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Abstract

In this paper it is proved that the lattice of additive hereditary
properties of finite graphs is completely distributive and that it does
not satisfy the Jordan-Dedekind condition for infinite chains.
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0. Introduction

The lattice La of additive hereditary properties of finite graphs has been
introduced by Mihók [9] and investigated in connection with generalized col-
orings of graphs; cf. also Borowiecki and Mihók [3] and Borowiecki, Broere,
Frick, Mihók and Semanǐsin [2].

In the present paper we prove that the lattice La is completely distribu-
tive. An analogous result is valid in the case when instead of finite graphs
we consider finite partially ordered sets.

Further, we deal with chains in intervals of the lattice La. We show
that the Jordan-Dedekind condition for infinite chains fails to be valid in La.
Namely, we prove that there exist elements A1, A2 ∈ La with A1 < A2 and
maximal chains C1, C2 of the interval [A1, A2] such that C1 is denumberable
and C2 has the power of the continuum.

∗Supported by grant VEGA 2/1131/21.
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In [5], the following result has been proved:

(∗) Let α be a cardinal, α = c. There exists a complete and completely
distributive lattice Sα such that for each cardinal β with c 5 β 5 α
there exists a maximal chain Cβ in Sα such that card(Cβ) = β.

No chain in La can have a cardinality larger than c, since the power of La

is equal to c. Let α be an infinite cardinal. We can consider the powers of
maximal chains in sublattices of the lattice (La)α.

Let Q0 be the set of all rationals q with 0 5 q 5 1 (under the natural
linear order). Further, let α be an infinite cardinal. Put Qα

0 = Lα. Then
Lα is a bounded completely distributive lattice which is isomorphic to a
sublattice of the lattice (La)α. Moreover, we have

(∗∗) For each cardinal β with ℵ0 5 β 5 α there exists a maximal chain
Cβ in Lα such that cardCβ = β.

Fundamental results on completely distributive lattices have been obtained
by Raney [10], [11], [12]; cf. also Birkhoff [1] (Chapter V). Higher degrees of
distributivity (including complete distributivity) of Boolean algebras have
been dealt with by several authors; for the bibliography, cf. Sikorski [13].

The original version of the Jordan-Dedekind condition has been dealing
with finite chains (cf. e.g., Birkhoff [1]); the case of infinite chains was
considered by Szász [14], Grätzer and Schmidt [4] and by the author [5]–[8].

1. Preliminaries

We start by recalling some definitions and conventions.
Let C be the class of all finite graphs without multiple edges and without

loops. From technical reasons, the empty graph is also considered as a
member of C; it has no vertices and no edges. For G ∈ C, we denote by V (G)
and E(G) the set of all vertices or the set of all edges of G, respectively.

Let G ∈ C. We denote by S(G) the set of all G1 ∈ C such that (i)
V (G1) ⊆ V (G), and (ii) for (g1, g2) ∈ E(G) we have (g1, g2) ∈ E(G1) iff
g1 and g2 belong to V (G1). Further, let c(G) be the set of all connected
components of G.
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A nonempty class A of elements of C is said to be an additive hereditary
property of finite graphs if it satisfies the following conditions:

(i) A is closed with respect to isomorphisms;

(ii) if G ∈ C and c(G) ⊆ A, then G ∈ A;

(iii) if G ∈ A, then S(G) ⊆ A.

Let La be the system of all A with the mentioned properties. For A1, A2 ∈ La

we put A1 5 A2 if A1 ⊆ A2. In [9] it was proved that, under the relation 5,
La is a complete lattice. Consider a nonempty system {Ai}i∈I of elements
of La. Then

(1)
∧

i∈I

Ai =
⋂

i∈I

Ai.

Let B be the class of all graphs G ∈ C such that, whenever G1 ∈ c(G), then
there is i ∈ I with G1 ∈ Ai. We have

(2)
∨

i∈I

Ai = B.

(Cf. [9].)
Now let L be a complete lattice. We say that L is infinitely distributive if
it satisfies the identities

(3a) x ∧
(∨

i∈I

yi

)
=

∨

i∈I

(x ∧ yi),

(3b) x ∨
(∧

i∈I

yi

)
=

∧

i∈I

(x ∨ yi),
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where x ∈ L, (yi)i∈I is any indexed system of elements of L, and I is a
nonempty set of indices.

Further, let S and T be nonempty sets of indices. The lattice L is called
completely distributive if it satisfies the conditions

(4a)
∧

t∈T

∨

s∈S

xt,s =
∨

ϕ∈ST

∧

t∈T

xt,ϕ(t),

(4b)
∨

t∈T

∧

s∈S

xt,s =
∧

ϕ∈ST

∨

t∈T

xt,ϕ(t)

for each indexed system (xts)t∈T,s∈S of elements of L.

2. Infinite distributivity

Let (Ai)i∈I be an indexed system of elements of La and C ∈ La. Denote

X = C ∧
(∨

i∈I

Ai

)
, Y =

∨

i∈I

(C ∧Ai).

We have clearly X = Y . Let G ∈ X and let {G1, G2, . . . , Gn} be the system
of all connected components of G. Then, in view of (1), we have G ∈ C
and G ∈ ∨

i∈I Ai. Hence, according to (2), there are i(1), . . . , i(n) ∈ I such
that G1 ∈ Ai(1), . . . , Gn ∈ Ai(n). The definition of the additive hereditary
property yields

G1 ∈ C ∧Ai(1), . . . , Gn ∈ C ∧Ai(n),

thus according to (2) we obtain G ∈ Y . Hence X = Y . Thus La satisfies
the condition (3a).
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Now we denote

X1 = C ∨
(∧

i∈I

A1

)
, Y1 =

∧

i∈I

(C ∨Ai).

Then X1 5 Y1. Let G ∈ Y1. Hence G ∈ C ∨Ai for each i ∈ I.
Let i1 be a fixed element of I. In view of the above relation and according

to (2) we can express G as a disjoint sum

G = Gi1 + Hi1

such that Gi1 ∈ C, Hi1 ∈ Ai1 and no nonzero connected component of
Ai1 belongs to C. In other words, Gi1 is the disjoint sum of all connected
components of G which belong to C. Hence if i2 is another element of I and
if we have the analogous expression

(5) G = Gi2 + Hi2 ,

then we must have Gi2 = Gi1 , and thus Hi2 = Hi1 . We get

Gi1 ∈
∧

i∈I

Ai

and hence, according to (5) and (2), we have G ∈ X1. Thus X1 = Y1.
Therefore La satisfies the identity (3b). We obtain

Lemma 2.1. The lattice La is infinitely distributive.

We remark that the distributivity of La has been proved in [9].

Lemma 2.2. Let L be a lattice which is complete and infinitely distributive.
Assume that L does not satisfy the identity (4a). Then there are elements
u, v ∈ L and an indexed system (x′t,s)t∈T,s∈S of elements of L such that u < v
and

(6a)
∨

s∈S

x′ts = v for each t ∈ T ,
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(6b)
∧

t∈T

x′t,ϕ(t) = u for each ϕ ∈ ST .

Proof. In view of the assumption, there exists an indexed system (xts)t∈T,s∈S

of elements of L such that the relation (4a) fails to be satisfied. Denote

v =
∧

t∈T

∨

s∈S

xts, u =
∨

ϕ∈ST

∧

t∈T

xt,ϕ(t).

Then v > u. Put

x′ts = (xts ∨ u) ∧ v.

In view of the infinite distributivity of L we obtain

(7) v = (v ∨ u) ∧ v =
∧

t∈T

∨

s∈S

(xts ∨ u) ∧ v =
∧
t∈t

∨

s∈S

x′ts.

For each t ∈ T and each s ∈ S, we have x′ts 5 v, whence

∨

s∈S

x′t,s 5 v for each t ∈ T .

