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Abstract

The notion of a half lc-group G is a generalization of the notion of a
half linearly ordered group. A completion of G by means of Dedekind
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J. Jakubik [3] introduced and studied the notions of a half cyclically ordered
group and a half linearly cyclically ordered group (half lc-group) as a gener-
alization of the notions of a half partially ordered group and a half linearly
ordered group that were introduced by M. Giraudet and F. Lucas [2].

A completion C(H) of a linearly cyclically ordered set H has been
defined and studied by V. Novdk [5] and by V. Novdk and M. Novotny
[6].

In [4] it is defined and investigated a completion H* of a linearly cycli-
cally ordered group H. A new construction of a completion M (H) of H by
using the Dedekind cuts method in linearly ordered sets is contained in [1].
It is proved that M(H) = H*.

Half lc-groups are dealt with in Section 4. If a half lc-group is at the
same time a half linearly ordered group, then its decreasing part consists of
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elements of the second order ([2], Proposition 1.2.2). The question of the
existence of such elements in an arbitrary half lc-group, is open.

Let G be a half lc-group with the increasing part H. In this paper there
is presented a completion M} (G) of G. It is shown that M (H) is the increas-
ing part of a half le-group M, (G). G is called Mp-complete if My(G) = G.
Necessary and sufficient conditions are found for G to be Mj-complete (The-
orem 4.12).

1. PRELIMINARIES

Assume that A and B are linearly ordered sets. Let S = {(a,b):a € A,b €
B}. We put (a1,b1) < (ag,b2) whenever by < bg or by = by and a1 < ag for
each (a1,b1), (a2,b2) € S. Then the linearly ordered set S is said to be the
lexicographic product of A and B and the notation S = A o B will be used.

Let L be a linearly ordered set and let X be a subset of L. Denote by
X (X" the set of all upper (lower) bounds of X in L. Futher we denote by
D(L) the system of all subsets of L of the form (X*)! where X is a nonempty
and upper bounded subset of L. Elements of D(L) are called Dedekind cuts
of L. If the system D(L) is partially ordered by inclusion, then D(L) is a
linearly ordered set. The mapping ¢(z) = ({}*)! is an isomorphism of the
linearly ordered set L into D(L). In the next the elements x and (x) will
be identified. Then L is a subset of D(L) and the following conditions are
fulfilled:

(1) For each element ¢ € D(L) there exist nonempty subsets X and
Y of L such that X is upper bounded, Y is lower bounded in L and ¢ =
sup(X) = inf(Y) in D(L).

(a2) For each nonempty and upper (lower) bounded subset X (Y') of L
there exists an element ¢ € D(L), ¢ = sup(X) (¢ =inf(Y)) in D(L).

If Ais a subset of L and a = sup(4) (a = inf(A)) in L, then a =
sup(A4)(a = inf(A)) in D(L).

For the following two definitions cf. Novék [5].

Definition 1.1. Let M be a nonempty set and let C' be a ternary relation
on M with the following properties:
(I) If (x,y,2) € C, then (z,y,x) ¢ C.
(II) If (x,y,2) € C, then (y,z,x) € C.
(I11) If (z,y,2) € C,(x,z,u) € C, then (z,y,u) € C.
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Then C' is said to be a cyclic order on M and the pair (M;C) is called a
cyclically ordered set.

If A is a subset of M, then A is considered as being cyclically ordered
by the inherited cyclic order.

Definition 1.2. Let (M;C) be a cyclically ordered set satisfying the
following condition:

(IV) If xz,y and z are distinct elements of M, then either (z,y,z) € C or
(z,y,7) € C.

Then C is said to be an l-cyclic order on M and (M;C) is called an
l-cyclically ordered set.

Several terms are used in papers for the term ”[-cyclic order”. Namely,
"l-cyclic order” is called ”cyclic order” in [8], ”complete cyclic order” in [7],
and ”linear cyclic order in [5]”.

Definition 1.3 (cf. Rieger [8]). Let (H;+) be a group and let (H;C) be
a cyclically ordered set satisfying the condition

(V) ifz,y,z,a,b € H such that (z,y,z) € C, then
(a+z+bat+y+ba+z+b)eC.

Then (H;+,C) is called a cyclically ordered group. If C'is an [-cyclic order,
then (H;+,C) is called an lc-group.

Each subgroup of a cyclically ordered group is a cyclically ordered
group.

Example 1.4. Let (L; +, <) be a linearly ordered group and let z,y,z € L.
We put

(g) (x,y,2)€Cy ifandonlyif r<y<zory<z<zorz<z<y.

