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Abstract

It is well-known that every monounary variety of total algebras has
one-element equational basis (see [5]). In my paper I prove that every
monounary weak variety has at most 3-element equational basis. I give
an example of monounary weak variety having 3-element equational
basis, which has no 2-element equational basis.

Keywords: partial algebra, weak equation, weak variety, regular equa-
tion, regular weak equational theory, monounary algebras.

2000 AMS Mathematics Subject Classifications: 08A55, 08B05.

1. Introduction

Weak equations and varieties were studied by H. Höft [4]. An algebraic
characterization of weak varieties, under a condition named “conflict free”,
is shown in [7]. A completeness theorem for weak equational logic was given
by L. Rudak in [6]. G. Bińczak [1] characterized weak varieties as classes
closed under homomorphic images and mixed products.

Basic definitions and facts about partial algebras can be found in [3]
(Chapter 2) and in [2].

In this section we set up notation and terminology.



88 G. Bińczak

Definition 1.1. Let n be a natural number and A a set. A relation
f ⊆ An × A is called an n-ary partial operation in the set A if
and only if for every a ∈ An, b, c ∈ A, if (a, b) ∈ f and (a, c) ∈ f ,
then b = c. If f is an n-ary partial operation in a set A, then
dom(f) = {a ∈ An: ∃b∈A(a, b) ∈ f}.

The notation f(a) = b means that (a, b) ∈ f .

Definition 1.2. A pair (F, η) is called a type or (signature) (of algebras), if
F is an arbitrary set and η: F → ω. A type (F, η) is monounary if and only
if a set F has exactly one element f and η(f) = 1. Let (F, η) be a type.
Then a pair A = (A, (fA)f∈F ) is called partial algebra of type (F, η) if and
only if A 6= ∅ and, for every f ∈ F , fA is an η(f)-ary partial operation in
A. We call A the support of A. A partial algebra A = (A, (fA)f∈F ) is called
monounary if and only if it is of some monounary type.

In the sequel we fix a monounary type (F, η) (F = {f}) and we will
consider only partial algebras of this type.

Let X be a countable set of variables. The usual monounary total term
algebra generated by a set X will be denoted by T (X). Every monounary
term is of the form xn = f . . . f︸ ︷︷ ︸

n times

x, where x ∈ X, n is a natural number and

f is an operation symbol. If n = 0, then xn denotes x. If A = (A, fA)
is a monounary partial algebra and p = f . . . f︸ ︷︷ ︸

n times

x = xn is a term, then the

term operation pA is a monounary partial operation in the set A such that
pA(a) = f(f(. . . f︸ ︷︷ ︸

n times

(a) . . .)) if a ∈ dom(pA). The domain of (xn)A is defined

inductively:

dom((x0)A) = A and

dom
(
(xn)A

)
= {a ∈ A : a ∈ dom

((
xn−1

)A
)

and
(
xn−1

)A (a) ∈ dom
(
fA

)}.

If p, r ∈ T (X), z ∈ X, p = xk and r = yn for some x, y ∈ X and k, n ∈ N,
then

p(z/r) =
yk+n, if z = x,

p, if z 6= x.
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A pair of terms (p, q) ∈ T (X)2 (where p = xk and q = ym for some x, y ∈ X
and k, m ∈ N) is a weak equation in a partial algebra A (A ² p ≈ q) iff for
every a, b ∈ A,

if x = y, then a ∈ dompA ∩ domqA implies pA(a) = qA(a)

and

if x 6= y, then a ∈ dom
(
pA

)
and b ∈ dom

(
qA

)
implies pA(a) = qA(b).

Instead of (p, q) we will write p ≈ q.
Let E ⊆ T (X)2, K be a class of algebras and B ∈ K. We write:

K ² p ≈ q iff for every A ∈ K, A ² p ≈ q,

B ² E iff for every p ≈ q ∈ E, B ² p ≈ q.

