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Abstract
It is well-known that for each object A of any category C there is
the covariant functor H4 : C — Set, where HA(X) is the set C[A, X] of
all morphisms out of A into X in C for an arbitrary object X € |C| and
HA(p), ¢ € C[X,Y], is the total function from C[A, X] into C[A,Y]
defined by C[A, X]| 3 u — up € C[A,Y].
If C is a dts-category, then H4 is in a natural manner a d-monoidal
functor with respect to

HA = (ﬁ(x, Y):C[A, X] x C[A,Y] — C[A, X ® Y],

(1, u2) = dau @ uz)) | X,Y € [C])
and
Z.H“" : {(b} - C[A7I]7 ((Z) = tA)
This construction can be generalized to functors H® from any
dhthV s-category K into the category Par related to arbitrary subiden-
tities e of K (cf. Schreckenberger [3]). Each such generalized Hom-

functor H¢ related to any subidentity e < 14, 04,4 # e, turns out to
be a monoidal dhthV s-functor from K into Par.

Keywords: symmetric monoidal category, monoidal functor,
Hom-functor.
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1. INTRODUCTION

The development of a functorial semantic of partial algebras requires the
knowledge about functors between certain symmetric monoidal categories
which preserve the special monoidal structure except for isomorphisms. In
[8] was shown that each functor between diagonal-halfterminal-halfdiagonal-
inversional-symmetric monoidal categories (dhthV s-categories), which re-
spects the monoidal structure and the diagonal morphisms with regard to
a morphism family F of the image category, also preserves the canonical
partial order relation, the totality and the injectivity of morphisms, and
the terminal morphisms as well as the diagonal inversion morphisms with
respect to the same family of isomorphisms F.

The morphism class of a category K will be denoted by K too, the
object class of K by | K|, and the set of all morphisms in K between objects
A and B by KA, B].

Definition 1.1. Let K*® be a symmetric monoidal category in the sense of
Eilenberg-Kelly [1].

A sequence (K°®;d) is called diagonal-symmetric monoidal category
(shortly ds-category; see [6]), if d = (da € K[A,A® A] | A € |K|) is a
family of morphisms of K such that

(D1) VA A" € |K| Yy € K[A, A (pdar = daly @ ),
(D2) VA€ |K| (da(da®14) =da(la ®da)aanaa),
(D3) VA€ |K| (dasaa = da),

(D4) VA, B € |K| ((da ® d)baap,s = dags)

are fulfilled.

(K*,d,t) is called diagonal-terminal-symmetric monoidal category
(dts-category; see [6]), if (K*,d) is a ds-category with a family t = (4 | A €
|K|) of terminal morphisms t4 € K[A, I] such that the conditions

(T1) VA, A€ |K| Vo e K[A, A'] (pta = t4) and

(DTR) VA€ |K| (da(la®ta)ra =14)

are right.
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(K*;d,t,0) will be called diagonal-halfterminal-symmetric monoidal
category (shortly dhts-category; see [2], [4], [6]), if d is a morphism fam-
ily as above, t = (t4 € K[A,I] | A € |K]) is a family of morphisms in K,
and o : I — O is a distinguished morphism in K related to a distiguished
object O € |K|,O # I, such that

(D1) VA, A" € |[K[Vp € K[A,A'] (da(p ® ¢) = pda),

(DTR) VA€ |K| (da(la®@ta)ra =14),

(DTL) VA€ |K| (da(ta®14)la = 14),

(DTRL) VA, As € ’K‘ (dA1®A2 ((1A1 ®tA2)rA1®(tA1 ® 1A2)ZA2) = 1A1®A2))7

(TT) VA, B € |K| (tags = (ta @ tp)tiel),

(01) VAe |K| (A O =0 A=0),

(ol) VA € |K| Vo € K[A,O] (tao = ), and

(02) VA e |K| VY € K[O,A] (1a®to)ra =1))
are fulfilled.

(K*:d,t,V,o) is called a diagonal-halfterminal-halfdiagonal-inversional-
symmetric monoidal category (for short dhthV s-category; in [6] dhtV-sym-
metric category), if (K*®;d,t,0) is a dhts-category endowed with a morphism
family

V=(Vae K[A® A, A] | A € |K|) fulfilling
(DT) VA € |K‘ (dAVAZIA),
(D;) VA € |K‘ (VAdAdA®A = dA®A(VAdA ® 1A®A))- [}

The zero morphisms 04,5 absorb all other morphisms at composition and
®-operation in any dhts-category. Because of (0l) and (02), the unit mor-
phism 1¢ is identical with the zero morphism op 0.

The category Par of all partial functions between arbitrary sets is an
example for a dhthV s-category.
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In view of the properties of the category Par we only will consider
dhthV s-categories fulfilling the conditions

(03) VA, BE|K|(A®B=0= (A=0 v B=0)),
(03) VA, B, C, D € |K| Vg € K[A, B] ¥4 € K[C, D]
(¢ ®% =oagc,Bap = (¢ =048 V ¥ =0cD)).

Remark that (K*;d) is a ds-category for each dhts- category (K*®;d,t,0)
and V is the only family in a dhthV s-category with the properties (D7) and
(D%), cf. [3].

The class Tk = {¢ € K | ¢lcodomy = tdom,} forms a dts-subcategory
Ty of a dhts-category K := (K*®;d,t,0) and (A ® B, pf’B =(1la®tp)ra,
p?’B := (ta®1p)lp) is a categorical product in T'j-, but not in the whole cat-

egory K. The morphisms pf’B and p’;’B are called the canonical projections
concerning A and B ([2]).

The relation < defined by
p< Vi IAA K| (p,0 € K[AA] A p=dalpav)py )

is a partial order relation and it is compatible with composition and
®-operation of morphisms (see [3]).
The following conditions are equivalent in any dhts-category (see [4]):

o =dalpav)ps ",

o =da(y @ p)pi Y,
pdar = da(e @),
edar = da(y ® ).

Moreover, each dhthV s-category has the properties

(hVvy) VA A €|K| VYo € K[A, A'] (Vapda =daga(Vap®(p@¢)Var)),

(th) VA, A € |K| Yo € K[A,A/] ((ptA/d[ = dA(cptA/ ® tA)),
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therefore Vo < (¢ ® )V a4 and @t 4 < ty4 for all morphisms p € K[A, A']
and all objects A, A’ € |K].

Each morphism set K[A, B] of a dhthVs-category K forms a meet-
semilattice with respect to ¢ A = da(p ® 1)V . This semilattice has the
minimum o4 g, maximal elements are the total functions. Especially, the
morphism sets K[A, I] possess a maximum, namely 4.

The basic morphisms related to the distingushed object I in any sym-
metric monoidal category, any dhts-category, or even any dhthV s-category
have some interesting properties as follows:

Lemma 1.2. Let K*® be a symmetric monidal category. Then the following
equalities hold:

rr =1 ([3]), arrr=77"®71, barrs =lagi®ligs (6]), si1= lier.

ot

Moreover, every dhts-category K has in addition the properties

dr=rit, ridr =lier, tr=11 ([38]), tier =rr,
i €isog[l,I] =i=t;, VX € |K|Vz € K[I,X] (z €isoK = 2! =tx).

Finally, if K is a dhthV s-category, then the additional property

Vi=rr

18 true.

Proof. The identity aarp(ra ® 1p) = 14 ® Ip is one of the defining
properties of monoidal-symmetric categories, hence ar (1 @ 17)=1; @ ry
by rr = Iy and ar 5 = (r;l ® rr), since all right-identity morphisms are
isomorphisms.

sa,7la = ra is a further defining identity, hence syl = r; = I and
therefore sy 1 = 1;g1, because [ is an isomorphism in K.

In any dhts-category one has the defining identity d4 (14 @ t4)ra = 14,
hence 17 = d;(1; ® ty)ry = di(1; ® 17)r; = dyry since t; = 17, consequently
dy = T?l and ryd; = lrg7.

Each coretraction ¢ € K[A, B] of a dhts-category has the property
ptp = t4. Because dj is even an isomorphism, one observes djt;g; =t =
1[, therefore t[®] = 1[®[t]®[ = T[d]t[®[ = 7‘[1[ =7Tr.

One of the characterizing conditions of the diagonal inversions in a
dhthV s-category is daV 4 = 14. Therefore, Vi = 115;V = ridiVy = ry
as above.
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Now let @ € KII,I] be an isomorphism of a dhts-category K. Then
1 =11y =14ty = t1, because of 1; = t.

Let x € KII,X] be an isomorphism in a dhts-category K. Then
one obtains by the same manner as above 17 = t; = xtx, hence the
assertion. ]

J. Schreckenberger introduced in [3] the important concept of a subidentity
in any dhts-category K in the following way: A morphism e € K is called
subidentity of an object A € |K|, if e < 14 with respect to the canonical
order relation in K. The set of all subidentities of an object A € |K| will be
denoted by Ex(A), i.e.

Ex(A):={eec K[AA] | e<1a}.
Each morphism ¢ € K[A, A’] determines in a natural manner a subidentity
A,A . .
alp) :=da(la ® p)py’" , the subidentity of .
Subidenties possess a lot of important properties as follows ([3], [9]):

Theorem 1.3. Let K = (K*,d,t,V,0) be a dhthVs-category. Then the
following claims hold:

(E1) VA€ |K|Vee Eg(A) (ee =e),
(E2) VA€ |K| Ve, es € Ex(A) (e1e2 = egeq),
(E3) VA€ |K|Vei,es € Ex(A) (ereg = inf{er,e2}), and

(E4) VA€ |K|Ver,ea € Ex(A) (e1 < ey & ejeg =€), ie.

the set Ex(A) forms together with the morphism composition a meet-
semilattice with maximal element 14 and minimal element o4 4 related to
the canonical partial order relation for each A € |K|.

