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Institute of Mathematics, Warsaw University
Banacha 2, PL–02–097 Warsaw, Poland

e-mail: kpioro@mimuw.edu.pl

Abstract

The aim of the paper is to show that if S(G) is distributive, and
also G satisfies some additional condition, then the union of any two
subgroupoids of G is also a subgroupoid (intuitively, G has to be in
some sense a unary algebra).
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Obviously properties of the subalgebra lattice of an algebra have influence on
the algebra (see e.g. [4] and [5]). Analogously, properties of all subalgebra
lattices of algebras within a given variety force some properties of the variety
(see [2] and [3]).

In the present paper necessary and sufficient conditions are found for
some finite groupoids G to have the subgroupoid lattice S(G) distributive. It
is a simple exercise to see that if G = 〈G,∨〉 is a semilattice (not necessarily
finite), then S(G) is distributive iff for any elements x, y ∈ G, x ∨ y = x
or x ∨ y = y. Since every element forms a one-element subsemilattice, the
right-hand side of the equivalence is equivalent with the condition that the
union of any two subsemilattices is also a subsemilattice of G. Now we
generalize this result to some finite groupoids (G(g1, . . . , gn) denotes the
subgroupoid of a groupoid G generated by elements g1, . . . , gn ∈ G).

∗Work done within the framework of COST Action 274 “Theory and Applications of
Relational Structures as Knowledge Instruments”



26 K. Pióro

Theorem 1. Let G = 〈G, ◦〉 be a finite groupoid such that

(∗) for each two different elements g and h of G,

if g, h ∈ G(g ◦ h), then g ◦ h ∈ G(g) or g ◦ h ∈ G(h).

Then S(G) is a distributive lattice iff the (set-theoretical) union of any two
subgroupoids is a subgroupoid of G.

Note (although it is not used below) that the condition (∗) is equivalent to
the following:

(∗′) for each two different elements g, h ∈ G,

if g, h ∈ G(g ◦ h), then h ∈ G(g) or g ∈ G(h).

The implication (∗′) =⇒ (∗) is obvious. On the other hand, take elements
g, h of G such that g, h ∈ G(g ◦h). Then by (∗), g ◦h ∈ G(g) or g ◦h ∈ G(h).
Hence, g, h ∈ G(g ◦ h) ⊆ G(g) or g, h ∈ G(g ◦ h) ⊆ G(h).

Proof. ⇐= is obvious, because then the operations of supremum and infi-
mum in S(G) are just the set-theoretical union and intersection.

=⇒. Assume that there are two subgroupoids H1 and H2 of G such that
their union H1 ∪ H2 is not a subgroupoid of G. Then there are elements
h1 ∈ H1 and h2 ∈ H2 such that h1 ◦ h2 6∈ H1 ∪H2 or h2 ◦ h1 6∈ H1 ∪H2. In
particular, h1 ◦ h2 or h2 ◦ h1 is not contained in G(h1) ∪ G(h2).

Now take the set A of all ordered pairs 〈g, h〉 of elements of G such that
g ◦h or h◦ g does not belong to G(g)∪G(h). Observe first that if 〈g, h〉 ∈ A,
then g 6= h. Secondly, A is non-empty. Thirdly, for any 〈g, h〉 ∈ A,

(1) g 6∈ G(h) and h 6∈ G(g).

In particular,
G(g) $ G(g, h) and G(h) $ G(g, h).

For any pair 〈e1, e2〉 ∈ A, G(e1) ∪ G(e2) has finitely many elements, since G
is a finite groupoid. Thus we can take the set B of all pairs 〈e1, e2〉 ∈ A such
that G(e1) has the least number of elements. Next, we take a pair 〈g, h〉 ∈ B
such that G(h) has the least number of elements. In the rest of the paper, g
and h denote these elements.
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(2) For each pair of subgroupoids H1,H2 of G,

if H1 ⊆ G(g) and g 6∈ H1, then H1 ∪H2 is a subgroupoid of G.

Take elements e1 ∈ H1 and e2 ∈ H2. Then we have g 6∈ G(e1) ⊆ G(g),
because G(e1) ⊆ H1. Thus G(e1) has fewer elements than G(g). Hence,
〈e1, e2〉 6∈ A, and consequently e1 ◦ e2, e2 ◦ e1 ∈ G(e1) ∪ G(e2) ⊆ H1 ∪ H2.
This fact implies that H1 ∪H2 is a subgroupoid.

(3) For each subgroupoid H of G,

if H ⊆ G(h) and h 6∈ H, then H ∪ G(g) is a subgroupoid of G.

Take an element e ∈ H. Then h 6∈ G(e) ⊆ G(h), because G(e) ⊆ H. Thus
G(e) has fewer elements than G(h). Hence, 〈g, e〉 6∈ A, and consequently
g ◦ e, e ◦ g ∈ G(e) ∪ G(g) ⊆ H ∪ G(g).

Next, take f ∈ G(g) and assume that g ∈ G(f), i.e. G(f) = G(g). Then
〈f, e〉 /∈ A, because otherwise 〈f, e〉 would belong to B, so the choice of
the pair 〈g, h〉 would imply that G(e) and G(h) have the same number of
elements; it is a contradiction. Thus f ◦ e, e ◦ f ∈ G(e) ∪ G(g) ⊆ H ∪ G(g).

Finally, take f ∈ G(g) and assume that g 6∈ G(f). Then G(f) has fewer
elements than G(g). Hence, 〈f, e〉 6∈ A, and again f ◦ e, e◦f ∈ G(e)∪G(f) ⊆
H ∪ G(g).

Now let i ∈ {g ◦ h, h ◦ g} be an element of G such that

(4) i 6∈ G(g) ∪ G(h).