Let Eqw(K)= {(p, q) ∈ T (X)2: K ² p ≈ q} and Modw(E)= {A: A ² p ≈ q
for every (p, q) ∈ E}. A class K of algebras is a weak variety iff K =
Modw(Eqw(K)). An algebraic characterization of weak varieties is shown
in [1].

A set I ⊆ T (X) is an initial segment iff for every xn ∈ I, if m ∈ N and
m < n then xm ∈ I. A set E ⊆ T (X)2 is an equational basis of a weak
variety K iff Modw(E) = K. A set E ⊆ T (X)2 is a weak equational theory
iff E = Eqw(K) for some class of algebras K; equivalently (see [6]) it is
closed under the following rules:

R1 p≈p (reflexivity);

R2 p≈q
q≈p (symmetry);

R3 p≈r1,r1≈r2,...,rn≈q
p≈q if r1, . . . , rn ∈ DE(p, q), where DE(p, q) is the

smallest initial segment I ⊆ T (X) such that X ∪ {p, q} ⊆ I; and
if r ∈ I, f(s) ∈ I and r ≈ s ∈ E, then f(r) ∈ I (weak transitivity);

R4 p≈q
f(p)≈f(q) ;

R5 p≈q
p(x/r)≈q(x/r) for some x ∈ X and r ∈ T (X) (substitution).
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Weak equational theory E ⊆ T (X)2 is nontrivial iff there exist p, q ∈ T (X)
such that p 6= q and p ≈ q ∈ E. If E1, E2 ⊆ T (X)2, then E1 ` E2 iff
E2 follows from E1 by above rules, equivalently: for every weak equational
theory E, if E1 ⊆ E, then E2 ⊆ E. If E is a weak equational theory, then
a subset E0 ⊆ E is a basis of E iff E0 is an equational basis of Modw(E),
equivalently: E0 ` E. Moreover, if E1, E2 ⊆ T (X)2, E1 ` E2 and E2 ` E1,
then E1 is a basis of E iff E2 is a basis of E.

Definition 1.3. An equation p ≈ q ∈ T (X)2 is regular if and only if p = xn

and q = xm for some x ∈ X and n,m ∈ N . A weak equational theory E is
regular if and only if every equation in E is regular.

2. Regular weak equational theories

In this section we prove (Corollary 2.10) that every regular weak equational
theory has a 2-element basis.

Lemma 2.1. Let E be a weak equational theory, n ≥ 1 and k ≥ 0. If
xk ≈ xk+n ∈ E and m ≥ k, then xm ≈ xm+rn ∈ E for every r ≥ 0.

Proof. By rule R5, xk(x/xm−k) ≈ xk+n(x/xm−k) ∈ E, so xm ≈ xm+n ∈ E,
which proves lemma for r = 1. Suppose that we prove lemma for r ≤ l.
Let xk ≈ xk+n ∈ E and m ≥ k. Then xm ≈ xm+ln ∈ E and xm+ln ≈
xm+ln+n ∈ E (since m + ln ≥ k). By rule R3, xm ≈ xm+ln+n ∈ E, so
xm ≈ xm+(l+1)n ∈ E.

Lemma 2.2. Let E be a weak equational theory, k, n, m ≥ 0. If xk ≈
xk+n ∈ E and xk ≈ xk+m ∈ E, then xk ≈ xk+n+m ∈ E.

Proof. By Lemma 2.1 xk+m ≈ xk+m+n ∈ E (since xk ≈ xk+n ∈ E and
k + m ≥ k). Therefore, xk ≈ xk+m ∈ E and xk+m ≈ xk+n+m ∈ E. By rule
R3, xk ≈ xk+n+m ∈ E.

Corollary 2.3. Let E be a weak equational theory. Let l ≥ 1, k, ai, ni ≥ 0
for 1 ≤ i ≤ l. If xk ≈ xk+n1 , . . . , xk ≈ xk+nl ∈ E, then xk ≈ xk+a1n1+...alnl

∈ E.



Equational bases for weak monounary varieties 91

Lemma 2.4. Let E be a weak equational theory, n ≥ 1, k ≥ 0 and x ∈ X.
If xk ≈ xk+n ∈ E, p, q ≥ 0 and max(p, q) ≥ k + n, then for every s ∈ N ,
xs ∈ DE(xp, xq).

Proof. Suppose that there exists s ∈ N such that xs /∈ DE(xp, xq). Let
r = min{s ∈ N : xs /∈ DE(xp, xq)}. Since x = x0 ∈ DE(xp, xq), we have
r > 0. Moreover, r > p and r > q, since xp, xq ∈ DE(xp, xq) and DE(xp, xq)
is an initial segment. Therefore, r − 1 ≥ max(p, q) ≥ k + n, r − 1 − n ≥ k
and, by Lemma 2.1,

xr−1−n ≈ xr−1 ∈ E,

since xk ≈ xk+n ∈ E. Moreover, xr−1−n, xr−1 ∈ DE(xp, xq) by definition
of r and f(xr−1−n) = xr−n ∈ DE(xp, xq), since n ≥ 1. By definition of
DE(xp, xq) (cf. [R3]), f(xr−1) = xr ∈ DE(xp, xq) and we have a contradic-
tion with definition of r.

Lemma 2.5. Let E be a nontrivial weak equational theory. If r, d ≥ 1,
s ≥ r, k, d0 ≥ 0, xk ≈ xk+rd ∈ E and xd0 ≈ xd0+d ∈ E, then xk ≈
xk+sd ∈ E.

Proof. There exists a ≥ 1 such that k + ard > d0. Then xk+ard ≈
xk+ard+sd ∈ E, by Lemma 2.1, since xd0 ≈ xd0+d ∈ E. Moreover, xk ≈
xk+ard, xk+sd ≈ xk+sd+ard ∈ E, by Lemma 2.1, since xk ≈ xk+rd ∈ E.
Therefore,

xk ≈ xk+ard, xk+ard ≈ xk+ard+sd, xk+ard+sd ≈ xk+sd ∈ E

and, by Lemma 2.4, xk+ard, xk+ard+sd ∈ DE(xk, xk+sd), since xk ≈ xk+rd ∈
E and max(k, k + sd) = k + sd ≥ k + rd. Hence, by rule R3,
xk ≈ xk+sd ∈ E.

Definition 2.6. Let x ∈ X and E be a nontrivial weak equational theory.
Define Rx(E) = {n > 0: there exists k ≥ 0 such that xk ≈ xk+n ∈ E}. By
rule R5, Rx(E) = Ry(E) for every x, y ∈ X. So, we can write R(E) instead
of Rx(E).
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Lemma 2.7. Let E be a nontrivial weak equational theory. Then

1. if n1, n2 ∈ R(E), then n1 + n2 ∈ R(E),

2. if n1, n2 ∈ R(E) and n1 − n2 > 0, then n1 − n2 ∈ R(E),

3. if n ∈ R(E) and r ≥ 0, then rn ∈ R(E).

Proof.

1. If n1, n2 ∈ R(E), then there exist k1, k2 ≥ 0 such that xk1 ≈ xk1+n1 ∈
E and xk2 ≈ xk2+n2 . Let k = k1 +k2. By Lemma 2.1, xk ≈ xk+n1 ∈ E
and xk ≈ xk+n2 ∈ E. Hence, xk ≈ xk+n1+n2 ∈ E by Lemma 2.2.
Therefore, n1 + n2 ∈ R(E).

2. If n1, n2 ∈ R(E) and n1−n2 > 0, then there exist k1, k2 ≥ 0 such that
xk1 ≈ xk1+n1 ∈ E and xk2 ≈ xk2+n2 . Let k = k1 + k2. By Lemma 2.1,
xk ≈ xk+n1 ∈ E and xk ≈ xk+n2 ∈ E. Therefore, xk+n2 ≈ xk ∈ E
and xk ≈ xk+n1 ∈ E. By rule R3, xk+n2 ≈ xk+n1 ∈ E. Hence,
xk+n2 ≈ xk+n2+(n1−n2) ∈ E and n1 − n2 ∈ R(E).

3. If n ∈ R(E) and r ≥ 0, then there exists k ≥ 0 such that xk ≈ xk+n ∈
E. By Lemma 2.1, xk ≈ xk+rn ∈ E. Hence rn ∈ R(E).

Corollary 2.8. Let E be a nontrivial weak equational theory. If a1, . . . , an ∈
R(E), then gcd(a1, . . . , an) ∈ R(E).

Proof. Let d = gcd(a1, . . . , an). Then d = b1a1 + . . .+ biai + ci+1ai+1 + . . .
+cnan, where bj≥0 and cj <0. By Lemma 2.7, d1 = b1a1+. . .+biai ∈ R(E)
and d2 = −(ci+1ai+1 + . . . + cnan) ∈ R(E). Hence, d = d1 − d2 ∈ R(E) by
Lemma 2.7.

If E is a nontrivial weak equational theory, then a set R(E) is infinite.
Suppose that R(E) = {a1, . . . , an, . . .}. Let dn = gcd(a1, . . . , an) for n ≥ 1.
Then we have a sequence d1 ≥ d2 ≥ . . . > 0. Therefore, there exists n ≥ 1
such that dn = dn+1 = . . .. By Corollary 2.8, d = dn ∈ R(E) and d =
gcd(R(E)) (i.e. d|k for every k ∈ R(E) and if there exists d0 ≥ 1 such that
d0|k for every k ∈ R(E), then d|d0). Moreover, R(E) = {kd ∈ N : k > 0 and
k ∈ N}.
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Lemma 2.9. Let E be a nontrivial weak equational theory. Let d =
gcd(R(E)), x ∈ X and d0 = min{k ≥ 0: xk ≈ xk+d ∈ E}. Let k0 =
min{k ≥ 0: there exists n > k such that xk ≈ xn ∈ E}. Let further
l0 = min{k ≥ 0: xk0 ≈ xk0+k ∈ E} and

E0 = {xk0 ≈ xk0+l0 , xd0 ≈ xd0+d}.

Then E0 ⊆ E and for every weak equational theory E′ such that E0 ⊆ E′

and for every yk ≈ ym ∈ E, we have yk ≈ ym ∈ E′.

Proof. Let E′ be a weak equational theory such that E0 ⊆ E′ and yk ≈
ym ∈ E. We show that yk ≈ ym ∈ E′. By rule R2 (symmetry), we can
assume that m ≥ k. Let m = k + n for some n ≥ 0. We show that
yk ≈ yk+n ∈ E′.

If n = 0, then yk ≈ yk+n ∈ E′ by rule R1.
By rule R5, E′

0 = {yk0 ≈ yk0+l0 , yd0 ≈ yd0+d} ⊆ E′ ∩ E.
Suppose that n > 0. Then n ∈ R(E) and d|n. Hence, there exists r ≥ 1

such that n = rd.
If d0 ≤ k, then yk ≈ yk+rd ∈ E′ by Lemma 2.1, since yd0 ≈ yd0+d ∈ E′.
Suppose that d0 > k. Since k0 ≤ k by definition of k0, we have

k0 ≤ k < d0.
We know that l0 ∈ R(E). Hence, there exists r0 ≥ 1 such that l0 = r0d.

Suppose that r ≥ r0. Then yk ≈ yk+l0 ∈ E′ by Lemma 2.1, since yk0 ≈
yk0+l0 ∈ E′ and k0 ≤ k. Therefore, yk ≈ yk+rd ∈ E′ by Lemma 2.5, since
yk ≈ yk+r0d ∈ E′, yd0 ≈ yd0+d ∈ E′ and r ≥ r0. Hence, yk ≈ yk+n ∈ E′,
since n = rd.