Then (L; +,Ch) is an le-group. We say that the [-cyclic order C} is generated
by the linear order < on L.

In the next, if (5;<) is a linearly ordered set then S is assumed to be
l-cyclically ordered with the [-cyclic order defined by (g).

Example 1.5. Let K be the set of all reals k such that 0 < k < 1 with the
natural linear order. Denote by Cy the [-cyclic order on K defined by (g).
The group operation + on K is defined as addition mod 1. Then (K;+,C>)
is an lc-group.
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We want to define a ternary relation C' on the direct product L x K of the
groups L and K. Let u = (x,k1),v = (y,k2),w = (2,k3) € L x K. We put
(u,v,w) € C if and only if some of the following conditions is satisfied:

(1) (k1. k2, ks) € Ca,
(ii) k1 = ko 7& ks and x < y,
(iii) ko = k3 75 k1 and y <z,

) ks =k #kyand z < x,

) k1 = ko = k3 and (as,y7z)€C’1.

(iv
(v
Then (L x K;C) is an le-group which is denoted by L ® K.
An isomorphism of cyclically ordered groups is defined in a natural way.
Theorem 1.6 (Swierczkowski [9]). Let H be an lc-group. Then there exists
a linearly ordered group L such that H is isomorphic to a subgroup of LR K.

In the next H will be considered as a subgroup of L ® K. We denote

Li={xz € L: there exists k € K with (z,k) € H},
K= {k € K : there exists x € L with (z,k) € H},
Ho= {h € H : there exists x € L with h = (z,0)}.

Then L; is a subgroup of L, K is a subgroup of K, and Hj is an invariant
subgroup of H. Moreover, Hy is a linearly ordered group if we put h > 0 if
and only if > 0. It can happen that Hy = {0}.

Let (G;+) be a group and let (G;C) be a cyclically ordered set,
x,y,z € G. Form the sets

GT1={9€G: (v,y,2) eC= (g+z,9+y,g+2) €C},
Gl={9eCG: (2,y4,2) €eC= (9 +2,9+y,g+x) € C}.

Definition 1.7. (cf. Jakubik [3].) Let (G;+) be a group and let (G;C) be
a cyclically ordered set such that the following conditions are fulfilled:
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1) the system C is nonempty;
if g € G and (z,y,2) € C, then (v + g,y + 9,2+ g) € C;
G=GTUG |[;

if (z,y,2) € C, then either {z,y,2z} CG T or {z,y,2} C G |.

(
2
(3

)
)
)
(4)
Then (G;+,C) is said to be a half cyclically ordered group.

G 1 (G |) is called the increasing (decreasing, resp.) part of G.

If (G;+,C) is a half cyclically ordered group, then G 1 is a cyclically
ordered group. If G 1 is an le-group, then (G;+, C) is called a half lc-group.

Let (G;+, C) be a half cyclically ordered group and let G’ be a subgroup
of G with the nonempty inherited cyclic order C’. Then (G;+, (") is called
an hc-subgroup of (G;+,C).

We shall often write briefly G instead of (G;+,C) or (G;C).

Each cyclically ordered group with a nontrivial cyclic order is a half
cyclically ordered group with G 1 = G and G | = 0.

If x,y € G T and u,v € G |, thenx+y € G T, u+v € G 7,
r4+u€eG|, u+xz e G |. This follows from 1.7.

2. COMPLETION OF AN L-CYCLICALLY ORDERED SET

The definitions and results in this section are due to Novak [5].

Assume that (H,C) is an [-cyclically ordered set and let x € H. If, for
each y,z € H, we put y <, z if and only if either (x,y,2) € C or x = y # z,
then <, is a linear order on H with the least element .

Definition 2.1. A linear order < on H is called a cut on (H; C) if the cyclic
order generated by the linear order < coincides with the original cyclic order
ConH.

The linear order <, is a cut on (H;C).

Let < be a cut on (H;C). The following three cases can occur:

(i) (H;<) has the least and the greatest element.
(ii) (H;<) has neither the least nor the greatest element.
(iii) (H;<) has either the least or the greatest element.

In the case (ii) a cut < is called a gap. If (H;C) contains no gaps, then it
is called complete.
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Definition 2.2. A cut < on (H;C) is said to be regular if some of the
following conditions is satisfied:

(i) < isa gap,
(ii) (H;<) has the least element.
Denote by R(H) the set of all regular cuts on (H;C). Let ¢ = <y,

¢y = <3, and ¢3 = <3 be distinct elements of R(H). We put (c1,c2,¢3) € C
if and only if there are elements x, vy, z € H such that

rT<1Y<1%2,yY<2z2<g9x, 2<3x<3Y.

