ON SOME FINITE GROUPOIDS WITH DISTRIBUTIVE SUBGROUPOID LATTICES

Konrad Pióro*

Institute of Mathematics, Warsaw University
Banacha 2, PL-02-097 Warsaw, Poland
e-mail: kpioro@mimuw.edu.pl

Abstract

The aim of the paper is to show that if $\mathcal{S}(\mathcal{G})$ is distributive, and also \mathcal{G} satisfies some additional condition, then the union of any two subgroupoids of \mathcal{G} is also a subgroupoid (intuitively, \mathcal{G} has to be in some sense a unary algebra).

Keywords: groupoid, subgroupoid lattice, distributive lattice.

2000 AMS Mathematics Subject Classifications: 20N02, 08A30, 06B15, 06D05.

Obviously properties of the subalgebra lattice of an algebra have influence on the algebra (see e.g. [4] and [5]). Analogously, properties of all subalgebra lattices of algebras within a given variety force some properties of the variety (see [2] and [3]).

In the present paper necessary and sufficient conditions are found for some finite groupoids \mathcal{G} to have the subgroupoid lattice $\mathcal{S}(\mathcal{G})$ distributive. It is a simple exercise to see that if $\mathcal{G} = \langle G, \vee \rangle$ is a semilattice (not necessarily finite), then $\mathcal{S}(\mathcal{G})$ is distributive iff for any elements $x, y \in \mathcal{G}$, $x \vee y = x$ or $x \vee y = y$. Since every element forms a one-element subsemilattice, the right-hand side of the equivalence is equivalent with the condition that the union of any two subsemilattices is also a subsemilattice of \mathcal{G} . Now we generalize this result to some finite groupoids $(\mathcal{G}(g_1,\ldots,g_n))$ denotes the subgroupoid of a groupoid \mathcal{G} generated by elements $g_1,\ldots,g_n \in \mathcal{G}$).

 $^{^*\}mbox{Work}$ done within the framework of COST Action 274 "Theory and Applications of Relational Structures as Knowledge Instruments"

26 K. Pióro

Theorem 1. Let $\mathcal{G} = \langle G, \circ \rangle$ be a finite groupoid such that

(*) for each two different elements g and h of G,

if
$$g, h \in \mathcal{G}(g \circ h)$$
, then $g \circ h \in \mathcal{G}(g)$ or $g \circ h \in \mathcal{G}(h)$.

Then S(G) is a distributive lattice iff the (set-theoretical) union of any two subgroupoids is a subgroupoid of G.

Note (although it is not used below) that the condition (*) is equivalent to the following:

(*') for each two different elements $g, h \in \mathcal{G}$,

if
$$g, h \in \mathcal{G}(g \circ h)$$
, then $h \in \mathcal{G}(g)$ or $g \in \mathcal{G}(h)$.

The implication $(*') \Longrightarrow (*)$ is obvious. On the other hand, take elements g, h of \mathcal{G} such that $g, h \in \mathcal{G}(g \circ h)$. Then by $(*), g \circ h \in \mathcal{G}(g)$ or $g \circ h \in \mathcal{G}(h)$. Hence, $g, h \in \mathcal{G}(g \circ h) \subseteq \mathcal{G}(g)$ or $g, h \in \mathcal{G}(g \circ h) \subseteq \mathcal{G}(h)$.

Proof. \Leftarrow is obvious, because then the operations of supremum and infimum in $\mathcal{S}(\mathcal{G})$ are just the set-theoretical union and intersection.

 \Longrightarrow . Assume that there are two subgroupoids \mathcal{H}_1 and \mathcal{H}_2 of \mathcal{G} such that their union $\mathcal{H}_1 \cup \mathcal{H}_2$ is not a subgroupoid of \mathcal{G} . Then there are elements $h_1 \in \mathcal{H}_1$ and $h_2 \in \mathcal{H}_2$ such that $h_1 \circ h_2 \notin \mathcal{H}_1 \cup \mathcal{H}_2$ or $h_2 \circ h_1 \notin \mathcal{H}_1 \cup \mathcal{H}_2$. In particular, $h_1 \circ h_2$ or $h_2 \circ h_1$ is not contained in $\mathcal{G}(h_1) \cup \mathcal{G}(h_2)$.

