# POWER-ORDERED SETS 

Martin R. Goldstern<br>Technische Universität Wien Institut für Algebra und Computermathematik Wiedner Hauptstraße 8-10/118, A-1040 Wien, Austria<br>e-mail: martin.goldstern@tuwien.ac.at<br>http://www.tuwien.ac.at/goldstern/<br>AND<br>Dietmar Schweigert<br>FB Mathematik, Universität Kaiserslautern<br>Postfach 3049, D-67653 Kaiserslautern, Germany<br>e-mail: schweigert@mathematik.uni-kl.de http://www.mathematik.uni-kl.de/~schweige/


#### Abstract

We define a natural ordering on the power set $\mathfrak{P}(Q)$ of any finite partial order $Q$, and we characterize those partial orders $Q$ for which $\mathfrak{P}(Q)$ is a distributive lattice under that ordering.

Keywords: partial order, chain, linear order, antichain, power set, power-ordered set, distributive lattice, anti-automorphism.


2000 AMS Mathematics Subject Classifications: 06A06, O6A10.

## 1. Introduction

For an unstructured set $X$, the power set $\mathfrak{P}(X)$, equipped with the partial order of inclusion, is a Boolean algebra. When we consider a partially ordered (finite) set ( $Q, \leq$ ), there is another (perhaps more natural) ordering on $\mathfrak{P}(Q)$ :

For $A, B \subseteq Q$, let $A \leq B$ iff there is a 1-1 map $\pi: A \rightarrow B$ with $a \leq \pi(a)$ for all $a \in A$.
(For infinite sets this relation $\leq$ is in general not antisymmetric.)
We call the structure $(\mathfrak{P}(Q), \leq)$ a "power-ordered set". We will show that $(\mathfrak{P}(Q), \leq)$ is a distributive lattice iff $Q$ is a chain or a horizontal sum (see Definition 3.1) of chains. We also remark that the complement operation on $\mathfrak{P}(X)$ is an involutory anti-automorphism of $(\mathfrak{P}(Q), \leq)$.

## 2. Powers of chains

Let $L$ be a linear order. We will show that $\mathfrak{P}(L)$ is a distributive lattice. Our proof also gives an explicit description of the lattice operations of the power-ordered set $\mathfrak{P}(L)$ by representing $\mathfrak{P}(L)$ as a sublattice of a product of chains.

Setup 2.1. Let $L$ be a linear order, $n \in\{1,2, \ldots\}$. Let $-\infty \notin L$, and let $\bar{L}:=\{-\infty\} \cup L$, with the obvious order.

Let $L^{\langle n\rangle}$ be the set of all $n$-tuples $\left(x_{1}, \ldots, x_{n}\right) \in \bar{L}^{n}$ which satisfy:

- $x_{1} \geq x_{2} \geq \cdots \geq x_{n}$;
- for all $\ell \in\{1, \ldots, n-1\}$ : if $x_{\ell} \neq-\infty$, then $x_{\ell}>x_{\ell+1}$.

That is, we consider all strictly decreasing $k$-tuples from $L$, for $0 \leq k \leq n$, but we make them into $n$-tuples by appending the necessary number of copies of $-\infty$.

Fact 2.2. Let $L, \bar{L}, L^{\langle n\rangle}$ be as above. Then

- $\bar{L}^{n}$, as a product of distributive lattices, is again a distributive lattice
- $L^{\langle n\rangle}$ is a sublattice of $\bar{L}^{n}$.

Lemma 2.3. Let $L$ be a finite linear order.

1. Let $D, E \subseteq L$ be nonempty sets of the same cardinality. Then we can inductively analyse the relation $D \leq E$ in the power-ordered set $\mathfrak{P}(L)$ as follows:

$$
D \leq E \Leftrightarrow(D \backslash\{\max D\}) \leq(E \backslash\{\max E\}) \text { and } \max D \leq \max E
$$

2. If $D$ and $E$ are enumerated in decreasing order by $d_{1}>\cdots>d_{k}$ and $e_{1}>\cdots>e_{k}$, respectively, then

$$
D \leq E \Leftrightarrow d_{1} \leq e_{1} \& \cdots \& d_{k} \leq e_{k}
$$

## Proof.

Proof of $(1): \Leftarrow$ is clear. Conversely, assume that $\pi$ witnesses $D \leq E$.
Define a function $\hat{\pi}: D \rightarrow E$ as follows: if $\pi(\max D)=\max E$, then $\hat{\pi}=\pi$. Otherwise, let $\pi\left(x_{0}\right)=\max E$, for some (unique) $x_{0} \in$ $D \backslash\{\max D\}$ and let $y_{0}=\pi(\max D)$. Define $\hat{\pi}\left(x_{0}\right)=y_{0}, \hat{\pi}(\max D)=$ $\max E=\pi\left(x_{0}\right)$, and $\hat{\pi}(x)=\pi(x)$ otherwise.