Then (∗) implies

g 6∈ G(i) or h 6∈ G(i).

In particular,

(5) G(i) $ G(g, h).

Assume that g ∈ G(i). Then h 6∈ G(i), in particular, G(h) and G(i) are not
comparable in S(G).
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Let

I = G(h) ∩ G(i) and J = I ∪ G(g).

Since h 6∈ I ⊆ G(h) and g ∈ J , we first have by (1)

I $ G(h) and I $ J .

Secondly, (3) implies that J is a subgroupoid of G.
By the assumption G(g) ⊆ G(i), so J ⊆ G(i). And by (4), i 6∈ J . Hence,

J $ G(i).

Obviously G(g, h) is the smallest subgroupoid containing G(h) ∪ J .
By all the above facts, and also (1) and (5), we obtain that the sub-

groupoids I, G(h), J , G(i), G(g, h) form the elementary non-modular lattice
N5. Thus (see [1]), in this case, S(G) is not distributive.

If h ∈ G(i), then it can be shown that G(g)∩G(i), G(g), (G(g)∩G(i))∪G(h)
(it follows from (2) that this union is a subgroupoid of G), G(i), G(g, h) form
the lattice N5. For this purpose it is sufficient to replace g by h and vice
versa in the above proof; therefore details of this proof are omitted.

Thus now we can assume

(6) g, h 6∈ G(i).

Assume also g 6∈ G(h, i). Then, by (4), G(g) and G(h, i) are not comparable
in S(G). As above, we want to construct a sublattice of S(G) isomorphic to
N5.

Let

I = G(g) ∩ G(h, i) and J = I ∪ G(h).

Since g 6∈ I ⊆ G(g) and h ∈ J , taking into account the assumption
g 6∈ G(h, i) and (1) we first have

I $ G(g) and I $ J .

Secondly, (2) implies that J is a subgroupoid of G.
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Obviously J ⊆ G(h, i), moreover, by (4) we deduce that i 6∈ J , so

J $ G(h, i).

By (5) and the assumption, since g ∈ G(g, h), we obtain

G(h, i) $ G(g, h).

It trivially follows that G(g, h) is generated by G(g) ∪ J .
All the above facts and (1) imply that I, G(g), J , G(h, i) and G(g, h)

form the elementary non-modular lattice N5. In particular, S(G) is not
distributive.

If h 6∈ G(g, i), then it can be shown that the subgroupoids G(h)∩G(g, i), G(h),
(G(h) ∩ G(g, i)) ∪ G(g) (it follows from (3) that this union is a subgroupoid
of G), G(g, i) and G(g, h) form the lattice N5. To this purpose it is sufficient
to replace g by h and vice versa in the above proof; therefore details of this
proof are omitted.

Thus finally we can assume

g ∈ G(h, i) and h ∈ G(g, i).

Take the subgroupoids

Ig = G(h) ∩ G(i), Ih = G(g) ∩ G(i), Ii = G(g) ∩ G(h).

By (6), h 6∈ Ig ⊆ G(h), so by (3) we infer that

Jg = G(g) ∪ Ig

is a subgroupoid of G.
Analogously, by (1) and (6), g 6∈ Ih ⊆ G(g) and g 6∈ Ii ⊆ G(g), so (2)

implies

Jh = G(h) ∪ Ih
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and

Ji = G(i) ∪ Ii

are subgroupoids of G.
Using (1), (4) and (6) it can be verified that

g ∈ Jg and h, i 6∈ Jg,

h ∈ Jh and g, i 6∈ Jh,

i ∈ Ji and g, h 6∈ Ji.

In particular, Jg, Jh and Ji are pairwise non-comparable.
These three facts, and also (1) and (5) imply that

Jg $ G(g, h), Jh $ G(g, h), Ji $ G(g, h).

Hence, G(g, h) contains the unions Jg ∪ Jh, Jg ∪ Ji and Jh ∪ Ji. On the
other hand g, h ∈ Jg ∪Jh, so G(g, h) is the smallest subgroupoid containing
Jg ∪ Jh. Next, g, i ∈ Jg ∪ Ji, so the subgroupoid generated by Jg ∪ Ji

contains also h, by the assumption. Thus again, G(g, h) is generated by
the union of Jg and Ji. Similarly, h, i ∈ Jh ∪ Ji, so g also belongs to the
subgroupoid generated by this union, and consequently, this subgroupoid is
equal to G(g, h).
It is obtained by standard verification that

Jg ∩ Jh = Ig ∪ Ih ∪ Ii,

Jg ∩ Ji = Ig ∪ Ih ∪ Ii,

Jh ∩ Ji = Ig ∪ Ih ∪ Ii.

Note also that Ig ∪ Ih ∪ Ii is different from Jg and Jh and Ji, because
g, h, i 6∈ Jg ∩ Jh = Ig ∪ Ih ∪ Ii.

By all the above facts we obtain that the subgroupoids Ig ∪Ih ∪Ii, Jg,
Jh, Ji and G(g, h) form the elementary non-distributive lattice M5. Thus
S(G) is not a distributive lattice (see [1]).
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For any finite groupoid G such that the set-theoretical union of any two of
its subgroupoids is a subgroupoid we can construct a finite unary algebra
A with its subalgebra lattice S(A) isomorphic to S(G). First, the carrier
A of A is equal to the carrier of G. Secondly, for any ordered pair 〈a, b〉 of
elements of A, we define the unary operation fa,b as follows:

fa,b(x) =

{
b if x = a and b ∈ G(a),

x otherwise.

To prove that S(A) and S(G) are isomorphic, it is sufficient to show that the
subuniverses of A and that of G coincide. It follows from the assumption
that the union of any two subgroupoids of G is also a subgroupoid of G.
Simple details of this proof are omitted.
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