Subidenties related to arbitrary morphisms of K have the following
properties:
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(al)

(a13)

(al4)
(al5)
(a16)

(alT7)

VA, A € |K| Yo € K[A, A] (a(p) = da(1a ® o)pi-?

= dap® La)ps * < 1a),

VA, A" € |[K| Yy € K[A, A] (a(p)p = ),

VA, A" € |[K| Vo € K[A, A] (a(p)ta = ¢tu),

VA, A" € |K| Vo € K[A, A] (a(p) =14 < pta = ta),

VA, A" € |[K| Yy € K[A, A] (a(p) = 04,4 & ¢ =o0aa),

VA € |K| Ve € Ex(A) (a(e) =e),

VA, A" € |K| Vo € K[A, A'] Ve € Ex(A) (ea(p) = alep) < e),
VA A" € |K| Vo € K[A,A'] Ve € Ex(A) (e = ¢ & alp) <e),
VA, A € |K| Vp € K[A, A'] Ve € Ex(A) (e < a(p) = alep) =e),
VA, A" € |[K| Vo, € K[AA'] (p <9 & alp)y =),

VA, A" € [K| Yo, € K[A, A (¢ < ¢ = alp) < o)),

VA, A € |K| Vo, 0, & € K[A, A]
(P<ENPZEN alp) La(y) = e <),

VA, A € |[K| Vo, € K[A, A] (a(p) = a() A
X (p<ENYLSE = p=1),

VA, A" € |[K| Vo, € K[A Al (9 <Y A alp) =a(h) = ¢ =1),
VA, A", B € |K| Vo € K[A, A'| V¢ € K[A', B] (a(py) < o)),
VA, A, BE|K| Vpe K[A, A'| VY e K[A', B] (pa(ih) =a(ed)p),

VA, A, BE|K| Vpe K[A, A'] v e K[A', B] (a(ey) =a(pa(v))),
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(«18)

(«19)

(20)

(a21)

(22)

(«23)

(a24)

(a25)

(26)

(a27)
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VA,A',B,B € |K|Vp e K[A, A| V¢ € K[B, B']
(alp®¢') = alp) ® a(¢')),

VA, Ay, As € |K| Y € K[A, Aj] (i = 1,2)
(a(da(p1 @ p2)) = a(p1)a(p2)),

VA,Al,AQ S ‘K| VQD S K[A,Al] VT/J S TK[Al,AQ] VX c TK[A,AQ]
(ap) = aldalp @ X)) = a(da(py © X)),

VA,A/ S ‘K| Y1, p2 € K[A, A/]
(a(p1)p2 = p2 & alp2) < aler)),

VA e |K| (a(Va) = a(Vada) =Vada),

VA, A’ € |K| Y1, 00 € K[A, A
(a((p1®14)Var) = a(p2 ® 1a4)Var) & 01 = @2),

VA, A" € |K| Yo, 00 € K[A, A]
(a(pa)pr=a(p1)pa = da(p1092)V ar =da(pr&p2)p Y | (i=1,2)),

VA, A € |K| Vo1, 0y € K[A, A']
(a(p1)p2 = da(p1 @ p2)Var & alp2)pr = da(p1r @ p2)Va),

VA, A € |K| Yy € K[A, A"l (a(Vap) = Vapda),
VA, A € |K| Vo € K[A, A) Yo" € K[A', A

(a(p) = pp* & (pp* e =@ A pp* < 1y)). L]

2. MONOIDAL FUNCTORS

In applications to theories of algebraic structures, functors F : K — K’
between dhthVs-categories are of interest which preserve in addition to
the functor properties the dhthVs-structure with respect to a family F =
(F(X,Y) | X, Y €|K]) of isomorphisms F(X,Y) : XFRYF — (X®Y)F
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in K’ and an isomorphism iz between I’ and I'F, where I and I’ are the
distinguished objects in K and K’, respectively, ([2], [4], [8]).

Definition 2.1 ([8]). A functor F': K* — K’® between symmetric monoidal

categories K*® and K’ is called monoidal with respect to a family of
morphisms

F=(F(X,Y): XFQYF = (X@Y)F | X,Y €|K|) of K’

and to a morphism
ip:I' = IF,
for short (F, Fi r): K* — K'* iff the following conditions are fulfilled:
(F~) vX,Y € |K| (F(X,Y) €iso(K")),
(FI) ip €iso(K'),
(FA) VX,Y,Z € [K|((1hp ® F(Y, 2)) F(X,Y © Z)(ax,y,zF) =
= dxpyraF (ﬁ<X7 Y)® 1/ZF)F‘<X ®Y, Z>)7
(FR) VX € |K| (F(X, D)(rxF) = (1xr ®i5") k),
(FS) VX,Y €|K| (F(X,Y)(sx,yF) = shpyrF(Y, X)),

(FM) Vo: X Y, V:U -V eK
((eF @ wF)E(Y,V) = F(X,U)(p @ 0)F). .