Now take the set \mathcal{A} of all ordered pairs $\langle g, h \rangle$ of elements of \mathcal{G} such that $g \circ h$ or $h \circ g$ does not belong to $\mathcal{G}(g) \cup \mathcal{G}(h)$. Observe first that if $\langle g, h \rangle \in \mathcal{A}$, then $g \neq h$. Secondly, \mathcal{A} is non-empty. Thirdly, for any $\langle g, h \rangle \in \mathcal{A}$,

(1)
$$g \notin \mathcal{G}(h)$$
 and $h \notin \mathcal{G}(g)$.

In particular,

$$\mathcal{G}(g) \subsetneq \mathcal{G}(g,h)$$
 and $\mathcal{G}(h) \subsetneq \mathcal{G}(g,h)$.

For any pair $\langle e_1, e_2 \rangle \in \mathcal{A}$, $\mathcal{G}(e_1) \cup \mathcal{G}(e_2)$ has finitely many elements, since \mathcal{G} is a finite groupoid. Thus we can take the set \mathcal{B} of all pairs $\langle e_1, e_2 \rangle \in \mathcal{A}$ such that $\mathcal{G}(e_1)$ has the least number of elements. Next, we take a pair $\langle g, h \rangle \in \mathcal{B}$ such that $\mathcal{G}(h)$ has the least number of elements. In the rest of the paper, g and g denote these elements.

(2) For each pair of subgroupoids $\mathcal{H}_1, \mathcal{H}_2$ of \mathcal{G} ,

if $\mathcal{H}_1 \subseteq \mathcal{G}(g)$ and $g \notin \mathcal{H}_1$, then $\mathcal{H}_1 \cup \mathcal{H}_2$ is a subgroupoid of \mathcal{G} .

Take elements $e_1 \in \mathcal{H}_1$ and $e_2 \in \mathcal{H}_2$. Then we have $g \notin \mathcal{G}(e_1) \subseteq \mathcal{G}(g)$, because $\mathcal{G}(e_1) \subseteq \mathcal{H}_1$. Thus $\mathcal{G}(e_1)$ has fewer elements than $\mathcal{G}(g)$. Hence, $\langle e_1, e_2 \rangle \notin \mathcal{A}$, and consequently $e_1 \circ e_2, e_2 \circ e_1 \in \mathcal{G}(e_1) \cup \mathcal{G}(e_2) \subseteq \mathcal{H}_1 \cup \mathcal{H}_2$. This fact implies that $\mathcal{H}_1 \cup \mathcal{H}_2$ is a subgroupoid.

(3) For each subgroupoid \mathcal{H} of \mathcal{G} ,

if $\mathcal{H} \subseteq \mathcal{G}(h)$ and $h \notin \mathcal{H}$, then $\mathcal{H} \cup \mathcal{G}(g)$ is a subgroupoid of \mathcal{G} .

Take an element $e \in \mathcal{H}$. Then $h \notin \mathcal{G}(e) \subseteq \mathcal{G}(h)$, because $\mathcal{G}(e) \subseteq \mathcal{H}$. Thus $\mathcal{G}(e)$ has fewer elements than $\mathcal{G}(h)$. Hence, $\langle g, e \rangle \notin \mathcal{A}$, and consequently $g \circ e, e \circ g \in \mathcal{G}(e) \cup \mathcal{G}(g) \subseteq \mathcal{H} \cup \mathcal{G}(g)$.

Next, take $f \in \mathcal{G}(g)$ and assume that $g \in \mathcal{G}(f)$, i.e. $\mathcal{G}(f) = \mathcal{G}(g)$. Then $\langle f, e \rangle \notin \mathcal{A}$, because otherwise $\langle f, e \rangle$ would belong to \mathcal{B} , so the choice of the pair $\langle g, h \rangle$ would imply that $\mathcal{G}(e)$ and $\mathcal{G}(h)$ have the same number of elements; it is a contradiction. Thus $f \circ e, e \circ f \in \mathcal{G}(e) \cup \mathcal{G}(g) \subseteq \mathcal{H} \cup \mathcal{G}(g)$.