If there is t(1) ∈ T with

∨

s∈S

x′t(1),s < v,

then the relation (7) cannot hold, which is a contradiction. Therefore the
relation (6a) is valid.
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Further, x′ts = (xts ∧ v) ∨ u = u, whence

∧

t∈T

x′t,ϕ(t) = u for each ϕ ∈ ST .

We have

(8) u = (u ∧ v) ∨ u =
∨

ϕ∈ST

∧

t∈T

x′t,ϕ(t).

If there is ϕ1 ∈ ST with

∧

t∈T

x′t,ϕ1(t) > u,

then (8) does not hold and so we arrived at a contradiction. Thus (6b) is
valid.

Analogously we can prove

Lemma 2.3. Let L be a complete and infinitely distributive lattice. Assume
that L does not satisfy the identity (4b). Then there are elements u, v ∈ L
and an indexed system (x′ts)t∈T,s∈S of elements of L such that u < v and

(9a)
∧

s∈S

x′t,s = u for each t ∈ T ;

(9b)
∨

t∈T

x′t,ϕ(t) = v for each ϕ ∈ ST .

3. Complete distributivity

Theorem 3.1. The lattice La is completely distributive.

Proof. By way of contradiction, assume that La fails to be completely
distributive. Then there exists an indexed system (Xt,s)t∈T,s∈S of elements
of La such that either (4a) or (4b) fails to be valid.
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a) At first assume that (4a) does not hold. Then in view of Lemma 2.2
there are elements U, V ∈ La, U < V , and an indexed system (X ′

ts)t∈T,s∈S

of elements of La such that the condition (6a) and (6b) are satisfied (with
x replaced by X).

There exists G ∈ V \U . If all connected components of G belong to U ,
then G would belong to U ; thus there is a connected component G1 which
does not belong to U . On the other hand, G1 is an element of V .

Let s ∈ S. In view of (6a), we have G1 /∈ X ′
ts for each t ∈ T . Put

ϕ0(t) = s for each t ∈ T . According to (6b), we obtain G1 ∈ X ′
t,ϕ0(t) = X ′

t,s

for each t ∈ T ; we arrived at a contradiction.

b) Now suppose that (4b) does not hold. We apply Lemma 2.3 with the
notation analogous to that in a).

Again, there is G ∈ V \ U and a connected component G1 of G with
G1 ∈ V \ U .

Let t ∈ T . In view of (9a) there exists x ∈ S such that G1 /∈ X ′
t,s; we

put ϕ0(t) = s. Hence G1 /∈ X ′
t,ϕ0(t) for each t ∈ T . Then according to (2)

we infer that G1 does not belong to

∨

t∈T

X ′
t,ϕ0(t) = V,

which is a contradiction.

We conclude this section by the following remarks.

1) Let α be an infinite cardinal. The above considerations remain valid
if instead of finite graphs we take into account the graphs G such that the
set V (G) of vertices of G has the cardinality less or equal to α. In this way
we obtain the lattice La(α) constructed analogously as La. Since La(α) is
completely distributive, the well-known result of Raney [11] concerning the
subdirect product representation can be applied for La(α).

2) The same method as above can be used for proving analogous re-
sults dealing with finite partially ordered sets (or with partially ordered sets
having the cardinality less or equal to α, where α is a given infinite cardinal).
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4. On chains in the lattice La

Let L be a lattice and a, b ∈ L, a < b. The interval of L with the endpoints
a and b is denoted by [a, b] = L1. Let C(L1) be the sytstem of all chains of
the lattice L1; the system C(L1) is partially ordered by the set-theoretical
inclusion.

We say that the lattice L satisfies the Jordan-Dedekind condition (shortly:
condition (JD)) if, whenever a, b, L1 are as above and C1, C2 are maximal
elements of C(L1), then

card(C1) = card(C2).

In this section we prove that the lattice La does not satisfy the condition
(JD).

We need some lemmas.