Corollary 2.2. Let (F,ﬁ‘,ip) : K* — K'* be a monoidal functor between
symmetric monoidal categories. Then

(FL) VX € |K| (F(I,X)(xF) = (ip" @ 1xp)lp)-

Proof. The validity of (FL) is a consequence of (FR) and (FS) by the
properties of symmetric monoidal categories in the following way:
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F{LX)(IxF) = sppx pF (X 1) (51,5 F) 7 (I F) ((FS))
= S pxp F(X D) ((sx,1lx ) F) (sa'p =sB,A)
= 1 xpF (X, 1) (rx F) (srxlx =rx)
= sipxp(Uxp ® 5 )l p ((FR))

.—1 / / /
= (ip @ xp)sp xrTxp

= (i7" ® Ixp)lxp- u

Definition 2.3 ([8]). A monoidal functor (F,F,ir) : K — K’ between
ds-categories K and K’ is called d-monoidal, if in addition the condition

(FD) VA€ K| (daF = dypF(A, A))

holds. [ ]

Obviously, the identical functor of K*® forms a monoidal functor

(1[{, (IK<X,Y> = 1XF®YF | X,Y & ’K|), Z.IK = 1[) K*— K*®
(X=X, p— )

and the constant functor from K*® into K’® too,
(E, (E<X,Y>:1’I, | X,Y € |K]),iE:1’,) K* S K (X =T, o 1),

where K*® and K'® are arbitrary symmetric monoidal categories.

Moreover:

Proposition 2.4. Let K and K' be dhts-categories such that there are the
distinguished zero-objects O € |K|, O' € |K'|. Then
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, I' if X+#0,
Ey: K — K, defined by X — and
O if X=0,

1, if X#0 ANY#0 N ¢o#oxy,
opp i X#O ANY#O0 N p=oxy,
(p: X=Y)—=q t), if X=0AY#O,

o if X£0 ANY =0,

1, if X=Y=0,

1s d-momnoidal with respect to

B Mo X AO2Y,
E[)<X,Y> = and iEo = 1/1, .
1{,, otherwise,

Proof. The functor properties are easy to verify by consideration of the
separate cases. By definition, all morphisms Ey(X,Y’) are isomorphisms and
i, is an isomorphism too.

Ad (FA): If X, Y, and Z all are different from O, then

(Y, ® BolY. 2)) BolX,Y © Z)(axcyurBo) = (p @74 )y = (L & 7)1
g = ol © 1) = o (e @ L)
= X By By, 2By (EV0<X7 Y)® 1/ZEO) Ey(X @Y, 2).

On the other hand:

X=0VY=0V Z=0

S X0(X02)=0=(XeY)®Z
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= ax,y,zEo = 00,0E0 = 0 on N Axp,yE, 28, = %0
= (g, ® Eo(Y, 2)) Eo(X,Y © Z)(ax v, 2F0) = 0 o A
a’/)(E(),YE(),ZEO (.E‘()<)(7 Y> ® 1/ZE0) E0<X®Y7 Z> = 0/0/’0/.

Ad (FR): Because ig, € K'[I', IEy| is an isomorphism in K’ and IEy = I’,
one has ig, = 17, by Lemma 1.2. Let X # O. Then

Eo(X, D)(rx Eo) = i1y = (15 @ 19 )r = (1 ® i) )y
__ Otherwise, X = O implies XEy = 0" A X ® 1 =0 ® I = O, hence
E’O()(7 I> - E0<O7I> - 1/0/ == 0/()/’0/ A TXEO == loEo = 1/()/ = Olo/’ol -

Tor =Ty £, Therefore

E)(X, I> (T’XEO) = 1,0/ 1/01 = 1,0/ = 0/01701 = (0/0/701 & iE;)O/()’,O’
-—1
- (13§'E0 ® ZEO)TS(EO'

Ad (FS): Since s}, = 1}/, we have
Eo(X,Y)(sxyEo) =1}, = s, prly = s gy y iy Eo (Y, X)

for X #0 #Y.

Assuming X = O or Y = O one obtains
X@Y=0=Y®X and E(X,Y)=1p = o o = Eo(Y, X),

hence Eo(X,Y)(sxyEo) = 0y o = sy, y 5y Bo(Y, X).

Ad (FM) For O ¢ {X7Y7U7V} A ¥ 7’é ox,y A 1/1 7é Ooy,v one has
P @Y # oxeuyev, therefore

(0Eo @V Eo)Eo(Y, V) = (17, @ 14,1}, = 1}, 15, = Eo(X, U) (¢ ®1) Eo).