Suppose that r0 > r. We show that k + n ≥ d0 + d.
Suppose that k + n < d0 + d. Then d0 − 1 + d ≥ k + n and yd0−1+nd ∈

DE(yd0−1, yd0−1+d) by Lemma 2.4, since d0−1+d ≥ k+n. By Lemma 2.1, we
have yd0−1 ≈ yd0−1+nd ∈ E and yd0−1+nd ≈ yd0−1+d ∈ E, since d0 − 1 ≥ k,
d0 − 1 + d ≥ d0, n − 1 ≥ 0, yk ≈ yk+n ∈ E and yd0 ≈ yd0+d ∈ E.
We have

yd0−1 ≈ yd0−1+nd, yd0−1+nd ≈ yd0−1+d ∈ E
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and yd0−1+nd ∈ DE(yd0−1, yd0−1+d). By rule R3, we obtain yd0−1 ≈ yd0−1+d ∈
E and we have a contradiction with definition of d0.

We know that yk ≈ yk+r0d ∈ E′, since k ≥ k0 and yk0 ≈ yk0+r0d =
yk0 ≈ yk0+l0 ∈ E′

0 ⊆ E′. Moreover, k + rd = k + n ≥ d0 + d > d0 and
k+r0d−(k+rd) = (r0−r)d ≥ 0 implies yk+rd ≈ yk+r0d ∈ E′ by Lemma 2.1.
We have yk+r0d ∈ DE′(yk, yk+n), by Lemma 2.4, since k + n ≥ d0 + d and
yd0 ≈ yd0+d ∈ E′

0 ⊆ E′. Therefore,

yk ≈ yk+r0d, yk+r0d ≈ yk+rd ∈ E′, yk+r0d ∈ DE′(yk, yk+rd)

and, by rule R3, yk ≈ yk+rd = yk ≈ yk+n ∈ E′.

Corollary 2.10. Every regular weak equational theory E has a 2-element
basis.

Proof. If E is not nontrivial weak equational theory, then E = {(p, p) ∈
T (X)2: p ∈ T (X)} and every 2-element subset of E is a basis of E.

Suppose that E is nontrivial regular weak equational theory. Let d =
gcd(R(E)) ∈ R(E). Fix x ∈ X. Then the set {k ≥ 0:xk ≈ xk+d ∈ E} is not
empty. Let d0 = min{k ≥ 0:xk ≈ xk+d ∈ E}. Let k0 = min{k ≥ 0: there
exists n>k such that xk ≈ xn ∈ E}. Let l0 =min{k ≥ 0: xk0 ≈ xk0+k ∈ E}.
We show that

E0 = {xk0 ≈ xk0+l0 , xd0 ≈ xd0+d}

is a basis of E.
We know that E0 ⊆ E by definitions of d0, l0, k0.

Let E′ be a weak equational theory such that E0 ⊆ E′. We show that
E ⊆ E′. Let zk ≈ ym ∈ E. Then z = y, since E is regular and, by
Lemma 2.9, we have yk ≈ ym ∈ E′. Therefore, E ⊆ E′ and E0 is a
basis of E.

3. Main theorem

Lemma 3.1. Let E be a weak equational theory, p, q ∈ N , x, y ∈ X and
x 6= y. If xp ≈ yq ∈ E, p′ ≥ p and q′ ≥ q, then xp′ ≈ yq′ ∈ E.
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Proof. If xp ≈ yq ∈ E, then xp(x/xp′−p) ≈ yq(x/xp′−p) = xp′ ≈ yq ∈ E by
rule R5. Hence, xp′(y/yq′−q) ≈ yq(y/yq′−q) = xp′ ≈ yq′ ∈ E by rule R5.

Lemma 3.2. Let E be a weak equational theory, n ≥ 1, x, y ∈ X and x 6= y.
Let p, q, k ∈ N . If xk ≈ xk+n, xp ≈ yq ∈ E, then xp ≈ yk+n ∈ E.

