BALANCED d-LATTICES ARE COMPLEMENTED *

Martin Goldstern
Technische Universität Wien
Institut für Algebra und Computermathematik
Wiedner Hauptstraße 8-10/118, A-1040 Wien, Austria
e-mail: martin.goldstern@tuwien.ac.at
http://www.tuwien.ac.at/goldstern/
AND
Miroslav PloščICA ${ }^{\dagger}$
Mathematical Institute, Slovak Academy of Sciences
Grešákova 6, 04001 Košice, Slovakia
e-mail: ploscica@saske.sk
http://www.saske.sk/MI/eng/ploscica.htm

Abstract

We characterize d-lattices as those bounded lattices in which every maximal filter/ideal is prime, and we show that a d-lattice is complemented iff it is balanced iff all prime filters/ideals are maximal.

Keywords: balanced congruence, balanced lattice, d-lattice, prime ideal, maximal ideal.

2000 AMS Mathematics Subject Classifications: 06B10, 08A30.

According to Chajda and Eigenthaler ([1]), a d-lattice is a bounded lattice L satisfying for all $a, c \in L$ the implications

[^0](i) $(a, 1) \in \theta(0, c) \rightarrow a \vee c=1$;
(ii) $(a, 0) \in \theta(1, c) \rightarrow a \wedge c=0$;
where $\theta(x, y)$ denotes the least congruence on L containing the pair (x, y). Every bounded distributive lattice is a d-lattice. The 5 -element nonmodular lattice N_{5} is a d-lattice.

Theorem 1. A bounded lattice is a d-lattice if and only if all maximal ideals and maximal filters are prime.

Proof. Let I be a maximal ideal in a d-lattice L. Let $x, y \in L \backslash I$. We need to show that $x \wedge y \in L \backslash I$. Since I is maximal, there are $c_{1}, c_{2} \in I$ such that $c_{1} \vee x=c_{2} \vee y=1$. For $c=c_{1} \vee c_{2} \in I$ we have $c \vee x=c \vee y=1$. Then $(x, 1)=(0 \vee x, c \vee x) \in \theta(0, c)$ and similarly $(y, 1) \in \theta(0, c)$, hence $(x \wedge y, 1) \in \theta(0, c)$. By (i) we have $(x \wedge y) \vee c=1$, hence $x \wedge y \notin I$. The primality of maximal filters can be proved similarly.

Conversely, assume that all maximal ideals and filters in L are prime. To show (i), assume that $a, c \in L, a \vee c \neq 1$. By the Zorn lemma, there exists a maximal ideal I containing $a \vee c$. By our assumption, I is prime. Then $\alpha=I^{2} \cup(L \backslash I)^{2}$ is a congruence on L. Since $c \in I$, we have $(0, c) \in \alpha$, which implies that $\theta(0, c) \subseteq \alpha$. Since $a \in I$, we have $(a, 1) \notin \alpha$, hence $(a, 1) \notin \theta(0, c)$. This shows (i). The proof of (ii) is similar.

By [1], a bounded lattice is called "balanced", if the 0 -class of any congruence determines the 1 -class, and conversely. They showed that complemented lattices are balanced, and they asked:
(*) Is there a d-lattice which is balanced but not complemented?

We use the above characterization of d-lattices to answer this question.
If A is a subset of an algebra, write θ_{A} for the smallest congruence that identifies all elements of A; if ϕ is a congruence, x an element, write x / ϕ for the ϕ-congruence class of x.

Further, a congruence ϕ (on an algebra with constants 0 and 1) is called balanced if $0 / \phi=0 / \theta_{(1 / \phi)}$ and $1 / \phi=1 / \theta_{(0 / \phi)}$; an algebra is called balanced iff all its congruence relations are balanced, or equivalently if: for any congruence relations ϕ, ϕ^{\prime} we have:

$$
0 / \phi=0 / \phi^{\prime} \text { iff } 1 / \phi=1 / \phi^{\prime}
$$

Fix a d-lattice $(L, \vee, \wedge, 0,1)$. For $a \in L$ we denote $F_{a}:=\{x: x \vee a=1\}$, and $I_{a}:=\{x: x \wedge a=0\}$.

