lemma 2.1. Let E be a weak equational theory, n > 1 and k > 0. If
zF ~ 2F e E and m > k, then ™ ~ ™™ € E for every r > 0.

Proof. By rule R5, zF(x /2™ F) ~ 2*+7(x /2™ %) € E, so 2™ ~ 2™ € E,
which proves lemma for » = 1. Suppose that we prove lemma for r < [.
Let zF ~ 2™ € E and m > k. Then 2™ ~ 2™t ¢ E and ™" ~
¢ B o(since m 4 In > k). By rule R3, 2™ ~ 2™t ¢ E| so
2™ s gt ¢ B [

Lemma 2.2. Let E be a weak equational theory, k,n,m > 0. If zF ~
2kt € B and o* ~ 2¥t™ € E, then ¥ ~ zFtntm ¢ B,

Proof. By Lemma 2.1 zFt™ ~ zF+™m+" ¢ E (since 2% ~ 2**" € F and
k +m > k). Therefore, 2* ~ z¢*™ ¢ E and z¢t™ ~ gFtn+t™ ¢ E. By rule
R3, zF ~ aFtntm ¢ B, [

Corollary 2.3. Let E be a weak equational theory. Letl > 1, k,a;,n; >0
for1 <i<l IfaF~abFtm . zFxzhtm c B, then oF ~ ghtamtam
e k.
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Lemma 2.4. Let E be a weak equational theory, n > 1, k>0 and x € X.
If o ~ 2% € B, p,q > 0 and max(p,q) > k + n, then for every s € N,
x® € Dg(aP, z9).

Proof. Suppose that there exists s € N such that z° ¢ Dg(aP, x%). Let
r = min{s € N:2° ¢ Dg(zP,29)}. Since z = 2° € Dg(aP,2%), we have
r > 0. Moreover, r > p and r > ¢, since 2P, 2% € Dg(2P,z9) and Dg(aP, x?)
is an initial segment. Therefore, r — 1 > max(p,q) > k+n,r—1—-n>k
and, by Lemma 2.1,

xr—l—n ~ xr—l c E,

since zF ~ 2%*" € E. Moreover, 2"~ 17" 2"~! € Dg(aP,z%) by definition
of r and f(2"717") = 2" € Dg(aP,x7), since n > 1. By definition of
Dg(zP,29) (cf. [R3]), f(2" ') = 2" € Dg(2P,29) and we have a contradic-
tion with definition of r. |

Lemma 2.5. Let E be a nontrivial weak equational theory. If r,d >
s >r, kdy >0, 2F ~ 2" ¢ E and 2% ~ z%td ¢ B, then zF
xk—&-sd cE.

—_
-

Q

Proof. There exists @ > 1 such that k + ard > dy. Then zgFtord
ghtardtsd ¢ B by Lemma 2.1, since 2% ~ z%td ¢ E. Moreover, z*
ghtard ghtsd o ghtsdtard ¢ B hy Lemma 2.1, since 2¥ ~ ¢4 ¢ E.
Therefore,

~
~
~
~

mk ~ :Ek-l—ard’xk—i-a'rd ~ :Ek—i-ard—&—sd’l,k—kard—i-sd ~ :L,k:—i-sd cE

and, by Lemma 2.4, gFtard ghtardtsd ¢ pp gk ghtsd) since ¥ ~ 2#+7d ¢
E and max(k,k + sd) = k + sd > k + rd. Hence, by rule R3,
xk ~ karsd cE.

|

Definition 2.6. Let z € X and E be a nontrivial weak equational theory.
Define R,(FE) = {n > 0: there exists k > 0 such that z* ~ 2**" € E}. By
rule R5, R, (E) = Ry(E) for every z,y € X. So, we can write R(E) instead
of Ry (E).
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Lemma 2.7. Let FE be a nontrivial weak equational theory. Then

1. ifni,ng € R(E), then n; +ny € R(E),
2. ifny,ng € R(E) and ny — ng > 0, then ny — ng € R(E),
3. ifn€ R(E) and r > 0, then rn € R(E).

Proof.

1. If ny,ny € R(F), then there exist ki, ky > 0 such that kgt ¢
E and z*2 ~ zF>t72 Let k = k) + k. By Lemma 2.1, zF ~ 2¥t™ ¢ E
and z* ~ zFt"2 ¢ E. Hence, 2¥ ~ 2™+ ¢ E by Lemma 2.2.
Therefore, n; + ng € R(E).