Proof. There exists a ≥ 1 such that k + an > p. By Lemma 3.1,
xk+an ≈ yq ∈ E. Hence yk+an ≈ yq ∈ E by rule R5 and yq ≈ yk+an ∈ E
by rule R2.

By rule R5, yk ≈ yk+n ∈ E (since xk ≈ xk+n ∈ E). Therefore, yk+n ≈
yk+an ∈ E by Lemma 2.1, since k + n ≥ k, k + an = k + n + (a − 1)n and
a− 1 ≥ 0. By rule R2, we have yk+an ≈ yk+n ∈ E.
We have

xp ≈ yq, yq ≈ yk+an, yk+an ≈ yk+n ∈ E

and yq, yk+an ∈ DE(xp, yk+n) by Lemma 2.4, since yk ≈ yk+n ∈ E. Hence,
xp ≈ yk+n ∈ E by rule R3.

Lemma 3.3. Let E be a weak equational theory, x, y ∈ X and x 6= y. If
m < l, xn ≈ yk ∈ E and xm ≈ yl ∈ E, then xn ≈ yl ∈ E.

Proof. By rule R5, xm ≈ xl ∈ E. Hence, xn ≈ yl by Lemma 3.2, since
l = m + (l −m) and l −m ≥ 1.

Theorem 3.4. Every monounary weak variety of partial algebras has an at
most 3-element equational basis.

Proof. Let V be a weak monounary variety and E = Eqw(V ) ⊆ TF (X)2.
We show that E has at most 3-element basis.

If E is a trivial weak equational theory, then E = {(p, p) ∈ T (X)2:
p ∈ T (X)} and every 3-element subset of E is a basis of E.

If E is a regular weak equational theory, then E has a 2-element basis
by Corollary 2.10.

Suppose that E is not regular. Then there exist x, y ∈ X,
p, q ∈ N such that xp ≈ yq ∈ E and x 6= y. By Lemma 3.1,
xmax(p,q) ≈ ymax(p,q) ∈ E and the set {n ≥ 0: xn ≈ yn ∈ E} is not empty.
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Let m = min{n ≥ 0:xn ≈ yn ∈ E} and d=gcd(R(E)) ∈ R(E).
Observe that the set {k ≥ 0: xk ≈ xk+d ∈ E} is not empty. Let

d0 = min{k ≥ 0: xk ≈ xk+d ∈ E} and let k0 = min{k ≥ 0: there exists n > k
such that xk ≈ xn ∈ E}. Let further l0 = min{k ≥ 0: xk0 ≈ xk0+k ∈ E},
k1 = min{k ≥ 0: there exists n ≥ k such that xk ≈ yn ∈ E} and let
l1 = min{k > 0: xk1 ≈ yk1+k ∈ E}.

We show that

E1 = {xk0 ≈ xk0+l0 , xd0 ≈ xd0+d, xm ≈ ym, xk1 ≈ yk1+l1}

is a basis of E.
Obviously, E1 ⊆ E by definitions of l1, d0, l0.
Let E′ be a weak equational theory such that E1 ⊆ E′. Let zp ≈ tq ∈ E

for some z, t ∈ X and p, q ≥ 0. If z = t, then zp ≈ tq ∈ E′ by Lemma 2.9.
Suppose that z 6= t. By rule R5, xp ≈ yq ∈ E. By rule R2 (symmetry), we
can assume that q ≥ p.

1. If q = p, then m ≤ q and xm ≈ ym ∈ E1 ⊆ E′. Hence, xp ≈ yq ∈ E′

by Lemma 3.1 and zp ≈ tq ∈ E′ by rule R5.

2. If q > p, then xk1 ≈ yq ∈ E by Lemma 3.3, since xk1 ≈ yk1+l1 ∈
E1 ⊆ E. Hence, k1 + l1 ≤ q by definition of l1. Moreover, k1 ≤ p
by definition of k1. Therefore, xp ≈ yq ∈ E′ by Lemma 3.1, since
xk1 ≈ yk1+l1 ∈ E1 ⊆ E′, k1 ≤ p and k1 + l1 ≤ q. Hence, zp ≈ tq ∈ E′

by rule R5.