Lemma 4.1 (Cf. Borowiecki and Mihók [3].) There exist A,Bn ∈ La

(n = 1, 2, . . . ) such that for each n ∈ N we have A < Bn and [A,Bn] is a
prime interval (i.e., [A,Bn] is a two-element set).

Lemma 4.2. Let L be a lattice which is complete and completely distribu-
tive. Assume that a, bn ∈ L such that for each n ∈ N we have a < bn and
[a, bn] is a prime interval. Put b =

∨
n∈N bn. Then the interval [a, b] is a

Boolean algebra isomorphic to 2N .

Proof. The interval [a, b] is a complete and completely distributive lattice.
Put Bn = [a, bn]. For each x ∈ B we set

ϕ(x) = (x ∧ bn)n∈N .

It is a routine to verify that ϕ is an isomorphism of B onto the direct product∏
n∈N Bn which is isomorphic to 2N . Hence B is a Boolean algebra.
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Under the notation as above, we put xn = x∧ bn for each x ∈ B and n ∈ N .
For each m ∈ N, we denote by ym the element of B such that ym

n = bn

if n 5 m and ym
n = a otherwise. We put

C1 = {ym}m∈N ∪ {a, b}.
Then C1 is a chain in [a, b].

Lemma 4.3. C1 is a maximal chain in [a, b].

Proof. By way of contradiction, assume that x is an element of [a, b] \ C1

such that x is comparable with each element of C1. Hence a 6= x 6= b. Put

C11 = {c ∈ C1 : a < c < x}, C12 = {c ∈ C1 : b > c > x}.
If C12 = ∅, then xn = a for each n ∈ N , whence x = a, which is impossible.
Similarly, if C11 = ∅, then we get x = b, a contradiction. Hence C11 6= ∅ 6=
C12. Then C11 is finite, whence it has the greatest element; we denote it by
ym(1). Thus ym(1)+1 is the least element of C12 and ym(1) < x < ym(1)+1.
But [ym(1), ym(1)+1] is a prime interval and so we arrived at a contradiction.

Let I be the set of all rationals i with 0 < i < 1. There exists a bijection
ψ : N → I. Then we have an isomorphism of [a, b] onto

∏
i∈I Bi. For x ∈

[a, b] and j ∈ I, let xj be the component of x in Bj under the isomorphism
under consideration.

For each i ∈ I, we denote by zi the element of B such that zi
j = 1 for

j ∈ I, j 5 i, and zi
j = 0 otherwise.

Consider the interval [0, 1] of reals and let 0 6= k 6= 1, k ∈ [0, 1] \ I. The
set of all such k will be denoted by K. For k ∈ K let tk be the element of
B such that

tki = bi for i ∈ I, i < k,

tki = a for i ∈ I, i > k.

We put

C2 = {zi}i∈I ∪ {tk}k∈K ∪ {a, b}.
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It is obvious that C2 is a chain in [a, b].

Lemma 4.4. C2 is a maximal chain in [a, b].

Proof. By way of contradiction, assume that an element x ∈ [a, b] is com-
parable with all elements of C2 and does not belong to C2. Denote

C21 = {c ∈ C2 : a < c < x}, C22 = {c ∈ C2 : b > c > x}.
Hence C2 = C21 ∪ C22. Similarly as in the proof of 4.3 we can verify that
C21 6= ∅ 6= C22.

Let I1 be the set of all i ∈ I such that there exists c ∈ C21 with ci = bi.
Let i ∈ I1. Then ci(1) = bi(1) for each i(1) ∈ I with i(1) < i. Hence I1 is
an ideal of I. Put I2 = I \ I1; the set I2 is a dual ideal of I. Thus for each
i(1) ∈ I1 we must have xi(1) = bi(1).