Finally, take $f \in \mathcal{G}(g)$ and assume that $g \notin \mathcal{G}(f)$. Then $\mathcal{G}(f)$ has fewer elements than $\mathcal{G}(g)$. Hence, $\langle f, e \rangle \notin \mathcal{A}$, and again $f \circ e, e \circ f \in \mathcal{G}(e) \cup \mathcal{G}(f) \subseteq \mathcal{H} \cup \mathcal{G}(g)$.

Now let $i \in \{g \circ h, h \circ g\}$ be an element of \mathcal{G} such that

$$(4) i \notin \mathcal{G}(g) \cup \mathcal{G}(h).$$

Then (*) implies

$$g \not\in \mathcal{G}(i)$$
 or $h \not\in \mathcal{G}(i)$.

In particular,

(5)
$$\mathcal{G}(i) \subsetneq \mathcal{G}(g,h).$$

Assume that $g \in \mathcal{G}(i)$. Then $h \notin \mathcal{G}(i)$, in particular, $\mathcal{G}(h)$ and $\mathcal{G}(i)$ are not comparable in $\mathcal{S}(\mathcal{G})$.

28 K. Pióro

Let

$$\mathcal{I} = \mathcal{G}(h) \cap \mathcal{G}(i)$$
 and $\mathcal{J} = \mathcal{I} \cup \mathcal{G}(g)$.

Since $h \notin \mathcal{I} \subseteq \mathcal{G}(h)$ and $g \in \mathcal{J}$, we first have by (1)

$$\mathcal{I} \subsetneq \mathcal{G}(h)$$
 and $\mathcal{I} \subsetneq \mathcal{J}$.

Secondly, (3) implies that \mathcal{J} is a subgroupoid of \mathcal{G} .

By the assumption $\mathcal{G}(g) \subseteq \mathcal{G}(i)$, so $\mathcal{J} \subseteq \mathcal{G}(i)$. And by (4), $i \notin \mathcal{J}$. Hence,

$$\mathcal{J} \subsetneq \mathcal{G}(i)$$
.

Obviously $\mathcal{G}(g,h)$ is the smallest subgroupoid containing $\mathcal{G}(h) \cup \mathcal{J}$.

By all the above facts, and also (1) and (5), we obtain that the subgroupoids \mathcal{I} , $\mathcal{G}(h)$, \mathcal{J} , $\mathcal{G}(i)$, $\mathcal{G}(g,h)$ form the elementary non-modular lattice \mathcal{N}_5 . Thus (see [1]), in this case, $\mathcal{S}(\mathcal{G})$ is not distributive.

If $h \in \mathcal{G}(i)$, then it can be shown that $\mathcal{G}(g) \cap \mathcal{G}(i)$, $\mathcal{G}(g)$, $(\mathcal{G}(g) \cap \mathcal{G}(i)) \cup \mathcal{G}(h)$ (it follows from (2) that this union is a subgroupoid of \mathcal{G}), $\mathcal{G}(i)$, $\mathcal{G}(g,h)$ form the lattice \mathcal{N}_5 . For this purpose it is sufficient to replace g by h and vice versa in the above proof; therefore details of this proof are omitted.

Thus now we can assume

(6)
$$g, h \notin \mathcal{G}(i)$$
.

Assume also $g \notin \mathcal{G}(h,i)$. Then, by (4), $\mathcal{G}(g)$ and $\mathcal{G}(h,i)$ are not comparable in $\mathcal{S}(\mathcal{G})$. As above, we want to construct a sublattice of $\mathcal{S}(\mathcal{G})$ isomorphic to \mathcal{N}_5 .

Let

$$\mathcal{I} = \mathcal{G}(q) \cap \mathcal{G}(h, i)$$
 and $\mathcal{J} = \mathcal{I} \cup \mathcal{G}(h)$.