We proved that E ⊆ E′ and E1 is a 4-element basis of E.
Now we show some connections between exponents of equations in E1.
By Lemma 3.1, xm ≈ ym+1 ∈ E, since xm ≈ ym ∈ E1 ⊆ E. Hence,

xm ≈ xm+1 ∈ E by rule R5. Therefore, 1 ∈ R(E) and d = 1. Moreover,
k1 ≤ m by definition of k1, since xm ≈ ym+1 ∈ E.

We show that m ≤ k1 + l1 ≤ m + 1 and m ≤ d0 + 1 ≤ m + 1.

a) By Lemma 3.1, xk1+l1 ≈ yk1+l1 ∈ E (since xk1 ≈ yk1+l1 ∈ E). Hence,
m ≤ k1 + l1 by definition of m.
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b) By Lemma 3.1, xm ≈ ym+1 ∈ E, since xm ≈ ym ∈ E. Hence, xm ≈
xm+1 ∈ E by rule R5. Therefore, xk1 ≈ ym+1 ∈ E by Lemma 3.2,
since xk1 ≈ yk1+l1 ∈ E. Hence, k1 + l1 ≤ m + 1 by definition of l1.

c) We know that xm ≈ xm+1 ∈ E. Hence, d0 ≤ m by definition of d0,
since d = 1.

d) By Lemma 3.2, xm ≈ yd0+1 ∈ E, since xm ≈ ym ∈ E and xd0 ≈
xd0+1 ∈ E. By rule R5, ym ≈ xd0+1 ∈ E and xd0+1 ≈ ym ∈ E by rule
R2. Therefore, xd0+1 ≈ yd0+1 by Lemma 3.2, since xd0+1 ≈ ym ∈ E
and xd0 ≈ xd0+1 ∈ E. Hence, m ≤ d0 + 1 by definition of m.

Consider the following cases:

1. m = k1 + l1. Then E1
1 = E1 \ {xm ≈ ym} is a 3-element basis for E,

because {xk1 ≈ yk1+l1} ` {xm ≈ ym} by Lemma 3.1, xk1 ≈ yk1+l1 ∈
E1

1 and E1
1 ` E1.

2. m + 1 = k1 + l1 and k1 = m. Then E2
1 = E1 \ {xk1 ≈ yk1+l1} is a 3-

element basis for E, because {xm ≈ ym} ` xk1 ≈ yk1+l1 by Lemma 3.1,
xm ≈ ym ∈ E2

1 and E2
1 ` E1.

3. m + 1 = k1 + l1, k1 < m and m = d0. Then E3
1 = E1 \ {xd0 ≈ xd0+1}

is a 3-element basis for E, because {xm ≈ ym} ` {xm ≈ ym+1} `
{xd0 ≈ xd0+1} by Lemma 3.1 and rule R5 (d0 = m), xm ≈ ym ∈ E3

1

and E3
1 ` E1.

4. m + 1 = k1 + l1, k1 < m and m = d0 + 1. We show that E4
1 =

{xk0 ≈ xk0+l0 , xd0 ≈ xd0+1, xk1 ≈ ym} is a 3-element basis of E. By
Lemma 3.1, {xk1 ≈ ym} ` {xm ≈ ym, xk1 ≈ yk1+l1}, since k1 ≤ m
and m ≤ m + 1 = k1 + l1. Hence, E4

1 ` E1. By Lemma 3.2, {xd0 ≈
xd0+1, xk1 ≈ yk1+l1} ` {xk1 ≈ ym}, since m = d0 + 1. Hence, E1 ` E4

1

and E4
1 is a 3-element basis of E.

