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Abstract

We define a natural ordering on the power set P(Q) of any finite
partial order Q, and we characterize those partial orders Q for which
P(Q) is a distributive lattice under that ordering.
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1. Introduction

For an unstructured set X, the power set P(X), equipped with the partial
order of inclusion, is a Boolean algebra. When we consider a partially or-
dered (finite) set (Q,≤), there is another (perhaps more natural) ordering
on P(Q):
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For A,B ⊆ Q, let A ≤ B iff there is a 1-1 map π : A → B with
a ≤ π(a) for all a ∈ A.

(For infinite sets this relation ≤ is in general not antisymmetric.)

We call the structure (P(Q),≤) a “power-ordered set”. We will show
that (P(Q),≤) is a distributive lattice iff Q is a chain or a horizontal sum
(see Definition 3.1) of chains. We also remark that the complement operation
on P(X) is an involutory anti-automorphism of (P(Q),≤).

2. Powers of chains

Let L be a linear order. We will show that P(L) is a distributive lattice.
Our proof also gives an explicit description of the lattice operations of the
power-ordered set P(L) by representing P(L) as a sublattice of a product
of chains.

Setup 2.1. Let L be a linear order, n ∈ {1, 2, . . .}. Let −∞ /∈ L, and let
L̄ := {−∞} ∪ L, with the obvious order.

Let L〈n〉 be the set of all n-tuples (x1, . . . , xn) ∈ L̄n which satisfy:

• x1 ≥ x2 ≥ · · · ≥ xn;

• for all ` ∈ {1, . . . , n− 1}: if x` 6= −∞, then x` > x`+1.

That is, we consider all strictly decreasing k-tuples from L, for 0 ≤ k ≤ n,
but we make them into n-tuples by appending the necessary number of
copies of −∞.

Fact 2.2. Let L, L̄, L〈n〉 be as above. Then

• L̄n, as a product of distributive lattices, is again a distributive lattice

• L〈n〉 is a sublattice of L̄n.

Lemma 2.3. Let L be a finite linear order.

1. Let D, E ⊆ L be nonempty sets of the same cardinality. Then we can
inductively analyse the relation D ≤ E in the power-ordered set P(L)
as follows:
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D ≤ E ⇔ (Dr{maxD}) ≤ (Er{maxE}) and maxD ≤ maxE;

2. If D and E are enumerated in decreasing order by d1 > · · · > dk and
e1 > · · · > ek, respectively, then

D ≤ E ⇔ d1 ≤ e1 & · · · & dk ≤ ek.

Proof.
Proof of (1): ⇐ is clear. Conversely, assume that π witnesses D ≤ E.

Define a function π̂ : D → E as follows: if π(maxD) = maxE,
then π̂ = π. Otherwise, let π(x0) = maxE, for some (unique) x0 ∈
Dr{maxD} and let y0 = π(maxD). Define π̂(x0) = y0, π̂(maxD) =
maxE = π(x0), and π̂(x) = π(x) otherwise.

Then also π̂ witnesses D ≤ E. [Why? We have to check x0 ≤ π̂(x0).
This follows from x0 ≤ maxD ≤ π(maxD) = π̂(x0).] Moreover, we have
π̂(maxD) = maxE. Now let π0 : Dr{maxD} → Er{maxE} be the
restriction of π. Then π0 witnesses (Dr{maxD}) ≤ (Er{maxE}).

Proof of (2) : This follows from (1) by induction.

Fact 2.4. If E ⊆ L, and E is enumerated in decreasing order by
e1 > · · · > ek, then:

1. for any ` ≤ k, every `-element subset of E is ≤ {e1, . . . , e`};
2. for any ` ≤ k, and any `-element set D ⊆ L, we have D ≤ E iff

D ≤ {e1, . . . , e`}.

This fact allows us to reduce the question “A ≤ B” to a question “A ≤ B′”,
where B′ has the same number of elements as A. Lemma 3.3 can then be
used to compare A and B′:

Conclusion 2.5. Let L be a finite linear order with n elements, and let
L〈n〉 be defined as above. Then P(L) is (as a partial order, hence also as a
lattice) isomorphic to L〈n〉.

So P(L) is a distributive lattice.
We can compute meet and join in P(L) as follows: If D = {d1, . . . , d`} ⊆

L and E = {e1, . . . , ek} ⊆ L, both in decreasing order, and ` ≤ k, then
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• D ∧ E = {d1 ∧ e1, . . . , d` ∧ e`};

• D ∨ E = {d1 ∨ e1, . . . , d` ∨ e`, e`+1, . . . , ek}.

Proof. The map h : (x1, . . . , xn) 7→ {x1, . . . , xn}r{−∞} is a bijection from
L〈n〉 onto P(L). We have to check that h and h−1 preserve order:

Let (d1, . . . , dn), (e1, . . . , en) ∈ L〈n〉, and let D := h(d1, . . . , dn), E :=
h(e1, . . . , en). If (d1, . . . , dn) ≤ (e1, . . . , en) in the product partial order, then
the map π : D → E defined by π(di) = ei for di 6= −∞ witnesses D ≤ E.
(Note that di 6= −∞ implies ei 6= −∞.)

Conversely, if D ≤ E, then Lemma 2.3 and Fact 2.4 show that (d1, . . . , dn)
≤ (e1, . . . , en).

3. Sums of chains

Definition 3.1. Let (Q1,≤1) and (Q2,≤2) be disjoint partially ordered
sets. The “horizontal sum” of Q1 and Q2 is the following partial order (Q,≤):

Q = Q1 ∪Q2, and ≤ = ≤1 ∪ ≤2, i.e., x ≤ y in Q iff for some

` ∈ {1, 2} we have: x, y ∈ Q` and x ≤` y.

We write (Q1,≤1) + (Q2,≤2) [or just Q1 + Q2] for the horizontal sum of Q1

and Q2.

Fact 3.2. Let Q = Q1 + Q2. Then the partial order P(Q) is naturally
isomorphic to the product P(Q1)×P(Q2) (with the pointwise or “product”
partial order).

Proof. The map (E1, E2) 7→ E1 ∪ E2 is a bijection from P(Q1) ×P(Q2)
onto P(Q1+Q2), and it is easy to check that it is also an order isomorphism.

Definition 3.3. We write V for the 3-element partial order with a unique
minimal and two maximal elements, and Λ for the dual order.
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Lemma 3.4. If Q is a partial order containing an isomorphic copy of Λ,
then the power-ordered set P(Q) is not a lattice.
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Proof. Let a < b, c < b in Q, a and c be incomparable. We will show that
in the partial order P(Q) the elements {a, c} and {b} have no least upper
bound.

Assume E = {a, c} ∨ {b}. So, we have:

1. {a, c} ≤ E.

2. {b} ≤ E.

3. E ≤ {a, b} as {a, b} is also an upper bound.

4. E ≤ {c, b}, similarly.

5. By (1) and (3), E has exactly 2 elements.

6. By (3), both elements of E are ≤ b, so by (2), b ∈ E.

7. Let E = {b, e}, e 6= b.

8. e ≤ a, as {b, e} ≤ {a, b} (by (3)).

9. e ≤ c, similarly. Hence e < a, e < c.

10. a ≤ e or c ≤ e, as {a, c} ≤ {b, e} (by (1)).

Now (9) and (10) yield the desired contradiction.

Lemma 3.5. If Q is a finite partial order containing an isomorphic copy
of V, then P(Q) is either not a lattice, or a nondistributive lattice.
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Proof. Assume that P(Q) is a lattice. By Lemma 3.4, every principal
ideal (a] in Q is linearly ordered (and finite, since Q is finite). Hence, for
any a, c ∈ Q, (a] ∩ (c] is either empty or has a greatest element, in other
words: if a and c have a common lower bound, then they have a greatest
lower bound.

Assume that V embeds into Q, then there are incomparable elements
a, c in Q with a greatest lower bound b = a∧c. As Λ does not embed into Q,
a and c have no common upper bound, hence in P(Q) we have
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{a} ∨ {c} = {a, c}
Also, b = a ∧ c in Q implies that in the lattice P(Q) we have

{a} ∧ {b, c} = {b}.
Proof: If {x} ≤ {a} and {x} ≤ {b, c}, then x ≤ a and x ≤ c, so x ≤ b,
{x} ≤ {b}.

Hence the pentagon
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is a sublattice of P(Q), so P(Q) is not distributive.
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Remark 3.6. P(V) is in fact a lattice. In contrast, P(Λ) is not a lattice.

Conclusion 3.7. Let Q be a partial order. The following are equivalent:

1. Comparability is an equivalence relation on Q;

2. Q is a horizontal sum of chains;

3. Neither V nor Λ embeds into Q;

4. P(Q) is a distributive lattice.

Proof. (1) ⇔ (2): The chains are just the equivalence classes.
(1) ⇔ (3) is clear.
(2) ⇒ (4) was proved in 2.5.
(4) ⇒ (3) follows from 3.4 and 3.5.

4. Complements

Fact 4.1. Let Q be a partial order, A,B ⊆ Q. Then:

A ≤ B iff ArB ≤ BrA.

Proof. Let A0 = ArB = Ar(A ∩B), B0 = BrA.
If π0 : A0 → B0 witnesses A0 ≤ B0, then we can extend π0 by the

identity function on A ∩B to a map π : A → B witnessing A ≤ B.
Conversely, let π : A → B witness A ≤ B. Let πn be the n-fold iterate of

π (a partial function from A to B; e.g., π2(a) is only defined if π(a) ∈ A∩B).
For each a ∈ A0 = ArB let na ≥ 1 be the first natural number such

that πna(a) /∈ A. [Why does na exist? Note that a is not a fixpoint of π,
π(a) 6= a, so no πn(a) can be a fixpoint of π, hence all πn(a) are distinct:
a < π(a) < · · ·. But A is finite, so for some n we must have πn(a) /∈ A.]

Now define (for each a ∈ A0): π̂(a) = πna(a). Clearly π̂ : A0 → B0,
and a < π̂(a). To show that π̂ is 1-1, assume π̂(a) = π̂(a′), and na′ = na + `
for some ` ≥ 0. Since π is 1-1, πna(a) = πna+`(a′) implies a = π`(a′), so
since a /∈ B we must have ` = 0, a = a′.

Lemma 4.2. Let Q be a finite partial order. We will write −X for QrX.
Let A,B ⊆ Q. Then: A ≤ B iff −B ≤ −A.
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Proof. By fact 4.1,

−B ≤ −A ⇔ −Br(−A) ≤ −Ar(−B).

Now −Br(−A) = ArB, similarly −Ar(−B) = BrA, so we can rewrite
this as

−B ≤ −A ⇔ ArB ≤ BrA.

Again using Fact 4.1, we see that this is equivalent to A ≤ B.

Hence the complement operation is an involutory anti-automorphism of
P(Q). If Q is an antichain, then A ≤ B iff A ⊆ B, so the power-ordered set
P(Q) is a Boolean algebra.

In general, the equation A ∧ (−A) = ∅ need not hold in the power-
ordered set P(Q). Indeed, if a < b in Q, then {a} ≤ {b} ≤ −{a}.
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