2. If n1,ny € R(F) and n; —ng > 0, then there exist k1, ko > 0 such that
2k~ gkitm e Foand ok x okt Let k= ky + ko. By Lemma 2.1,
zF ~ 2Ftm ¢ B and 2 ~ 2Ft"2 ¢ E. Therefore, 2*t™ ~ 2F ¢ E
and zF ~ zFt™ ¢ E. By rule R3, 2t ~ zFt™ ¢ E. Hence,
zhtne g ghtnet(m—n2) ¢ B and ny —ny € R(E).

3. If n € R(E) and r > 0, then there exists k& > 0 such that ¥ ~ z*+" ¢
E. By Lemma 2.1, 2* ~ 2**™ € E. Hence rn € R(E). n

Corollary 2.8. Let E be a nontrivial weak equational theory. Ifay, ..., an €
R(E), then ged(ay, ..., a,) € R(E).

Proof. Let d = ged(ay, .. .,ay,). Then d =bjay + ...+ bja; +ciy1ai41+ - ..
+cpay, where b; >0 and ¢; <0. By Lemma 2.7, d; = bja1+...+ba; € R(E)
and do = —(¢j41Gi+1 + ... + cpan) € R(E). Hence, d = dy — dy € R(FE) by
Lemma 2.7. [ |

If E is a nontrivial weak equational theory, then a set R(E) is infinite.
Suppose that R(E) = {a1,...,an,...}. Let d, = ged(aq, ..., ay) for n > 1.
Then we have a sequence di > do > ... > 0. Therefore, there exists n > 1
such that d,, = dy41 = .... By Corollary 2.8, d = d,, € R(F) and d =
gcd(R(E)) (i.e. d|k for every k € R(E) and if there exists dyp > 1 such that
dolk for every k € R(E), then d|dy). Moreover, R(E) = {kd € N:k > 0 and
ke N}.
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Lemma 2.9. Let E be a nontrivial weak equational theory. Let d =
gcd(R(E)), = € X and dy = min{k > 0: 2F ~ 21 ¢ E}. Let ky =
min{k > 0: there exists n > k such that 2% ~ 2™ € E}. Let further
lo = min{k > 0: zFo ~ zFo+k ¢ E} and

Ey= {xko ~ xko-&-lo’ 790 ~ xdo-&-d}‘

Then Ey C E and for every weak equational theory E' such that Eqg C E’
and for every y* ~ y™ € E, we have y* ~ y™ € E'.

Proof. Let E' be a weak equational theory such that Fy C E’ and y* ~
y™ € E. We show that y* ~ y™ € E’. By rule R2 (symmetry), we can
assume that m > k. Let m = k + n for some n > 0. We show that
yk’ ~ yk-l—n cE

If n =0, then y* ~ y**" € E' by rule R1.

By rule R5, Ej) = {yko ~ yFotlo ydo ~ ydotdy C B/ 0 E.

Suppose that n > 0. Then n € R(F) and d|n. Hence, there exists r > 1
such that n = rd.

If dy < k, then y* ~ y**"¢ ¢ E’ by Lemma 2.1, since y% = ydotd ¢ [/

Suppose that dy > k. Since kg < k by definition of ky, we have
ko < k < dy.

We know that [y € R(E). Hence, there exists ro > 1 such that Iy = rod.
Suppose that » > ry. Then y* ~ y*t ¢ E’' by Lemma 2.1, since y*0 ~
yFotlo ¢ E' and ko < k. Therefore, y* ~ y**t7® ¢ E' by Lemma 2.5, since
Yk~ yktrod ¢ BYoydo a0 ydotd ¢ B and r > ry. Hence, y* ~ y*t" € F,
since n = rd.

Suppose that rg > r. We show that k +n > dy + d.

Suppose that k +n < dy + d. Then dg — 1 +d > k +n and ydo—14nd ¢
Dp(y%~1 ydo=1+d) by Lemma 2.4, since dy—1-+d > k+n. By Lemma 2.1, we
have y%o—1 x~ ydo—14nd ¢ B and ydo—1+nd ~ ydo—1+d ¢ B gince dy — 1 > k,
do—14+d >dyp, n—12>0, y* ~ ¢y¥" € E and y% ~ ybtd ¢ E.
We have

ydo—l ~ ydo—l—‘rnd’ydo—l-i-nd ~ yd0—1+d c E
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and ydo—14nd ¢ Dp(ydo—1 ydo=1+d) By rule R3, we obtain ydo~1 ~ ydo—1+d ¢
F and we have a contradiction with definition of dg.