Then also $\hat{\pi}$ witnesses $D \leq E$. [Why? We have to check $x_{0} \leq \hat{\pi}\left(x_{0}\right)$. This follows from $x_{0} \leq \max D \leq \pi(\max D)=\hat{\pi}\left(x_{0}\right)$.] Moreover, we have $\hat{\pi}(\max D)=\max E$. Now let $\pi_{0}: D \backslash\{\max D\} \rightarrow E \backslash\{\max E\}$ be the restriction of $\pi$. Then $\pi_{0}$ witnesses $(D \backslash\{\max D\}) \leq(E \backslash\{\max E\})$.

Proof of (2) : This follows from (1) by induction.

Fact 2.4. If $E \subseteq L$, and $E$ is enumerated in decreasing order by $e_{1}>\cdots>e_{k}$, then:

1. for any $\ell \leq k$, every $\ell$-element subset of $E$ is $\leq\left\{e_{1}, \ldots, e_{\ell}\right\}$;
2. for any $\ell \leq k$, and any $\ell$-element set $D \subseteq L$, we have $D \leq E$ iff $D \leq\left\{e_{1}, \ldots, e_{\ell}\right\}$.

This fact allows us to reduce the question " $A \leq B$ " to a question " $A \leq B^{\prime \prime}$ ", where $B^{\prime}$ has the same number of elements as $A$. Lemma 3.3 can then be used to compare $A$ and $B^{\prime}$ :

Conclusion 2.5. Let $L$ be a finite linear order with $n$ elements, and let $L^{\langle n\rangle}$ be defined as above. Then $\mathfrak{P}(L)$ is (as a partial order, hence also as a lattice) isomorphic to $L^{\langle n\rangle}$.

So $\mathfrak{P}(L)$ is a distributive lattice.
We can compute meet and join in $\mathfrak{P}(L)$ as follows: If $D=\left\{d_{1}, \ldots, d_{\ell}\right\} \subseteq$ $L$ and $E=\left\{e_{1}, \ldots, e_{k}\right\} \subseteq L$, both in decreasing order, and $\ell \leq k$, then

- $D \wedge E=\left\{d_{1} \wedge e_{1}, \ldots, d_{\ell} \wedge e_{\ell}\right\} ;$
- $D \vee E=\left\{d_{1} \vee e_{1}, \ldots, d_{\ell} \vee e_{\ell}, e_{\ell+1}, \ldots, e_{k}\right\}$.

Proof. The map $h:\left(x_{1}, \ldots, x_{n}\right) \mapsto\left\{x_{1}, \ldots, x_{n}\right\} \backslash\{-\infty\}$ is a bijection from $L^{\langle n\rangle}$ onto $\mathfrak{P}(L)$. We have to check that $h$ and $h^{-1}$ preserve order:

Let $\left(d_{1}, \ldots, d_{n}\right),\left(e_{1}, \ldots, e_{n}\right) \in L^{\langle n\rangle}$, and let $D:=h\left(d_{1}, \ldots, d_{n}\right), E:=$ $h\left(e_{1}, \ldots, e_{n}\right)$. If $\left(d_{1}, \ldots, d_{n}\right) \leq\left(e_{1}, \ldots, e_{n}\right)$ in the product partial order, then the map $\pi: D \rightarrow E$ defined by $\pi\left(d_{i}\right)=e_{i}$ for $d_{i} \neq-\infty$ witnesses $D \leq E$. (Note that $d_{i} \neq-\infty$ implies $e_{i} \neq-\infty$.)

Conversely, if $D \leq E$, then Lemma 2.3 and Fact 2.4 show that $\left(d_{1}, \ldots, d_{n}\right)$ $\leq\left(e_{1}, \ldots, e_{n}\right)$.

## 3. Sums of chains

Definition 3.1. Let $\left(Q_{1}, \leq_{1}\right)$ and $\left(Q_{2}, \leq_{2}\right)$ be disjoint partially ordered sets. The "horizontal sum" of $Q_{1}$ and $Q_{2}$ is the following partial order $(Q, \leq)$ :
$Q=Q_{1} \cup Q_{2}$, and $\leq=\leq_{1} \cup \leq_{2}$, i.e., $x \leq y$ in $Q$ iff for some
$\ell \in\{1,2\}$ we have: $x, y \in Q_{\ell}$ and $x \leq_{\ell} y$.
We write $\left(Q_{1}, \leq_{1}\right)+\left(Q_{2}, \leq_{2}\right)$ [or just $\left.Q_{1}+Q_{2}\right]$ for the horizontal sum of $Q_{1}$ and $Q_{2}$.

Fact 3.2. Let $Q=Q_{1}+Q_{2}$. Then the partial order $\mathfrak{P}(Q)$ is naturally isomorphic to the product $\mathfrak{P}\left(Q_{1}\right) \times \mathfrak{P}\left(Q_{2}\right)$ (with the pointwise or "product" partial order).

Proof. The map $\left(E_{1}, E_{2}\right) \mapsto E_{1} \cup E_{2}$ is a bijection from $\mathfrak{P}\left(Q_{1}\right) \times \mathfrak{P}\left(Q_{2}\right)$ onto $\mathfrak{P}\left(Q_{1}+Q_{2}\right)$, and it is easy to check that it is also an order isomorphism.

Definition 3.3. We write V for the 3 -element partial order with a unique minimal and two maximal elements, and $\Lambda$ for the dual order.

Lemma 3.4. If $Q$ is a partial order containing an isomorphic copy of $\Lambda$, then the power-ordered set $\mathfrak{P}(Q)$ is not a lattice.


Proof. Let $a<b, c<b$ in $Q, a$ and $c$ be incomparable. We will show that in the partial order $\mathfrak{P}(Q)$ the elements $\{a, c\}$ and $\{b\}$ have no least upper bound.

Assume $E=\{a, c\} \vee\{b\}$. So, we have:

1. $\{a, c\} \leq E$.
2. $\{b\} \leq E$.
3. $E \leq\{a, b\}$ as $\{a, b\}$ is also an upper bound.
4. $E \leq\{c, b\}$, similarly.
5. By (1) and (3), $E$ has exactly 2 elements.
6. By (3), both elements of $E$ are $\leq b$, so by (2), $b \in E$.
7. Let $E=\{b, e\}, e \neq b$.
8. $e \leq a$, as $\{b, e\} \leq\{a, b\}$ (by (3)).
9. $e \leq c$, similarly. Hence $e<a, e<c$.
10. $a \leq e$ or $c \leq e$, as $\{a, c\} \leq\{b, e\}$ (by (1)).

Now (9) and (10) yield the desired contradiction.

Lemma 3.5. If $Q$ is a finite partial order containing an isomorphic copy of V , then $\mathfrak{P}(Q)$ is either not a lattice, or a nondistributive lattice.

Proof. Assume that $\mathfrak{P}(Q)$ is a lattice. By Lemma 3.4, every principal ideal (a] in $Q$ is linearly ordered (and finite, since $Q$ is finite). Hence, for any $a, c \in Q,(a] \cap(c]$ is either empty or has a greatest element, in other words: if $a$ and $c$ have a common lower bound, then they have a greatest lower bound.

Assume that V embeds into $Q$, then there are incomparable elements $a, c$ in $Q$ with a greatest lower bound $b=a \wedge c$. As $\Lambda$ does not embed into $Q$, $a$ and $c$ have no common upper bound, hence in $\mathfrak{P}(Q)$ we have


$$
\{a\} \vee\{c\}=\{a, c\}
$$

Also, $b=a \wedge c$ in $Q$ implies that in the lattice $\mathfrak{P}(Q)$ we have

$$
\{a\} \wedge\{b, c\}=\{b\} .
$$

Proof: If $\{x\} \leq\{a\}$ and $\{x\} \leq\{b, c\}$, then $x \leq a$ and $x \leq c$, so $x \leq b$, $\{x\} \leq\{b\}$.

Hence the pentagon

is a sublattice of $\mathfrak{P}(Q)$, so $\mathfrak{P}(Q)$ is not distributive.

Remark 3.6. $\mathfrak{P}(\mathrm{V})$ is in fact a lattice. In contrast, $\mathfrak{P}(\Lambda)$ is not a lattice.
Conclusion 3.7. Let $Q$ be a partial order. The following are equivalent:

1. Comparability is an equivalence relation on $Q$;
2. $Q$ is a horizontal sum of chains;
3. Neither V nor $\Lambda$ embeds into $Q$;
4. $\mathfrak{P}(Q)$ is a distributive lattice.

Proof. (1) $\Leftrightarrow$ (2): The chains are just the equivalence classes.
$(1) \Leftrightarrow(3)$ is clear.
$(2) \Rightarrow(4)$ was proved in 2.5 .
$(4) \Rightarrow(3)$ follows from 3.4 and 3.5 .

## 4. Complements

Fact 4.1. Let $Q$ be a partial order, $A, B \subseteq Q$. Then:

$$
A \leq B \text { iff } A \backslash B \leq B \backslash A .
$$

Proof. Let $A_{0}=A \backslash B=A \backslash(A \cap B), B_{0}=B \backslash A$.
If $\pi_{0}: A_{0} \rightarrow B_{0}$ witnesses $A_{0} \leq B_{0}$, then we can extend $\pi_{0}$ by the identity function on $A \cap B$ to a map $\pi: A \rightarrow B$ witnessing $A \leq B$.

Conversely, let $\pi: A \rightarrow B$ witness $A \leq B$. Let $\pi^{n}$ be the $n$-fold iterate of $\pi$ (a partial function from $A$ to $B$; e.g., $\pi^{2}(a)$ is only defined if $\left.\pi(a) \in A \cap B\right)$.

For each $a \in A_{0}=A \backslash B$ let $n_{a} \geq 1$ be the first natural number such that $\pi^{n_{a}}(a) \notin A$. [Why does $n_{a}$ exist? Note that $a$ is not a fixpoint of $\pi$, $\pi(a) \neq a$, so no $\pi^{n}(a)$ can be a fixpoint of $\pi$, hence all $\pi^{n}(a)$ are distinct: $a<\pi(a)<\cdots$. But $A$ is finite, so for some $n$ we must have $\pi^{n}(a) \notin A$.]

Now define (for each $a \in A_{0}$ ): $\hat{\pi}(a)=\pi^{n_{a}}(a)$. Clearly $\hat{\pi}: A_{0} \rightarrow B_{0}$, and $a<\hat{\pi}(a)$. To show that $\hat{\pi}$ is 1-1, assume $\hat{\pi}(a)=\hat{\pi}\left(a^{\prime}\right)$, and $n_{a^{\prime}}=n_{a}+\ell$ for some $\ell \geq 0$. Since $\pi$ is 1-1, $\pi^{n_{a}}(a)=\pi^{n_{a}+\ell}\left(a^{\prime}\right)$ implies $a=\pi^{\ell}\left(a^{\prime}\right)$, so since $a \notin B$ we must have $\ell=0, a=a^{\prime}$.

Lemma 4.2. Let $Q$ be a finite partial order. We will write $-X$ for $Q \backslash X$. Let $A, B \subseteq Q$. Then: $A \leq B$ iff $-B \leq-A$.

Proof. By fact 4.1,

$$
-B \leq-A \Leftrightarrow-B \backslash(-A) \leq-A \backslash(-B)
$$

Now $-B \backslash(-A)=A \backslash B$, similarly $-A \backslash(-B)=B \backslash A$, so we can rewrite this as

$$
-B \leq-A \Leftrightarrow A \backslash B \leq B \backslash A
$$

Again using Fact 4.1, we see that this is equivalent to $A \leq B$.

Hence the complement operation is an involutory anti-automorphism of $\mathfrak{P}(Q)$. If $Q$ is an antichain, then $A \leq B$ iff $A \subseteq B$, so the power-ordered set $\mathfrak{P}(Q)$ is a Boolean algebra.

In general, the equation $A \wedge(-A)=\emptyset$ need not hold in the powerordered set $\mathfrak{P}(Q)$. Indeed, if $a<b$ in $Q$, then $\{a\} \leq\{b\} \leq-\{a\}$.

## References

[1] J.C. Abbott, Sets, Lattices and Boolean Algebras, Allyn \& Bacon, Inc., Boston, MA, 1969
[2] J. Naggers and H.S. Kim, Basic Posets, World Scientific Publ. Co., River Edge, NJ, 1998.