In the case O € {X,Y,U,V} one obtains
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PR w = 0X®U,Y®QV A (90 ® ¢)E0 = 0/(X®U)Eo,(Y®V)Eo A

R,
pEo ® YEo = 0x pyou R,y FoVE, Dence

(SDE0®¢EO)EO<Y’ V> - 03(E0®UE0,YE0®VE0EO<Y7 V> - Ol)(Eo(X)UEo,(Y@V)EO

= E)<Xa U>O,(X®U)Eo,(Y®V)EO = EVO<X7 U)((¢ ®9)Ey).

Ad (FD): The assumption X # O yields directly
dxBo = 1y = dyrty = dy g Byl X, X).
For X = O one has:
dxEo = 00,0E0 = 0pr o = d'y g, Bo(X, X). -
Each d-monoidal functor (F, F,ZF) between dhis-categories possesses the
following properties (see [3], [8]):
(FI)  tip =g,
(Fmon) Vo, ¥ € K (¢ <9 = oF <yF),

(FT) VX e |K| (txF iy =txp),

(FP) WX, e |K| (o} F = (Fx.v)) pF™7T s j=12),
(FE) VA€|K|(e<1ly=eF <lap),

(FEa) VX, Y € |K| ¥ € K[X,Y] (a())F = a(gF).

Let K, K’ be dhthVs-categories and let (F,F,ip) : K — K be a
d-monoidal functor. Then in addition the following properties hold ([8]):

(Finf) VX,Y € |K| Vo, ¢ € K[X,Y]
(dx (¢ @Y)Vy)F = dyp(¢F @ Y F)Vy ),
(Finj) VX,Y € |K| ¥y € K[X,Y]
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(¢ ®@)Vy = Vxo = (pF @ 9F)Vyp = Vi p(¢F)),
(FV) VX € |K| (Vxr = F(X,X)V4F),
(FV1) VX,Y,U € |K| Ve € K[X,U] V¢ € K[Y,U]

(¢ ®@¥)Vu)F = F(X,Y)((¢ @ ¥)F) Vi),
(FV3) VX,Y € |K| Vo € K[X,Y]

(p®@Y)Vy = Vxp = (pF @YF)Vyp = Vip(pF)).

Obviously, property (Finj) is a special case of (FV3) and this
property expresses once more the monotony of the functor F, namely
<Y = pF <YF.

The so-called zero functor Z : K — K’ is defined by X Z = O’ for all objects
X € |K| and ¢Z = 1y, for all morphisms ¢ € K. Trivially, this functor is a
d-monoidal one.

Definition 2.5 ([8]). A d-monoidal functor (F, F,ir) between dhts-cate-
gories will be called dht-monoidal functor, iff either F' = Z or, besides the
conditions of a d-monoidal functor, the condition

(FZ)  OF=0' A VX €|K| (XF=0'= X =0)
is fulfilled. n

Proposition 2.6 ([8]). Let (F,F,ir): K — K’ be a dht-monoidal functor
such that F # Z. Then one obtains:

VX € |K| (F(X,0) = F(0,X) = 1y),

VX,Y € |[K| (oxyF = o’XF,YF),

oF =tpd (& o =i(oF)). |
By the structure of dhts-categories K and K’, each functor F' : K — K’

determines with respect to arbitrary objects X,Y € |K| the morphisms

FHX,Y)=d|
in the category K.

X®Y)p(pf<’YF ®p§(’YF) EK[(X®Y)F,XFQYF]
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In the case that (F, F,ir) : K — K’ is a d-monoidal functor, the morphisms

F(X,Y) are uniquely determined by
~ -1 . XY XY .
(F<X, Y)) = dyoyyp (p1 F®p) F) = F*(X,Y)

(see [2]).
Moreover:

Theorem 2.7 (see [8]). Assume that F': K — K' is any functor from a
dht-symmetric category K into a dht-symmetric category K' satisfying the
following conditions:

(Fx) VX,Y € |[K|(F*(X,Y) € iso (K")),

(FI*) t'iF € iSO(K’),
(FM*) Vo, ¢ € |K| (@ ¢)F FY(X"Y') = F*(X,Y)(oF @ YF)).

Then (F,F,ip) : K — K' is d-monoidal with F(X,Y) := (F*(X,Y))™1,
1p = tll_;. |

3. PROPERTIES OF THE Hom-FUNCTORS

Any dts-category contains not necessarily an initial object O. For dts-cate-
gories K without initial objects one has the following fact.

Theorem 3.1. Let K be a dts-category and let H* be the usual Hom-
functor from the underlying category K into the category Set with reference
to any object A € |K|. Then H*4 is a d-monoidal functor related to HA and
iya, where
HA = (HA(X,Y) : K[A,X] x K[A,Y] - K[A, X ® Y] | X,Y €|K]),
defined by

(u1,u9) = (HAX,Y) ) (w1, u9)) = da(ur © us)),
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and

iga: {0} — K[A,I], defined by (0 — ta).