We know that y* ~ y*t70d ¢ E' since k > ko and y*0 ~ yFotrod —
yho ~ ykotlo ¢ B/ C E'. Moreover, k +rd = k+n > dy +d > dy and
k+rod— (k+7rd) = (ro—r)d > 0 implies y**+"¢ ~ y¥*+70d ¢ E' by Lemma, 2.1.
We have y*+70% € Dpi(y*, y*™), by Lemma 2.4, since k +n > do + d and
y¥ ~ ydotd ¢ Ff C E'. Therefore,

k .k d k d .  k+rd /! k d k k+rd
yroa yttTod yFTod g TS e B R HT0% € D (yF, gt )

and, by rule R3, y* ~ yfrd = yF ~ yF+n c B ]

Corollary 2.10. Every reqular weak equational theory E has a 2-element
basis.

Proof. If E is not nontrivial weak equational theory, then E = {(p,p) €
T(X)%pe T(X)} and every 2-element subset of E is a basis of E.

Suppose that E is nontrivial regular weak equational theory. Let d =
gcd(R(E)) € R(E). Fix x € X. Then the set {k > 0: 2% ~ 2%+ € E} is not
empty. Let dg = min{k > 0:2% ~ 2**4 ¢ E}. Let kg = min{k > 0: there
exists n> k such that 2% ~ 2™ € E}. Let ly=min{k > 0: 2*0 ~ ghot+ ¢ E}.
We show that

Ey= {mko ~ xkoHo’ 290 ~ xdo+d}

is a basis of E.

We know that Ey C E by definitions of dy, ly, ko.
Let E' be a weak equational theory such that Ey C E’. We show that
E C E'. Let z2F ~ y™ € E. Then z = y, since E is regular and, by
Lemma 2.9, we have y* ~ y™ € E'. Therefore, E C E' and Ej is a
basis of F. [

3. MAIN THEOREM

Lemma 3.1. Let E be a weak equational theory, p,q € N, x,y € X and
4y IfaP =yl € E, p' >pand ¢ > q, then 2? ~y? € E.
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Proof. If 2P ~ y? € E, then o (z/2? ~P) ~ yi(z /2P P) = 2P ~ y? € E by
rule R5. Hence, ¥ (y/y? %) ~ y9(y/y? 1) = 2 ~ 47 € E by rule R5. =

Lemma 3.2. Let E be a weak equational theory, n > 1, z,y € X andx # y.
Let p,q,k € N. If oF ~ oF" 2P ~ y9 € E, then 2P ~ y**" € E.

Proof. There exists a > 1 such that £ + an > p. By Lemma 3.1,
zhtan ~ 49 ¢ E. Hence y*T% ~ ¢4 € E by rule R5 and y? ~ y*t9" ¢ E
by rule R2.

By rule R5, y* ~ " € E (since 2% ~ 2%t € E). Therefore, 3" ~
y*+ ¢ E by Lemma 2.1, since k +n >k, k+an =k +n+ (a — 1)n and
a —1 > 0. By rule R2, we have 3yt ~ ¢F+7 ¢ E.

We have

2P~ yq’ yq ~ yk—i—an7 yk:—i-an ~ yk+n cFE
and y?, 4"+ € Dg(2P, y*™™) by Lemma 2.4, since y* ~ y**" € E. Hence,
2P ~ y*t" € E by rule R3. |

Lemma 3.3. Let E be a weak equational theory, v,y € X and x # y. If
m<l,z"~y*cEandz™ ~y' € E, then 2" ~ y' € E.

Proof. By rule R5, 2™ ~ z! € E. Hence, 2" ~ y' by Lemma 3.2, since
l=m+(l—m)andl—m > 1. |

Theorem 3.4. Every monounary weak variety of partial algebras has an at
most 3-element equational basts.

Proof. Let V be a weak monounary variety and E = Eq,, (V) C Tr(X)2.
We show that E has at most 3-element basis.

If £ is a trivial weak equational theory, then E = {(p,p) € T(X)?:
p € T(X)} and every 3-element subset of E is a basis of E.