For each z € H we put p(z) = <,.

Theorem 2.3 (cf. [5], 4.2 and 4.3). (R(H);C) is an l-cyclically ordered
set and ¢ is an isomorphism of the l-cyclically ordered set H into R(H).

Elements z and ¢(z) will be identified. Hence H is considered as a
subset of R(H). R(H) is a complete [-cyclically ordered set and it is said
to be a completion of H.

3. COMPLETION OF AN [c-GROUP

In the whole section H is assumed to be an lc-group. A construction of a
completion M (H) of H will be recalled (cf. [1]) and some auxiliary results
will be derived.

Let L1, K1,L1 ® K7 be as in Section 1. The linear order on the lexico-
graphic product L; o K7 of the linearly ordered sets L; and K is a cut on
the [-cyclically ordered set L1 ® K1 and H is a subset of L1 o Kj.

Therefore, D(H) can be considered as a subset of D(Lj o K7). We have
H CD(H)C D(L; o Ky).

If the system D(H) = D(H) U {H} is partially ordered by inclusion,
then {H} is the greatest element of the chain D(H).

Lemma 3.1 (cf. [1], 3.4). The l-cyclically ordered set D(H) is isomorphic
to R(H). R(H) and D(H) will be identified.



COMPLETION OF A HALF LINEARLY CYCLICALLY ORDERED GROUP 11

Let c€ D(H), AC H, k € K. Denote
A ={a€ A: a= (x,k) for some x € L},
A(Ly) = {x € L;: there exists k1 € K; with (z,k1) € A},
A(K1) = {k1 € K;: there exists z € L, with (z, k) € A},
Ue)={ueH: u>c}, V(ie)={ve H: v<c}.
Then according to (1) we obtain
c=sup(V(c)) = inf(U(e)) in D(H).
Let c1,c2 € D(H). Then
c1 = sup(V(c1)) = inf(U(c1)), and ¢ = sup(V(cz)) = inf(U(c)) in D(H).

Now, we intend to define the operation + on D(H).

If for all elements v; = (z, k1) € V(c1),v2 = (y, k2) € V(c2) the relation
k1 4 ko < 1 holds, where +, is the usual operation on the group of reals,
then we put

c1+ co =sup{vy +va: v1 € V(ey),v2 € V(ea)} in D(H).

If there are elements v1 € V(c1),v2 € V(c2) such that kj +, ko > 1, then we
put

c1+co =sup{vy + e : vy € V(er),v2 € V(ea), k1 +r ko > 1} in D(H).

Then (D(H);+) is a semigroup and 0 € H is a neutral element of (D(H); +).
If M (H) is the set of all elements of D(H) that have an inverse in D(H), then
M(H) is a group. The le-group M (H) (with the inherited cyclic order from
D(H)) is said to be a completion of H. M(H) is a maximal subsemigroup
of D(H) being a group and H is a subgroup of M (H).

Remark that the notion of a completion H* of H was defined also in [4]
in a formally different way. It was proved in [1] that M(H) = H*.

If M(H) = H, then H is called M-complete. From the definition of H*,

it follows that (H*)* = H*. Therefore, M (H) is M-complete.
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At first M (H) will be investigated under the assumption Hy # {0} and then
under that Hy = {0}.

Suppose that Hy # {0}.

Let ¢ € D(H). Assume that the set V(c)(K7) has the greatest element
k € K which is at the same time the least element of U(c)(K;). Then
we say that c is of type (7). Therefore, the sets (V(c))r and (U(c)) are
nonempty and we have

(1) c =sup(V(c))g = inf(U(c))x, in D(H).
Let c,c; € D(H)(i = 1,2,3) be elements of type (7). If no misunder-
standing can occur, the corresponding greatest elements of V(c¢)(K7) and

V(¢;) (K1) will be denoted by k and k; (i = 1,2,3), respectively.
By (1), we have

c1 = sup (V(c1)),, and ¢y = sup (V(c2)),, in D(H).
The definition of the operation + in D(H) implies
(2) c1+cp = sup{vl + vy v € (V(Cl))k17 V9 € (V(CQ))kQ} in D(H)

Evidently, that ¢; + c2 is of type (7).

Let ¢ € D(H) be of type (1), S,T C H, and ¢ = sup(S) = inf(T) in
D(H). Then k is the greatest element of S(K) and the least element of
T(K). Therefore, S, and T}, are nonempty subsets of H and we have
(3) c = sup(Sy) = inf(T}) in D(H).