Since $g \notin \mathcal{I} \subseteq \mathcal{G}(g)$ and $h \in \mathcal{J}$, taking into account the assumption $g \notin \mathcal{G}(h,i)$ and (1) we first have

$$\mathcal{I} \subsetneq \mathcal{G}(g)$$
 and $\mathcal{I} \subsetneq \mathcal{J}$.

Secondly, (2) implies that \mathcal{J} is a subgroupoid of \mathcal{G} .

Obviously $\mathcal{J} \subseteq \mathcal{G}(h,i)$, moreover, by (4) we deduce that $i \notin \mathcal{J}$, so

$$\mathcal{J} \subsetneq \mathcal{G}(h,i)$$
.

By (5) and the assumption, since $g \in \mathcal{G}(g,h)$, we obtain

$$\mathcal{G}(h,i) \subsetneq \mathcal{G}(g,h).$$

It trivially follows that $\mathcal{G}(g,h)$ is generated by $\mathcal{G}(g) \cup \mathcal{J}$.

All the above facts and (1) imply that \mathcal{I} , $\mathcal{G}(g)$, \mathcal{J} , $\mathcal{G}(h,i)$ and $\mathcal{G}(g,h)$ form the elementary non-modular lattice \mathcal{N}_5 . In particular, $\mathcal{S}(\mathcal{G})$ is not distributive.

If $h \notin \mathcal{G}(g,i)$, then it can be shown that the subgroupoids $\mathcal{G}(h) \cap \mathcal{G}(g,i)$, $\mathcal{G}(h)$, $(\mathcal{G}(h) \cap \mathcal{G}(g,i)) \cup \mathcal{G}(g)$ (it follows from (3) that this union is a subgroupoid of \mathcal{G}), $\mathcal{G}(g,i)$ and $\mathcal{G}(g,h)$ form the lattice \mathcal{N}_5 . To this purpose it is sufficient to replace g by h and vice versa in the above proof; therefore details of this proof are omitted.

Thus finally we can assume

$$g \in \mathcal{G}(h,i)$$
 and $h \in \mathcal{G}(g,i)$.

Take the subgroupoids

$$\mathcal{I}_g = \mathcal{G}(h) \cap \mathcal{G}(i), \quad \mathcal{I}_h = \mathcal{G}(g) \cap \mathcal{G}(i), \quad \mathcal{I}_i = \mathcal{G}(g) \cap \mathcal{G}(h).$$

By (6), $h \notin \mathcal{I}_g \subseteq \mathcal{G}(h)$, so by (3) we infer that

$$\mathcal{J}_q = \mathcal{G}(g) \cup \mathcal{I}_q$$

is a subgroupoid of \mathcal{G} .

Analogously, by (1) and (6), $g \notin \mathcal{I}_h \subseteq \mathcal{G}(g)$ and $g \notin \mathcal{I}_i \subseteq \mathcal{G}(g)$, so (2) implies

$$\mathcal{J}_h = \mathcal{G}(h) \cup \mathcal{I}_h$$

30 K. Pióro

and

$$\mathcal{J}_i = \mathcal{G}(i) \cup \mathcal{I}_i$$

are subgroupoids of \mathcal{G} .

Using (1), (4) and (6) it can be verified that

$$g \in \mathcal{J}_g$$
 and $h, i \notin \mathcal{J}_g$,
 $h \in \mathcal{J}_h$ and $g, i \notin \mathcal{J}_h$,
 $i \in \mathcal{J}_i$ and $g, h \notin \mathcal{J}_i$.