If FE is a regular weak equational theory, then F has a 2-element basis
by Corollary 2.10.

Suppose that E is not regular.  Then there exist z,y € X,
p,q € N such that 27 ~ y? € F and ¢ # y. By Lemma 3.1,
gmax(Pa) x ymax(p9) ¢ F and the set {n > 0: 2™ ~ y" € E} is not empty.
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Let m = min{n > 0:2" = y" € E} and d=gcd(R(F)) € R(E).

Observe that the set {k > 0: 2¥ ~ 2¢*? ¢ E} is not empty. Let
do = min{k > 0: 2* ~ 2F*4 € E} and let kg = min{k > 0: there exists n > k
such that z¥ ~ 2™ € E}. Let further Iy = min{k > 0: z*o ~ ghotk ¢ E}
k1 = min{k > 0: there exists n > k such that 2* ~ y" € E} and let
l1 = min{k > 0: 2} ~ yF1*+* ¢ B}

We show that

El — {$k0 ~ $k0+lojxd0 ~ $d0+d,l‘m ~ ym7$k1 ~ yk1+ll}

is a basis of E.

Obviously, 1 C E by definitions of [y, dy, .

Let E’ be a weak equational theory such that £; C E'. Let 2P ~t1 € E
for some z,t € X and p,q > 0. If 2 = ¢, then 2P ~ t?7 € E' by Lemma 2.9.
Suppose that z # t. By rule R5, 2P ~ y? € E. By rule R2 (symmetry), we
can assume that g > p.

1. If ¢ = p, then m < g and 2™ ~ y™ € Fy; C E’. Hence, 2 ~ y? € E’
by Lemma 3.1 and 2P ~ t? € E’ by rule R5.

2. If ¢ > p, then 2% ~ y? € E by Lemma 3.3, since 2 ~ yF1th ¢
E, C E. Hence, k1 + 1 < ¢ by definition of [;. Moreover, k1 < p
by definition of k1. Therefore, 2P ~ y? € E’ by Lemma 3.1, since
zh ~yfth e By C Bk <pand ky +1; <q. Hence, 2P ~ t9 € F'
by rule R5.

We proved that £ C E' and F is a 4-element basis of F.

Now we show some connections between exponents of equations in Fj.

By Lemma 3.1, 2™ ~ y™*! € E, since 2™ ~ y™ € E; C E. Hence,
2™ ~ ™! € E by rule R5. Therefore, 1 € R(FE) and d = 1. Moreover,
k1 < m by definition of ki, since 2™ ~ y™*+! € E.

We show that m < k1 +li <m+landm<dyp+1<m+ 1.

a) By Lemma 3.1, 2M1+h ~ yf1+h ¢ B (since ¥ ~ y*1+1 € E). Hence,
m < ki + {1 by definition of m.
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b)

c)

d)

By Lemma 3.1, 2™ ~ y™*! ¢ E, since 2™ ~ y™ € E. Hence, 2™ ~
™+l € E by rule R5. Therefore, z¥' ~ y™*! € E by Lemma 3.2,
since zF1 ~ ylel € FE. Hence, k1 +11 < m + 1 by definition of ;.

We know that 2™ ~ 2™*! € E. Hence, dy < m by definition of dy,
since d = 1.

By Lemma 3.2, 2™ ~ y%t! ¢ E, since 2™ ~ y™ € E and 2% ~
z%+l ¢ E. By rule R5, y™ ~ 2%+ ¢ E and 2%+ ~ y™ € E by rule
R2. Therefore, z%+t! ~ ydo+! by Lemma 3.2, since 2%+ ~ y™ ¢ F
and 2% ~ g%+l ¢ E. Hence, m < dy + 1 by definition of m.

Consider the following cases:

1.

m = ki + 1. Then Ef = By \ {2™ ~ y™} is a 3-element basis for E,
because {zF ~ y"1th} - {2 ~ 3™} by Lemma 3.1, zF ~ yF1+h ¢
E} and E - Ey.

. m+ 1=k +1; and k&; = m. Then E% = El\{mkl ~ yk1+l1} is a 3-

element basis for F, because {2 ~ y™} I 2*1 ~ y*1+1 by Lemma 3.1,
™~ y™ € E? and E? - Ej.