Fact 2. F_{a} is a filter, I_{a} is an ideal.
Proof. Let $x, y \in F_{a}$. Similarly as in the proof of Theorem $1,(x, 1) \in$ $\theta(0, a),(y, 1) \in \theta(0, a)$, hence $(x \wedge y, 1) \in \theta(0, a)$, which by the definition of a d-lattice implies $x \wedge y \in F_{a}$. The proof for I_{a} is similar.

Fact 3. If I is an ideal disjoint to F_{a}, and $a \notin I$, then also the ideal generated by $I \cup\{a\}$ is disjoint to F_{a}.

Proof. If $x \leq i \vee a$ for some $i \in I$, and $x \in F_{a}$, then also $i \vee a \in F_{a}$, hence $i \vee a=(i \vee a) \vee a=1$. Thus, $i \in F_{a}$, so $F_{a} \cap I \neq \emptyset$.

Fact 4. If $f: L_{1} \rightarrow L_{2}$ is a homomorphism from L_{1} onto L_{2}, and L_{1} is balanced, then L_{2} is balanced.

Proof. In fact, this holds "level-by-level": If ϕ is an unbalanced congruence on L_{2}, then the preimage of ϕ is unbalanced on L_{1}.

Theorem 5. The following are equivalent (for a d-lattice L):
(1) There is a maximal (hence prime) filter whose complement is not a maximal ideal.
(2) There is a maximal (hence prime) ideal whose complement is not a maximal filter.
(3) There are two prime ideals in L, one properly containing the other.
(3) There is a prime ideal in L which is not maximal.
(4) There are two prime filters in L, one properly containing the other.
(4) ${ }^{\prime}$ There is a prime filter in L which is not maximal.
(5) There is a homomorphism from L onto the 3-element lattice $\{0, d, 1\}$.
(6) L is not balanced.
(7) L is not complemented.

In particular a d-lattice is balanced iff it is complemented.

Proof.

$(1) \rightarrow(3):$ By Theorem 1, the complement of a maximal filter is a (necessarily prime) ideal. If this ideal is not maximal, it can be properly extended to a maximal (hence prime) ideal. The proof of $(2) \rightarrow(4)$ is similar (dual).
$(3) \rightarrow(3)^{\prime}$ is trivial, and $(3)^{\prime} \rightarrow(3)$ follows from Zorn's lemma and Theorem 1. Similarly we get $(4) \leftrightarrow(4)^{\prime}$.
$(3) \rightarrow(5):$ Let $I_{1} \subset I_{2} \subset L$ be prime ideals. Map I_{1} to $0, I_{2} \backslash I_{1}$ to d, and $L \backslash I_{2}$ to 1 . Check that this is a lattice homomorphism. The proof of $(4) \rightarrow(5)$ is dual.
$(5) \rightarrow(6)$ follows from Fact 4 , since the three-element lattice is not balanced.
$(6) \rightarrow(7)$ is from [1].

Now we show $(7) \rightarrow(1)$. (Again, $(7) \rightarrow(2)$ is dual.) Assume that L is not complemented, so there is some a such that $F_{a} \cap I_{a}=\emptyset$. Let F^{\prime} be the filter generated by $F_{a} \cup\{a\}$. We have $F^{\prime} \cap I_{a}=\emptyset$ by the dual of Fact 3 , so F^{\prime} is proper. By the Zorn lemma, F^{\prime} can be extended to a maximal filter F. Let $I^{\prime}=L \backslash F$. It is enough to see that I^{\prime} is not maximal. Let I be the ideal generated by $I^{\prime} \cup\{a\}$. By Fact $3, I \cap F_{a}=\emptyset$, so I is a proper ideal properly extending I^{\prime}.

References

[1] I. Chajda and G. Eigenthaler, Balanced congruences, Discuss. Math. - Gen. Algebra App. 21 (2001), 105-114.
[2] G. Grätzer, General Lattice Theory (the second edition), Birkhäuser Verlag, Basel 1998.

Received 3 December 2001

[^0]: ${ }^{*}$ This paper is also available from www. arxiv. org and from the authors' homepages ${ }^{\dagger}$ Supported by VEGA Grant 2/1131/21.

