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Abstract

We define a natural ordering on the power set J3(Q) of any finite
partial order @, and we characterize those partial orders @ for which
LB(Q) is a distributive lattice under that ordering.
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1. INTRODUCTION

For an unstructured set X, the power set J3(X), equipped with the partial
order of inclusion, is a Boolean algebra. When we consider a partially or-
dered (finite) set (@, <), there is another (perhaps more natural) ordering

on P(Q):
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For A,B C Q, let A < B iff there is a 1-1 map w : A — B with
a < 7(a) for all a € A.

(For infinite sets this relation < is in general not antisymmetric.)

We call the structure (B(Q), <) a “power-ordered set”. We will show
that (B(Q), <) is a distributive lattice iff @ is a chain or a horizontal sum
(see Definition 3.1) of chains. We also remark that the complement operation
on ‘PB(X) is an involutory anti-automorphism of (*B(Q), <).

2. POWERS OF CHAINS

Let L be a linear order. We will show that (L) is a distributive lattice.
Our proof also gives an explicit description of the lattice operations of the
power-ordered set P3(L) by representing J3(L) as a sublattice of a product
of chains.

Setup 2.1. Let L be a linear order, n € {1,2,...}. Let —oco ¢ L, and let
L := {—oc} U L, with the obvious order.
Let L{™ be the set of all n-tuples (z1,...,2,) € L™ which satisfy:

® I >To > 2 Ty
o forall /e {1,...,n—1}: if xy # —o0, then x4 > xp11.

That is, we consider all strictly decreasing k-tuples from L, for 0 < k < n,
but we make them into n-tuples by appending the necessary number of
copies of —oo.

Fact 2.2. Let L, L, L™ be as above. Then

o L™, as a product of distributive lattices, is again a distributive lattice
o L™ s a sublattice of L".

Lemma 2.3. Let L be a finite linear order.
1. Let D, E C L be nonempty sets of the same cardinality. Then we can

inductively analyse the relation D < E in the power-ordered set P(L)
as follows:
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D<FE & (D~{maxD}) < (E~{max E}) and max D < max E;

2. If D and E are enumerated in decreasing order by dy > --- > di and
ey > - > ey, respectively, then

D<F & d1§€1& &dkgek

Proof.
Proof of (1): <= is clear. Conversely, assume that 7 witnesses D < E.

Define a function 7 : D — E as follows: if m(maxD) = max FE,
then # = m. Otherwise, let n(zp) = maxFE, for some (unique) xy €
D~{max D} and let yo = m(max D). Define 7(xo) = yo, 7(maxD) =
max E = 7(xg), and 7(x) = 7(z) otherwise.

Then also 7 witnesses D < E. [Why? We have to check xg < 7(zo).
This follows from zg < max D < w(max D) = #(xg).] Moreover, we have
w(max D) = max E. Now let mp : D~{maxD} — E~{maxFE} be the
restriction of . Then 7y witnesses (D~{max D}) < (Ex{max E}).

Proof of (2) : This follows from (1) by induction. |

Fact 2.4. If E C L, and FE is enumerated in decreasing order by
ep > --- > eyp, then:

1. for any ¢ <k, every (-element subset of E is < {e1,...,es};

2. for any £ < k, and any £-element set D C L, we have D < E iff
D <{ey,...,er}.

This fact allows us to reduce the question “A < B” to a question “A < B"”,
where B’ has the same number of elements as A. Lemma 3.3 can then be
used to compare A and B’

Conclusion 2.5. Let L be a finite linear order with n elements, and let
L™ be defined as above. Then B(L) is (as a partial order, hence also as a
lattice) isomorphic to L™,

So B(L) is a distributive lattice.

We can compute meet and join in P(L) as follows: If D = {dy,...,d;} C
L and FE = {ey,...,ex} C L, both in decreasing order, and ¢ < k, then
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° D/\EZ{dl/\el,...,dg/\eg};

. D\/E:{dl\/61,...,dgVeg,eg+1,...,ek}.

Proof. Themap h: (z1,...,z,) — {z1,..., 2, }\{—00} is a bijection from
L™ onto P(L). We have to check that h and h~! preserve order:

Let (dy,...,dy), (e1,...,en) € L™ and let D := h(dy,...,d,), E =
h(ei,...,en). If (dy,...,dyn) < (e1,...,e,)in the product partial order, then
the map 7 : D — E defined by 7(d;) = e; for d; # —oo witnesses D < E.
(Note that d; # —oo implies e; # —00.)

Conversely, if D < E, then Lemma 2.3 and Fact 2.4 show that (dy, ..., d,)
< (e1,...,en). |

3. SUMS OF CHAINS

Definition 3.1. Let (Q1,<1) and (Q2,<2) be disjoint partially ordered
sets. The “horizontal sum” of @)1 and @2 is the following partial order (@, <):

Q=0Q1UQ2 and < =<1 U<y, ie, z <yin Q iff for some

¢ e {1,2} we have: z,y € Qy and = <y y.

We write (Q1, <1) + (Q2, <2) [or just Q1 + Q2] for the horizontal sum of Q;
and Qg.