.m+ 1=k +11, ki <m and m = dy. Then E} = F; \ {9 ~ gl+1}

is a 3-element basis for E, because {2™ ~ y™} - {a™ ~ y™ 1}
{z% ~ x4+ by Lemma 3.1 and rule R5 (dy = m), 2™ ~ y™ € E}
and E5 + E.

.m~+1 =k +1l, kt < mand m = dy + 1. WeshowthatE%:

{zho 5 ghotlo pdo ~ pdotl gk ~ ym1 is a 3-element basis of E. By
Lemma 3.1, {zF' ~ y™} F {2™ ~ y™, 2" ~ yF1T0} since k) < m
and m < m+ 1=k +1;. Hence, Ei1 F F;. By Lemma 3.2, {xdo ~
pdotl ght ~ gfithiy - Lok & 9ymY since m = do + 1. Hence, Ey F Ef
and E{ is a 3-element basis of E. [ ]

Example 3.5. The weak monounary variety V = Mod, ({z? ~ ¢?,z
y3, 20 ~ 23}) has no 2-element basis.
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Proof. Define the following monounary algebras (digits denote elements of
the support and arrows show how the wunique partial 1-ary
operation acts):

y
Al 0 1, Agfo >1V’
14 y
Ay 0 1, A0 1 =2,
2 0 >1 >2
A
AE): 7A6:
4
0 1 3 >4 )

It is easy to see that A; € V and A, € V. Let E = Eq,, (V). Observe that

(%) Py ¢ E for every n € N,

because A, ¥ 20 =~ y" for every n € N (since 2°(0) = 0 # 1 = y*(1)) and
A, € V. Hence, any basis of E cannot contain an equation z° ~ y" for some
n € N.

Suppose that Fjy is a 2-element basis of E. Consider the following three
cases:

1. Ey has two not regular equation. Then we can assume that Fy =
{a" ~ y™, 2 ~ ¢!} for some z,y € X, x # y and n,m,k,l € N.
Moreover n, m, k,l > 1 by (x). Therefore, Ay F Ey, since Ay F 2P ~ y?
for every p,q > 1. Hence, A, € V, since Ej is a basis of E. But A, ¢ V,
since Ay ¥ 20 ~ 23 ((2°)42(0) = 0 # 1 = (2%)42(0)), a contradiction.

2. Ep has exactly one regular equation. Then we can assume that Ey =
{a" ~ 2"tk 2™ ~ ¢y for some z,y € X, x # y and n, k,m,l € N.
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If k = 0, then B} = {2™ ~ y™*'} is a basis of E, which is impossible
by the previous case. Thus k& > 1. Moreover, m > 1 by (x). Then
Ay Ea™ ~ gyt and Ay ¢ V. Therefore, Ay ¥ 2™ ~ 2"t* since Ej is
a basis of F. But Ay F aP ~ 29 for p,q > 1. Hence n = 0.

Observe that A, € V, Ay ¥ 20 ~ 2! ((29)41(0) = 0 # 1 =
(x1)44(0)) and A, ¥ 2° =~ 22 ((20)44(0) = 0 # 2 = (22)44(0)).
Hence k > 3. Then Ay F 20 ~ 2% and Ay ¢ V, since A ¥ x! ~ o3
()45 (1) =2 # 0 = (y°)45(0)). Thus Ay ¥ 2™ ~ 3™ since Ey is a
basis of E. But As F 2P ~ y? for p,q > 2. Hence m = 1.

Moreover, Ay € V, Ay ¥ ' ~ y' ((21)24(0) =1 # 2 = (y')A4(1))
and Ay ¥ 2! ~ 9 ((1)44(0) = 1 # 2 = (y*)24(0)). Hence [ > 2.
Therefore, Ey = {2% ~ 2% 2! ~ '™}, k > 3 and | > 2. Then A4 F E
and Ag € V, since Ej is a basis of E. But Ag ¢ V, since Ag ¥ 22 ~ y?
((22)4s(0) = 2 # 5 = (y*)4s(3)), a contradiction.

3. Ep has two regular equation. Then we can assume that Fy = {z" ~
2™ xF ~ 2!} for some x € X and n,m, k,l € N. Therefore, A; F
and A4 € V, since Ej is a basis of E. But Ay ¢ V, since A; ¥ 22 ~ y?
((22)43(0) = 0 # 1 = (y*)43(1)), a contradiction. |

From this example we know that there exists a weak monounary variety
with 3-element basis, which has no 2-element basis.
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