If i(2) ∈ I2, then there is i(3) ∈ I2 with i(3) < i(2). If xi(2) = bi(2),

then xi(2) > 2i(3)
i(2) = a, thus x ≮ zi(3) ∈ C22, which is a contradiction. Thus

xi(2) = a for each i ∈ I2.
Denote r = sup I1. Hence r = inf I2. In view of the properties of x we

get x = tr, hence x ∈ C2, which is a contradiction.

It is obvious that C1 is denumerable and that the power of C2 is equal to
the power of the continuum. Hence we have

Proposition 4.5. The lattice La does not satisfy the condition (JD).

5. The lattice Lα

The aim of the present section is to prove the assertion (∗∗) formulated in
the introduction above.

We recall that Q0 is the set of all rationals q with 0 5 q 5 1. We consider
the natural linear order on Q0. Then Q0 is a completely distributive lattice.
Let I be an infinite set of indices; for each i ∈ I we put Ti = Q0. Further,
we set

L =
∏

i∈I

Ti.
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If card(I) = γ, then, under another notation, we can write L = (Q0)γ . The
elements of L are written as x = (xi)i∈I .

In particular, if the cardinality of the set I is equal to α, then we have

∏

i∈I

Ti = (Q0)α = Lα.

Since each linearly ordered set is a completely distributive lattice and since a
direct product of such lattices is again completely distributive, we conclude
that Lα is completely distributive. It is obvious that Lα is bounded. Further,
in view of 4.4, Q0 is isomorphic to a sublattice of the lattice La. Hence
Lα = Qα

0 is isomorphic to a sublattice of (La)α.
For q ∈ Q0, let xq be the element of L such that (xq)i = q for each i ∈ I.

Put Cd = {xq}q∈Q0 . It is obvious that Cd is a chain in L.

Lemma 5.1. Cd is a maximal chain in L and card(Cd) = ℵ0.

Proof. The method of verifying the first assertion is the same as in the
proof of Lemma 1 in [5]; the second assertion is obvious.

We say that Cd is the diagonal chain in L.
By applying the Axiom of Choice, we can assume that the set I is

well-ordered and possesses the greatest element.
For each i ∈ I, let Ri be the set of all f ∈ L such that

j ∈ I, j < i ⇒ fj = bj ,

j ∈ I, j > i ⇒ fj = a.

Put Cs =
⋃

i∈I Ri. It is clear that Cs is a chain in L and that card(Cs) = γ.

Lemma 5.2. Cs is a maximal chain in L.

Proof. It suffices to apply the same method as in the proof of Lemma 2 in
[5] (instead of M we have now the set I).
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We say that Cs is a superficial chain in L.

Proof of (∗∗) Let α be an ifninite cardinal. If α = ℵ0, then the assertion
of (∗∗) is a consequence of Lemma 4.3 and of the fact that card(C1) = ℵ0.
Hence it suffices to suppose that α > ℵ0. Also, it suffices to consider the
case when ℵ0 < β 5 α. For β = α we can apply Lemma 5.2. Now suppose
that ℵ0 < β < α. Let I be a set of indices with card(I) = α and let β be a
cardinal with ℵ0 < β < α.

There exist nonempty subsets I1, I2 of I such that

I1 ∩ I2 = ∅, I1 ∪ I2 = I and card(I1) = β.

Put

L1 =
∏

i∈I1

Ti, L2 =
∏

i∈I2

Ti.

Thus we have Lα = L1 × L2. For x ∈ Lα we denote by x(1) and x(2) the
component of x in L1 or in L2, respectively. Further, let 0i, 1i be the least
or the greatest element in Li, respectively (i = 1, 2).

There exists a superficial chain Cs in L1; also, there exists the diagonal
chains Cd in L2. Put

C1 = {x ∈ L : x(1) ∈ Cs, x(2) = 02},

C2 = {x ∈ L : x(1) = 11, x(2) ∈ Cd},

C = C1 ∪ C2.

Then we have card(C1) = β, card(C2) = ℵ0, whence card(C) = β. Accord-
ing to Lemma 5 in [5], C is a maximnal chain in Lα.

This completes the proof.
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