Example 3.5. The weak monounary variety V = Modw({x2 ≈ y2, x1 ≈
y3, x0 ≈ x3}) has no 2-element basis.
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Proof. Define the following monounary algebras (digits denote elements of
the support and arrows show how the unique partial 1-ary
operation acts):

A1 : 0 1
¦¦

, A2 : 0 // 1 ee ,

A3 : 0
¦¦

1
¦¦

, A4 : 0 // 1 // 2 ,

A5 :

2

0
§§

1

OO

, A6 :

0 // 1 // 2

3 // 4 // 5 .

It is easy to see that A1 ∈ V and A4 ∈ V . Let E = Eqw(V ). Observe that

(∗) x0 ≈ yn /∈ E for every n ∈ N,

because A1 2 x0 ≈ yn for every n ∈ N (since x0(0) = 0 6= 1 = yn(1)) and
A1 ∈ V . Hence, any basis of E cannot contain an equation x0 ≈ yn for some
n ∈ N .

Suppose that E0 is a 2-element basis of E. Consider the following three
cases:

1. E0 has two not regular equation. Then we can assume that E0 =
{xn ≈ ym, xk ≈ yl} for some x, y ∈ X, x 6= y and n,m, k, l ∈ N .
Moreover n,m, k, l ≥ 1 by (∗). Therefore, A2 ² E0, since A2 ² xp ≈ yq

for every p, q ≥ 1. Hence, A2 ∈ V, since E0 is a basis of E. But A2 /∈ V,
since A2 2 x0 ≈ x3 ((x0)A2(0) = 0 6= 1 = (x3)A2(0)), a contradiction.

2. E0 has exactly one regular equation. Then we can assume that E0 =
{xn ≈ xn+k, xm ≈ ym+l} for some x, y ∈ X, x 6= y and n, k, m, l ∈ N .
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If k = 0, then E′
0 = {xm ≈ ym+l} is a basis of E, which is impossible

by the previous case. Thus k ≥ 1. Moreover, m ≥ 1 by (∗). Then
A2 ² xm ≈ ym+l and A2 /∈ V . Therefore, A2 2 xn ≈ xn+k, since E0 is
a basis of E. But A2 ² xp ≈ xq for p, q ≥ 1. Hence n = 0.

Observe that A4 ∈ V , A4 2 x0 ≈ x1 ((x0)A4(0) = 0 6= 1 =
(x1)A4(0)) and A4 2 x0 ≈ x2 ((x0)A4(0) = 0 6= 2 = (x2)A4(0)).
Hence k ≥ 3. Then A5 ² x0 ≈ xk and A5 /∈ V, since A5 2 x1 ≈ y3

((x1)A5(1) = 2 6= 0 = (y3)A5(0)). Thus A5 2 xm ≈ ym+l, since E0 is a
basis of E. But A5 ² xp ≈ yq for p, q ≥ 2. Hence m = 1.

Moreover, A4 ∈ V , A4 2 x1 ≈ y1 ((x1)A4(0) = 1 6= 2 = (y1)A4(1))
and A4 2 x1 ≈ y2 ((x1)A4(0) = 1 6= 2 = (y2)A4(0)). Hence l ≥ 2.
Therefore, E0 = {x0 ≈ xk, x1 ≈ y1+l}, k ≥ 3 and l ≥ 2. Then A6 ² E0

and A6 ∈ V, since E0 is a basis of E. But A6 /∈ V, since A6 2 x2 ≈ y2

((x2)A6(0) = 2 6= 5 = (y2)A6(3)), a contradiction.

3. E0 has two regular equation. Then we can assume that E0 = {xn ≈
xm, xk ≈ xl} for some x ∈ X and n,m, k, l ∈ N . Therefore, A3 ² E0

and A3 ∈ V, since E0 is a basis of E. But A3 /∈ V, since A3 2 x2 ≈ y2

((x2)A3(0) = 0 6= 1 = (y2)A3(1)), a contradiction.

From this example we know that there exists a weak monounary variety
with 3-element basis, which has no 2-element basis.
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