In particular, \mathcal{J}_g , \mathcal{J}_h and \mathcal{J}_i are pairwise non-comparable. These three facts, and also (1) and (5) imply that

$$\mathcal{J}_g \subsetneq \mathcal{G}(g,h), \quad \mathcal{J}_h \subsetneq \mathcal{G}(g,h), \quad \mathcal{J}_i \subsetneq \mathcal{G}(g,h).$$

Hence, $\mathcal{G}(g,h)$ contains the unions $\mathcal{J}_g \cup \mathcal{J}_h$, $\mathcal{J}_g \cup \mathcal{J}_i$ and $\mathcal{J}_h \cup \mathcal{J}_i$. On the other hand $g,h \in \mathcal{J}_g \cup \mathcal{J}_h$, so $\mathcal{G}(g,h)$ is the smallest subgroupoid containing $\mathcal{J}_g \cup \mathcal{J}_h$. Next, $g,i \in \mathcal{J}_g \cup \mathcal{J}_i$, so the subgroupoid generated by $\mathcal{J}_g \cup \mathcal{J}_i$ contains also h, by the assumption. Thus again, $\mathcal{G}(g,h)$ is generated by the union of \mathcal{J}_g and \mathcal{J}_i . Similarly, $h,i \in \mathcal{J}_h \cup \mathcal{J}_i$, so g also belongs to the subgroupoid generated by this union, and consequently, this subgroupoid is equal to $\mathcal{G}(g,h)$.

It is obtained by standard verification that

$$\mathcal{J}_g \cap \mathcal{J}_h = \mathcal{I}_g \cup \mathcal{I}_h \cup \mathcal{I}_i,$$

 $\mathcal{J}_g \cap \mathcal{J}_i = \mathcal{I}_g \cup \mathcal{I}_h \cup \mathcal{I}_i,$
 $\mathcal{J}_h \cap \mathcal{J}_i = \mathcal{I}_g \cup \mathcal{I}_h \cup \mathcal{I}_i.$

Note also that $\mathcal{I}_g \cup \mathcal{I}_h \cup \mathcal{I}_i$ is different from \mathcal{J}_g and \mathcal{J}_h and \mathcal{J}_i , because $g, h, i \notin \mathcal{J}_g \cap \mathcal{J}_h = \mathcal{I}_g \cup \mathcal{I}_h \cup \mathcal{I}_i$.

By all the above facts we obtain that the subgroupoids $\mathcal{I}_g \cup \mathcal{I}_h \cup \mathcal{I}_i$, \mathcal{J}_g , \mathcal{J}_h , \mathcal{J}_i and $\mathcal{G}(g,h)$ form the elementary non-distributive lattice \mathcal{M}_5 . Thus $\mathcal{S}(\mathcal{G})$ is not a distributive lattice (see [1]).

For any finite groupoid \mathcal{G} such that the set-theoretical union of any two of its subgroupoids is a subgroupoid we can construct a finite unary algebra \mathbf{A} with its subalgebra lattice $\mathcal{S}(\mathbf{A})$ isomorphic to $\mathcal{S}(\mathcal{G})$. First, the carrier A of \mathbf{A} is equal to the carrier of \mathcal{G} . Secondly, for any ordered pair $\langle a, b \rangle$ of elements of A, we define the unary operation $f_{a,b}$ as follows:

$$f_{a,b}(x) = \begin{cases} b & \text{if } x = a \text{ and } b \in \mathcal{G}(a), \\ x & \text{otherwise.} \end{cases}$$

To prove that $S(\mathbf{A})$ and $S(\mathcal{G})$ are isomorphic, it is sufficient to show that the subuniverses of \mathbf{A} and that of \mathcal{G} coincide. It follows from the assumption that the union of any two subgroupoids of \mathcal{G} is also a subgroupoid of \mathcal{G} . Simple details of this proof are omitted.

References

- [1] G. Grätzer, General Lattice Theory, Akademie-Verlag, Berlin 1978.
- [2] T. Evans and B. Ganter, Varieties with modular subalgebra lattices, Bull. Austr. Math. Soc. 28 (1983), 247–254.
- [3] E.W. Kiss and M.A. Valeriote, Abelian algebras and the Hamiltonian property, J. Pure Appl. Algebra 87 (1993), 37–49.
- [4] P.P. Pálfy, *Modular subalgebra lattices*, Algebra Universalis **27** (1990), 220–229.
- [5] D. Sachs, The lattice of subalgebras of a Boolean algebra, Canad. J. Math. 14 (1962), 451-460.

Received 20 October 2001