Let wy,wy € H, wy = (x1,k), and wy = (x2, k). Evidently, w1 < wy implies

w1 +w < wy +w and w4 wy < w + wy for each w € H. This result will be
applied in the sequel.

Lemma 3.2. Let c1,cy be elements of D(H) of type (1), S1,S2 C H, and
let ¢y = sup Si,ca =sup Sy in D(H). Then

c1+co =sup{s; + s2: s1 € Sig,, 52 € Sop, } in D(H).
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Proof. There exists ¢ € D(H), ¢ = sup{s; + 52 : s1 € Sik,, 52 € Sop, }-
Therefore, cis of type (7), k = k1+k2 is the greatest element of V' (¢) (K1) and
also the least element of U(c)(K1). From St € (V(c1))y,, Sok, € Vca)k,
and from (2), we infer that ¢ < ¢; +co. We are going to show that ¢;+c2 < ¢,
ie, (U(e)r € (U(er+ c2))k. Let h € (U(c))k. Then h > s1 + so for each
S1 € Siky, S2 € Soky, —S1+h > so for each so € Say,. With respect to (3) and
(1), we get —s1 +h > cg > vg for each va € (V(c2))k,. By using (3) and (1),
from h — vy > s1 for each s1 € Sy, , it follows that h — vy > ¢1 > vy for each
v1 € (V(c1))ky, and so h > vy + vy for each v1 € (V(c1)),,v2 € (V(€2))k,-
In view of (2), we get h > ¢1 + ca. We conclude that h € (U(c1 + ¢2)),. ™

Lemma 3.3 (cf. [1], 3.6 and 3.9). Let c € D(H).
(i) Ifc={H}, thenc¢ M(H).

(ii) Ifc# {H}, then c € M(H) if and only if the following conditions are
satisfied in H:

inf{fu —v: ueU(c),veV(c)} =0,

(p1)
inf{—v+u: ueU(c),veV(ic)}=0.

(iii) If c € M(H), then cis of type (7).

Lemma 3.4. Letc € D(H) be of type (1), S,T C H, ¢ =sup(S) = inf(T)
in D(H). Then c € M(H) if and only if the following conditions are satisfied
mn H:

(p2) inf{t—s: se€ Sk, teTy}=0and inf{—s+1t: se€ S tecTy}=0.

Proof. Let c € D(H) be of type (). Hence ¢ # {H}. In view of Lemma
3.3, we prove that the conditions (p1) and (p2) are equivalent. It suffices to
show that (p1) implies (p2).

Assume that (p;) holds. With respect to (3), we get ¢ = sup(Sk) =
inf(T},) in D(H). From s < t, we infer t — s > 0 for each s € Sy, t € Ty.
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Assume that d € H, d = (z,k'), d < t — s for each s € Si, t € Ty.
Hence ¥/ = 0. We have to prove that d < 0. Since d + s < t for each
t € Ty, d+s < c. Therefore, d+ s < u for each u € (U(c))g, and s < —d+u
for each s € Si. This implies that ¢ < —d + v and so v < —d + u for each
v € (V(e))g. Hence d < u — v for each u € (U(c))x, v € (V(c))x and then
also for each u € U(c), v € V(c). The condition (p;) implies d < 0. The
remaining case is similar. [

The following lemma is easy to verify.

Lemma 3.5. Let c1, c2 and c be elements of D(H) of type () such that
ki =ko. Ifci <co,thenci+c<co+candc+c; <c+ ca.

Lemma 3.6. Let ¢1,co € M(H),S;,T; C H,c; = sup(S;) = inf(T;) (i =
1,2) in D(H). Then

c1+c = inf{t1 +i: t1 € lel,tg S T2k2} n D(H)

Proof. Let ¢1,co € M(H). According to Lemma 3.3, ¢; and ¢ are of type
(7). We have s; + sy < t1 + to for each s; € Sik,,t;i € Tix, (i = 1,2). Denote
c=c1+coand ¢ =inf{ty1 +ta: t1 € Tik,, to € To,}. Since c € M(H),c is
of type (7). For the greatest element k of (V(c))(K1), we have k = ki + ka.
The element ¢’ is also of type (7) and k is the greatest element of (V(¢/))(K7).
With respect to Lemma 3.2, we have ¢ = sup{s1+s2: $1 € Sig,, 2 € Sok, }-
Then ¢ < ¢/. We have to show that ¢ < ¢, i.e., (V()r € (V(c))g. Let
h e (V(d))g. From h < ¢, we infer h < ¢1 + to for each t; € Ty, , ta € Thg,.
Hence h —ty < t; for each t; € Ty, and so h —t2 < ¢;. