Discussiones Mathematicae General Algebra and Applications 22(2002) 39–46

POWER-ORDERED SETS

MARTIN R. GOLDSTERN

Technische Universität Wien Institut für Algebra und Computermathematik Wiedner Hauptstraße 8–10/118, A–1040 Wien, Austria

> e-mail: martin.goldstern@tuwien.ac.at http://www.tuwien.ac.at/goldstern/

> > AND

DIETMAR SCHWEIGERT

FB Mathematik, Universität Kaiserslautern Postfach 3049, D-67653 Kaiserslautern, Germany e-mail: schweigert@mathematik.uni-kl.de http://www.mathematik.uni-kl.de/~schweige/

Abstract

We define a natural ordering on the power set $\mathfrak{P}(Q)$ of any finite partial order Q, and we characterize those partial orders Q for which $\mathfrak{P}(Q)$ is a distributive lattice under that ordering.

Keywords: partial order, chain, linear order, antichain, power set, power-ordered set, distributive lattice, anti-automorphism.

2000 AMS Mathematics Subject Classifications: 06A06, O6A10.

1. INTRODUCTION

For an unstructured set X, the power set $\mathfrak{P}(X)$, equipped with the partial order of inclusion, is a Boolean algebra. When we consider a partially ordered (finite) set (Q, \leq) , there is another (perhaps more natural) ordering on $\mathfrak{P}(Q)$:

For $A, B \subseteq Q$, let $A \leq B$ iff there is a 1-1 map $\pi : A \to B$ with $a \leq \pi(a)$ for all $a \in A$.

(For infinite sets this relation \leq is in general not antisymmetric.)

We call the structure $(\mathfrak{P}(Q), \leq)$ a "power-ordered set". We will show that $(\mathfrak{P}(Q), \leq)$ is a distributive lattice iff Q is a chain or a horizontal sum (see Definition 3.1) of chains. We also remark that the complement operation on $\mathfrak{P}(X)$ is an involutory anti-automorphism of $(\mathfrak{P}(Q), \leq)$.

2. Powers of chains

Let L be a linear order. We will show that $\mathfrak{P}(L)$ is a distributive lattice. Our proof also gives an explicit description of the lattice operations of the power-ordered set $\mathfrak{P}(L)$ by representing $\mathfrak{P}(L)$ as a sublattice of a product of chains.

Setup 2.1. Let *L* be a linear order, $n \in \{1, 2, ...\}$. Let $-\infty \notin L$, and let $\overline{L} := \{-\infty\} \cup L$, with the obvious order.

Let $L^{\langle n \rangle}$ be the set of all *n*-tuples $(x_1, \ldots, x_n) \in \overline{L}^n$ which satisfy:

- $x_1 \ge x_2 \ge \cdots \ge x_n;$
- for all $\ell \in \{1, \ldots, n-1\}$: if $x_{\ell} \neq -\infty$, then $x_{\ell} > x_{\ell+1}$.

That is, we consider all strictly decreasing k-tuples from L, for $0 \le k \le n$, but we make them into n-tuples by appending the necessary number of copies of $-\infty$.

Fact 2.2. Let L, \overline{L} , $L^{\langle n \rangle}$ be as above. Then

- \overline{L}^n , as a product of distributive lattices, is again a distributive lattice
- $L^{\langle n \rangle}$ is a sublattice of \bar{L}^n .

Lemma 2.3. Let L be a finite linear order.

1. Let $D, E \subseteq L$ be nonempty sets of the same cardinality. Then we can inductively analyse the relation $D \leq E$ in the power-ordered set $\mathfrak{P}(L)$ as follows:

 $D \leq E \iff (D \setminus \{\max D\}) \leq (E \setminus \{\max E\}) \text{ and } \max D \leq \max E;$

2. If D and E are enumerated in decreasing order by $d_1 > \cdots > d_k$ and $e_1 > \cdots > e_k$, respectively, then

$$D \leq E \Leftrightarrow d_1 \leq e_1 \& \cdots \& d_k \leq e_k.$$

Proof.

Proof of (1): \Leftarrow is clear. Conversely, assume that π witnesses $D \leq E$.

Define a function $\hat{\pi} : D \to E$ as follows: if $\pi(\max D) = \max E$, then $\hat{\pi} = \pi$. Otherwise, let $\pi(x_0) = \max E$, for some (unique) $x_0 \in D \setminus \{\max D\}$ and let $y_0 = \pi(\max D)$. Define $\hat{\pi}(x_0) = y_0$, $\hat{\pi}(\max D) = \max E = \pi(x_0)$, and $\hat{\pi}(x) = \pi(x)$ otherwise.

Then also $\hat{\pi}$ witnesses $D \leq E$. [Why? We have to check $x_0 \leq \hat{\pi}(x_0)$. This follows from $x_0 \leq \max D \leq \pi(\max D) = \hat{\pi}(x_0)$.] Moreover, we have $\hat{\pi}(\max D) = \max E$. Now let $\pi_0 : D \setminus \{\max D\} \to E \setminus \{\max E\}$ be the restriction of π . Then π_0 witnesses $(D \setminus \{\max D\}) \leq (E \setminus \{\max E\})$.

Proof of (2): This follows from (1) by induction.

Fact 2.4. If $E \subseteq L$, and E is enumerated in decreasing order by $e_1 > \cdots > e_k$, then:

- 1. for any $\ell \leq k$, every ℓ -element subset of E is $\leq \{e_1, \ldots, e_\ell\}$;
- 2. for any $\ell \leq k$, and any ℓ -element set $D \subseteq L$, we have $D \leq E$ iff $D \leq \{e_1, \ldots, e_\ell\}.$

This fact allows us to reduce the question " $A \leq B$ " to a question " $A \leq B'$ ", where B' has the same number of elements as A. Lemma 3.3 can then be used to compare A and B':

Conclusion 2.5. Let L be a finite linear order with n elements, and let $L^{\langle n \rangle}$ be defined as above. Then $\mathfrak{P}(L)$ is (as a partial order, hence also as a lattice) isomorphic to $L^{\langle n \rangle}$.

So $\mathfrak{P}(L)$ is a distributive lattice.

We can compute meet and join in $\mathfrak{P}(L)$ as follows: If $D = \{d_1, \ldots, d_\ell\} \subseteq L$ and $E = \{e_1, \ldots, e_k\} \subseteq L$, both in decreasing order, and $\ell \leq k$, then

- $D \wedge E = \{d_1 \wedge e_1, \dots, d_\ell \wedge e_\ell\};$
- $D \lor E = \{ d_1 \lor e_1, \dots, d_\ell \lor e_\ell, e_{\ell+1}, \dots, e_k \}.$

Proof. The map $h: (x_1, \ldots, x_n) \mapsto \{x_1, \ldots, x_n\} \setminus \{-\infty\}$ is a bijection from $L^{\langle n \rangle}$ onto $\mathfrak{P}(L)$. We have to check that h and h^{-1} preserve order:

Let $(d_1, \ldots, d_n), (e_1, \ldots, e_n) \in L^{\langle n \rangle}$, and let $D := h(d_1, \ldots, d_n), E := h(e_1, \ldots, e_n)$. If $(d_1, \ldots, d_n) \leq (e_1, \ldots, e_n)$ in the product partial order, then the map $\pi : D \to E$ defined by $\pi(d_i) = e_i$ for $d_i \neq -\infty$ witnesses $D \leq E$. (Note that $d_i \neq -\infty$ implies $e_i \neq -\infty$.)

Conversely, if $D \leq E$, then Lemma 2.3 and Fact 2.4 show that $(d_1, \ldots, d_n) \leq (e_1, \ldots, e_n)$.

3. SUMS OF CHAINS

Definition 3.1. Let (Q_1, \leq_1) and (Q_2, \leq_2) be disjoint partially ordered sets. The "horizontal sum" of Q_1 and Q_2 is the following partial order (Q, \leq) :

 $Q = Q_1 \cup Q_2$, and $\leq = \leq_1 \cup \leq_2$, i.e., $x \leq y$ in Q iff for some

 $\ell \in \{1, 2\}$ we have: $x, y \in Q_{\ell}$ and $x \leq_{\ell} y$.

We write $(Q_1, \leq_1) + (Q_2, \leq_2)$ [or just $Q_1 + Q_2$] for the horizontal sum of Q_1 and Q_2 .

Fact 3.2. Let $Q = Q_1 + Q_2$. Then the partial order $\mathfrak{P}(Q)$ is naturally isomorphic to the product $\mathfrak{P}(Q_1) \times \mathfrak{P}(Q_2)$ (with the pointwise or "product" partial order).

Proof. The map $(E_1, E_2) \mapsto E_1 \cup E_2$ is a bijection from $\mathfrak{P}(Q_1) \times \mathfrak{P}(Q_2)$ onto $\mathfrak{P}(Q_1+Q_2)$, and it is easy to check that it is also an order isomorphism.

Definition 3.3. We write V for the 3-element partial order with a unique minimal and two maximal elements, and Λ for the dual order.

42

Power-ordered sets

Lemma 3.4. If Q is a partial order containing an isomorphic copy of Λ , then the power-ordered set $\mathfrak{P}(Q)$ is not a lattice.

Proof. Let a < b, c < b in Q, a and c be incomparable. We will show that in the partial order $\mathfrak{P}(Q)$ the elements $\{a, c\}$ and $\{b\}$ have no least upper bound.

Assume $E = \{a, c\} \lor \{b\}$. So, we have:

- 1. $\{a, c\} \le E$.
- 2. $\{b\} \le E$.
- 3. $E \leq \{a, b\}$ as $\{a, b\}$ is also an upper bound.
- 4. $E \leq \{c, b\}$, similarly.
- 5. By (1) and (3), E has exactly 2 elements.
- 6. By (3), both elements of E are $\leq b$, so by (2), $b \in E$.
- 7. Let $E = \{b, e\}, e \neq b$.
- 8. $e \le a$, as $\{b, e\} \le \{a, b\}$ (by (3)).
- 9. $e \leq c$, similarly. Hence e < a, e < c.
- 10. $a \le e \text{ or } c \le e$, as $\{a, c\} \le \{b, e\}$ (by (1)).

Now (9) and (10) yield the desired contradiction.

Lemma 3.5. If Q is a finite partial order containing an isomorphic copy of V, then $\mathfrak{P}(Q)$ is either not a lattice, or a nondistributive lattice.

Proof. Assume that $\mathfrak{P}(Q)$ is a lattice. By Lemma 3.4, every principal ideal (a] in Q is linearly ordered (and finite, since Q is finite). Hence, for any $a, c \in Q$, $(a] \cap (c]$ is either empty or has a greatest element, in other words: if a and c have a common lower bound, then they have a greatest lower bound.

Assume that V embeds into Q, then there are incomparable elements a, c in Q with a greatest lower bound $b = a \wedge c$. As Λ does not embed into Q, a and c have no common upper bound, hence in $\mathfrak{P}(Q)$ we have

 $\{a\} \lor \{c\} = \{a, c\}$

Also, $b = a \wedge c$ in Q implies that in the lattice $\mathfrak{P}(Q)$ we have

 $\{a\} \land \{b, c\} = \{b\}.$

Proof: If $\{x\} \le \{a\}$ and $\{x\} \le \{b, c\}$, then $x \le a$ and $x \le c$, so $x \le b$, $\{x\} \le \{b\}$.

Hence the pentagon

is a sublattice of $\mathfrak{P}(Q)$, so $\mathfrak{P}(Q)$ is not distributive.

Conclusion 3.7. Let Q be a partial order. The following are equivalent:

- 1. Comparability is an equivalence relation on Q;
- 2. Q is a horizontal sum of chains;
- 3. Neither V nor Λ embeds into Q;
- 4. $\mathfrak{P}(Q)$ is a distributive lattice.

Proof. (1) \Leftrightarrow (2): The chains are just the equivalence classes.

- $(1) \Leftrightarrow (3)$ is clear.
- $(2) \Rightarrow (4)$ was proved in 2.5.
- $(4) \Rightarrow (3)$ follows from 3.4 and 3.5.

4. Complements

Fact 4.1. Let Q be a partial order, $A, B \subseteq Q$. Then:

$$A \leq B$$
 iff $A \setminus B \leq B \setminus A$.

Proof. Let $A_0 = A \setminus B = A \setminus (A \cap B), B_0 = B \setminus A$.

If $\pi_0 : A_0 \to B_0$ witnesses $A_0 \leq B_0$, then we can extend π_0 by the identity function on $A \cap B$ to a map $\pi : A \to B$ witnessing $A \leq B$.

Conversely, let $\pi : A \to B$ witness $A \leq B$. Let π^n be the *n*-fold iterate of π (a *partial* function from A to B; e.g., $\pi^2(a)$ is only defined if $\pi(a) \in A \cap B$).

For each $a \in A_0 = A \setminus B$ let $n_a \ge 1$ be the first natural number such that $\pi^{n_a}(a) \notin A$. [Why does n_a exist? Note that a is not a fixpoint of π , $\pi(a) \ne a$, so no $\pi^n(a)$ can be a fixpoint of π , hence all $\pi^n(a)$ are distinct: $a < \pi(a) < \cdots$. But A is finite, so for some n we must have $\pi^n(a) \notin A$.]

Now define (for each $a \in A_0$): $\hat{\pi}(a) = \pi^{n_a}(a)$. Clearly $\hat{\pi} : A_0 \to B_0$, and $a < \hat{\pi}(a)$. To show that $\hat{\pi}$ is 1-1, assume $\hat{\pi}(a) = \hat{\pi}(a')$, and $n_{a'} = n_a + \ell$ for some $\ell \ge 0$. Since π is 1-1, $\pi^{n_a}(a) = \pi^{n_a + \ell}(a')$ implies $a = \pi^{\ell}(a')$, so since $a \notin B$ we must have $\ell = 0$, a = a'.

Lemma 4.2. Let Q be a finite partial order. We will write -X for $Q \setminus X$. Let $A, B \subseteq Q$. Then: $A \leq B$ iff $-B \leq -A$.

Proof. By fact 4.1,

$$-B \le -A \iff -B \smallsetminus (-A) \le -A \smallsetminus (-B).$$

Now $-B \setminus (-A) = A \setminus B$, similarly $-A \setminus (-B) = B \setminus A$, so we can rewrite this as

$$-B \leq -A \iff A \smallsetminus B \leq B \smallsetminus A.$$

Again using Fact 4.1, we see that this is equivalent to $A \leq B$.

Hence the complement operation is an involutory anti-automorphism of $\mathfrak{P}(Q)$. If Q is an antichain, then $A \leq B$ iff $A \subseteq B$, so the power-ordered set $\mathfrak{P}(Q)$ is a Boolean algebra.

In general, the equation $A \wedge (-A) = \emptyset$ need not hold in the powerordered set $\mathfrak{P}(Q)$. Indeed, if a < b in Q, then $\{a\} \leq \{b\} \leq -\{a\}$.

References

- J.C. Abbott, Sets, Lattices and Boolean Algebras, Allyn & Bacon, Inc., Boston, MA, 1969
- [2] J. Naggers and H.S. Kim, *Basic Posets*, World Scientific Publ. Co., River Edge, NJ, 1998.

Received 29 January 2002