Proof. Let A be any object of the category K. Then the functor properties
of HA are well-known.

Ad (F~): Each ordered pair (ui,u2) € K[A, X] x K[A,Y], X, Y € |K],
determines uniquely the morphism d4(u; ® ug) € K[A, X @ Y]. Conversely,
each morphism u € K[A, X ® Y] determines the both morphisms up{(’y €
KA, X], upy?” € K[A, Y] and d(u ®uQ)p;-X’Y = u,; for i = 1,2 shows that

HA(X,Y) is an isomorphism in Set.
Ad (FI): In any dts-category, the set K[A,I] consists of one element only,

therefore the only total function iya from I°¢* = {})} onto THA = K[A,I]

is an isomorphism in Set and 21_{1;; = ti?fA.

Ad (FA): Let w € XHA, v € YHA, w € ZH* be arbitrary morphisms,
X,Y, Z € |[K|. Then one has

(03514 y 112 2 (HAXY) x 15500 ) HAX @Y, 2) ) (u, (0, 0))

= ((HA(X,Y) x 1558 ) HAX @Y, 2)) (1, v), w))
= HAMX @Y, Z)((da(u ® v),w)) = da(da(u® v) @ w)
and, on the other hand,
(1580 % HAY, 2)) HAX,Y @ Z)(axy.2HY) ) (1, (v,0)))

= (EZ<X, Y ® Z>(aX,Y,ZHA)> ((u, d(v @ w)))

= (axy,zH")(da(u @ da(v ® w)))
= dA(u &® dA(U &® w))aX,yyz = dA(lA X dA)aA,AyA((u ® 7)) X w)
=da(da(u®v) ®@w),

hence
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a?(e;IA,YHA,ZHA (HA<X’Y> x 155 HA(X ®YaZ>)

= (1580 x HAY, Z))HMNX,Y ® Z)(ax,y,z HY).
Ad (FR): The morphism set K[A,I] consists in each dts-category of one
element ¢4 only. So one obtains for each morphism u € K[A, X] = XH4,
X e |K],
(A, 1) (rx H) (s £4)) = (rc HA) (da(u @ £4))

=da(u®ty)rxy = da(la@ta)rau = u
and

(1550 x 55 ) 5 2 ) (s ta)) = 75584 (4, 0)) = w,

thus the validity of (FR).

Ad (FS): Since for all u € XHA, v € YHA, X, Y € |K|, the morphisms

(HAX, Y ) (sxy HA) (u,0) = (sxy HA) (da(u@v)) = da(u@v)sxy
= dASA’A(U ®u) =da(v®u) and
(S§62A7YHA'/HT4<}/’ X>)((U,U)) = (E[T4<Y,X>)((U,u)) = dA(U X u)

coincide, the condition is fulfilled.

Ad (FM): The equation
((pHAxwHA)HAY, V) (1,0)) = (HAY,V)) (wp, 08)) = da(up@vy)
= da(wev)(p @ v) = (¢ @Y H)(da(u®v))

= (HAX,U)((p @ 0)HA) ) ((1,0))
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is valid for all objects X, Y, U, V € | K| and all morphisms ¢ € K[X,Y], ¢ €
K[U,V],u € K[A,X] = XH", v € K[A,U] = UH*, therefore (FM) is an
identity.

Ad (FD): For each X € |K| and all u € X H* one has

(dx HA) (u) =udx = da(ueu) = HAXX, X)((u,u)) = (d5 . HA(X, X)) ().
|

The argumentation above shows that the proof of some properties only need
the d-monoidal-symmetric structure of the category K, so one obtains:

Corollary 3.2. Let K*® be a ds-category. Then there is to each pair (X,
of objects of K* and each Hom-functor H4 : K* — Set a function HA(X,
K[A, X|xK[A,Y] — K[A, X®Y] such that the conditions (FA), (FS), (FM),
(FD) are valid. |

Every dts-category contains the distinguished terminal object I, i.e. that
the set K[X,I] consists of exatly one element tx. Conversely, in general
there are no information about the sets K[I, X]. There are possibly objects
X in K such that K[I, X| = 0. The dts-category Set has the property that
Set[I, X] contains at least one element for each X # ().

Let (K°®,d) be a ds-category containing an initial object O with the
property
(01) VX elK| O X=0=X®O0),

then every morphism set K[O, X] constists of exactly one element, say zx.
In this case, (K*,d) has the property
(22) VA,B,X € |K|,Vy € K[A, B]

(zap =2 N p®2zx = 2Bgx N 2x ® Y = ZX@B)-

Proposition 3.3. Let K be a ds-category containing an initial object O
with the property (O1). Then this object O induces a special d-monoidal
functor HO : K — Set as follows:
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VX € |K| (XHC = {z2x)),
VU,V € |K| Vo € K[U,V] (¢H? : K[0,U] — K[O, V]
(zu — zup = 2v)),

VXY € |K| (HO(X,Y): K[0,X] x K[0,Y] - K[0,X ®Y]

((2x,2v) — ZX®Y));

iHo : {@} - K[O,I] (@ — 21).