Fact 3.2. Let Q = Q1 + Q2. Then the partial order P(Q) is naturally
isomorphic to the product P(Q1) X P(Q2) (with the pointwise or “product”
partial order).

Proof. The map (E1, E2) — E; U Ej is a bijection from PB(Q1) x P(Q2)
onto P(Q1+Q2), and it is easy to check that it is also an order isomorphism.
|

Definition 3.3. We write V for the 3-element partial order with a unique
minimal and two maximal elements, and A for the dual order.
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Lemma 3.4. If Q is a partial order containing an isomorphic copy of A,
then the power-ordered set P(Q) is not a lattice.

a C

Proof. Let a < b,c < bin @, a and ¢ be incomparable. We will show that

in the partial order P(Q) the elements {a,c} and {b} have no least upper
bound.
Assume E = {a,c} V {b}. So, we have:

1. {a,c} < E.

2. {b} <E.

3. E <{a,b} as {a, b} is also an upper bound.

4. E <{c,b}, similarly.

5. By (1) and (3), F has exactly 2 elements.

6. By (3), both elements of E are < b, so by (2), b € E.
7. Let E = {b,e}, e #b.

8. e<a,as {be} <{a,b} (by (3)).

9. e < ¢, similarly. Hence e < a, e < c.

10. a<eorc<e, as {a,c} <{be} (by (1)).

Now (9) and (10) yield the desired contradiction. |

Lemma 3.5. If Q is a finite partial order containing an isomorphic copy
of V, then B(Q) is either not a lattice, or a nondistributive lattice.
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Proof. Assume that P(Q) is a lattice. By Lemma 3.4, every principal
ideal (a] in @ is linearly ordered (and finite, since @ is finite). Hence, for
any a,c € @, (a] N (c] is either empty or has a greatest element, in other
words: if ¢ and ¢ have a common lower bound, then they have a greatest
lower bound.

Assume that V embeds into @, then there are incomparable elements
a,cin Q with a greatest lower bound b = aAc. As A does not embed into @,
a and ¢ have no common upper bound, hence in P(Q) we have

a C

{a} vV {c} = {a,c}

Also, b =a A ¢ in @ implies that in the lattice P(Q) we have

{a} A {b,c} = {b}.
Proof: If {z} < {a} and {z} < {b,c}, then x < a and = < ¢, so z < b,

{z} < {0}

Hence the pentagon

{a,c}

{b,c}

{a}
{c}

{0}

is a sublattice of PB(Q), so P(Q) is not distributive. |
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Remark 3.6. ‘P(V) is in fact a lattice. In contrast, J(A) is not a lattice.

Conclusion 3.7. Let QQ be a partial order. The following are equivalent:
1. Comparability is an equivalence relation on Q;
2. @ is a horizontal sum of chains;

3. Neither V nor A embeds into Q;

< (2): The chains are just the equivalence classes.
) is clear.
4) was proved in 2.5.
) follows from 3.4 and 3.5. |

4. COMPLEMENTS

Fact 4.1. Let Q be a partial order, A, B C Q. Then:

A< B iff ANB < B~A.

Proof. Let Ay = ANB = AN(AN B), By = B\NA.
If mp : Ay — By witnesses Ay < By, then we can extend my by the
identity function on AN B to a map 7 : A — B witnessing A < B.
Conversely, let 7 : A — B witness A < B. Let 7" be the n-fold iterate of
7 (a partial function from A to B; e.g., 72(a) is only defined if 7(a) € ANDB).
For each a € Ag = A~B let n, > 1 be the first natural number such
that 7" (a) ¢ A. [Why does n, exist? Note that a is not a fixpoint of r,
7(a) # a, so no " (a) can be a fixpoint of 7, hence all 7" (a) are distinct:
a < m(a) <---. But A is finite, so for some n we must have 7" (a) ¢ A.]
Now define (for each a € Ayp): 7(a) = 7" (a). Clearly 7 : Ag — By,
and a < 7(a). To show that 7 is 1-1, assume 7(a) = 7(a’), and ny = ng + /¢
for some ¢ > 0. Since 7 is 1-1, 7" (a) = 7" *(a’) implies a = 7(a’), so
since a ¢ B we must have £ =0, a = d. [ ]

Lemma 4.2. Let Q be a finite partial order. We will write —X for Q~.X.
Let A,BC Q. Then: A< B iff —B < —A.
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Proof. By fact 4.1,
—-B<—-A & —B~(—-A) <-A~(-B).

Now —B~\(—A) = A\B, similarly —A~(—B) = B\ A, so we can rewrite
this as
—-B<-A & A\B < B\A.

Again using Fact 4.1, we see that this is equivalent to A < B. |

Hence the complement operation is an involutory anti-automorphism of
P(Q). If Q is an antichain, then A < B iff A C B, so the power-ordered set
P(Q) is a Boolean algebra.

In general, the equation A A (—A) = () need not hold in the power-
ordered set P(Q). Indeed, if a < b in Q, then {a} < {b} < —{a}.
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