Proof. Since every morphism set K[O, X| consists of exactly one element
zx for each object X € | K|, all sets of the form K[O, X| x K[O, Y] consist of
one element too. Therefore, all functions HY(X,Y’) are isomorphisms, the
function igo is an isomorphism and all conditions (FA), (FR), (FS), (FM),
and (FD) are fulfilled. |

Remark that generally the Hom-functor H* is not a d-monoidal functor for
arbitrary dhts-categories. To each element (up,us) € K[A, X1] x K[A, X5]
there is in fact allways the morphism d4(u; ® ug) € K[A, X; ® X3, but
d(u; ® u2)p{(1’X2 has not to be equal to w; (i = 1,2) in general, there-
fore, HA(X7, X2) must not be an isomorphism in Par. The concept of a
subidenty in dhts-categories introduced by J. Schreckenberger ([3]) allows
a modification of the concept of a Hom-functor such that one obtains a

d-monoidal functor.

4. FUNCTORS DEFINED BY SUBIDENTITIES

Theorem 4.1 ([3]). Let K be a dhts-category. Each subidentity e <14 in
K determines a d-monoidal functor (H®, H®,ige) : K — Par by

(1) XH¢:={ue K[A X]|alu) =e}, X €|K]|,
(2) (p: X —Y)H®:=pH®: XH® — YH¢(€ Par), defined by
(pH®)(u) :=up foru € D(pH®) :={u € XH® | ua(p) = u},

(3) HX,Y): XH®xYH®— (X®Y)H®, defined by

(u1,uz) — HEX,Y)((u1,u2)) = da(u; @ ug),
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(4)  ige: {0} = JPar _ THe = {ue K[A,I] | a(u) =e}.

Proof. Obviosly, up € K[A,Y] and a(up) = a(ua(y)) = a(u) = e (with
respect to (al7) and (2)) shows up € X' He.

1xH® is the identical function idxge of XH€ since D(1xH®) = {u €
XH® | uly = u} = XH® and (1xH®)(u) = ulx = u for all u € XH®,
ie. 1xH® =idxpye.
Let p € K[X,Y], ¥ € K[Y, Z] be arbitrary morphisms in K. Then, by the
properties of the subidenties and the defining conditions above, (¢i)H® =
(pH®)(ypH®) because of

u€ D((p)H®) = a(u) =e N ua(py) =u

= ua(p) = a(up)u = a(ua(p)p)u = a(ua(py)a(p))u

= a(ua(py))u = a(u)u =u
A upa(y) = ua(pp)e = up A afup) = a(ua(p)) = a(u) = ¢

=u € D(pH®) N up € DWH®) = ue D((pH®)(YH®));

u € D((pH®)(YH®)) = u € D(pH®) N up € D(YH®)

=au)=e AN ua(p) =u A alup) =e A upa(h) = up

= ua(py) = a(up)u = a(upa(V))u = a(up)u = ua(p) = u

= u € D((¢y)H*);

u € D((py)H) = D((pH®) (¢ H))

= ((p)H)(u) = u(py) = (up)y = (¢H) () = ((0H) (P H®))(u).

Therefore, H¢ is a functor from K into Par.
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To apply Theorem 2.7, one has to prove the conditions (Fx), (FI*), and
(FM*) as follows:

Ad (Fx): The function (H)"(X,Y) = df@n (0" H® x py" H°)
fulfils

(H(X,Y)) () = (upl™”,up)™) € XHE x Y H®

for eachu € (X®Y')H¢, because ofa(p])-{’y) =lxgy, j=1,2,ie. (H)"(X,Y)
is always a total function from (X ® Y)H€ into XH® x Y H®.

Each ordered pair (uj,us) € XH® x YH® determines uniquely the mor-
phism da(u; ® ug) € K[A, X ® Y]. Moreover, this morphism belongs to
(X @ Y)H¢®, since a(da(u; @ uz)) = a(uy)a(uz) = ee = e ((al9)), and
da(ui ®ug) € D(df)?%y)ge (pY He x p3Y H®)) due to a(pf’y) = lxgy and
da(ur @ ug)p" = a(ug)ur = aur)us = u, da(ur @ ug)py” = alur)ug =
a(uz)ug = ug, hence (H)*(X,Y)(da(u1 ® u2)) = (u1,u2), i.e. (H®)*(X,Y)
is a surjective function.

The property dA(upf(’Y ® upg(’y) = udX®y(pf’Y ®p§’y) = u shows in con-
clusion that (H¢)*(X,Y’) is an isomorphism in Par for all objects X, Y €
K.

Ad (FI*): The set TH¢ = {u € K[A,I] | a(u) = e} is the one element set
{eta}, since

alety) = alea(ty)) = ale) =e

and a(u) = e implies
eta =a(u)ty =ds(lg® u)pf[tA =da(ta®@u)(lr @ tr)ry
=dA(ta@u)(t; 1)l =da(ta ® 14)lau = u.

Therefore, ige : 179" = {(} — {ets} = IH®, defined by §) + ety4, is an

isomorphism in Par and ige = (t£40)~ 1,
p IH

Ad (FM*): For every morphism u € (X ® Y)H® and all morphisms ¢ €
K[X,U], ¢ € K[Y,V] one obtains



68 H.J. VOGEL
(HO (X, Y ) (oH < H)) (u) = (pHxpHE) ((p1Y HE) (), (p3" HE) ()

= (pH® x pH) (upt™" upy ™) = (upd o, upy ¥ )
and
((p @) H(H) (U, V))(u) = (H)U, V) (u(e @ ¢))
= (up@)pi" u(p@)py") = (ule@vtyIry, ulpty ©¥)ly)
= (u(a(p)p ® a(¥)ty)ry, u(a(p)tx ® a(y))ly)
= (u(a(p) ® a())(1x @ ty)rx e, u(aly) © a(y))(tx @ 1y)lyy)
= (ualp ®¥))py " o uale @ Yy ¥)
= (upy " o, upy W),
respectively, hence
(H)(X,Y))(pH x pH®) = (¢ @ )H(H)" (U, V)

for all morphisms ¢, ¥ € K.

The application of Theorem 2.7 shows that (H®, ((H¢)*)™!, (t7a0)~1) is
a d-monoidal functor. n

Proposition 4.2 (see [3]). The d-monoidal functor (H®, H ige) : K —
Par is even dht-monoidal if the conditions

etoa s and YX €|K|\{O} (Tk[I,X]={peK[I,X] | ptx=tr} #0)

are fulfilled.

Proof. It remains to show the condition (FZ).

Since e # 04,4, we have A # O. OH* is a subset of K[A,O] = {040}
Because of a(04,0) = 04,4 # e, the set OH® is the empty set in Par.



ON GENERALIZED Hom-FUNCTORS OF CERTAIN SYMMETRIC ... 69

Now let X # O any object of K. Then

Tx[A X] =A{p € K[A, X] | ptx =ta} #0,

since Y € Tx[I, X] (a(tay) = a(taa(y)) = altalr) = 14), hence tay) €
Tk[A, X]. Then et 41 belongs by a(eta1)) = e to XH®, hence XH® # (). =

Remark that in every dhts-category K having the property
VX € [KI\{O} (Tkll, X] ={p € K[I, X] | ptx =t1} #0)
one obtains by the same reasons as in the proof above
VX, Y € [K[\{O} (Tk[X,Y]#0).

Since the set Ex(A) of all subidentities of an object A in a dhts-category
K forms a semilattice with maximal element 1,4 and minimal element o4 4,
there are two particular cases for functors H¢, namely e = 04,4 and e = 14,
respectively.

Corollary 4.3. Let K be any dhts-category. Then each object A € |K]|
determines the trivial ds-functor (H°AA, HOAA jyoaa) : K — Par defined
by

VX € |K| (XH44 = {oax}),
VX, Y € |K|Vp € K[X,Y] (pH*44 : {oax} — {oay}
OAX F 0A4.X)s
VX, Y € |K| (HAA(X,Y) : XHOAA x YHOAA — (X @ Y)HOAA,
(04,x,04y) — 04 x3Y),

igoana {0} — TH®44, ) — oy47.

Proof. If e = 04,4, then XH® = {u € K[A, X] | o(u) = e = o044} =
{oa x} for all X € |K]| since o(u) = 04,4 = u = 04 x by (ab). Therefore,
all sets X H°4.4 are one element sets and all functions being in consideration
are isomorphisms between one element sets. [
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Corollary 4.4. Let K be a dhts-category such that
VX € [KI\{O} (Tk[I, X] ={p e K[I,X] | ptx =11} #0).

Then (H'A, H'a ey ,) : K — Par is a dht-monoidal functor for each object
Ae|K|\{O} which maps every object X € |K|\{O} to the set Tx[A, X]| of all
total morphisms u € K[A, X], i.e. the usual Hom-functor H* : Txr — Set
is a restriction of H'A : K — Par.

Proof. It remains to show that pH'" : Tk[A, X] — Tk[A,Y] is a total
function for all p € T[X,Y], X, Y € |K|\ {O}. Because of (a4), one has
a(p) = 1x for ¢ € Tk[X,Y], hence D(pH') = {u € Tk|[A, X] | ua(p) =
uly = u} = Tx[X,Y], thus oH id a total function. |

The functors H€ related to subidentities e in dhts-categories represent an
important tool for the construction of full, faithful, and representative func-
tors from a dhts-category K into Par, see the papers by J. Schreckenberger
[3] and [4].
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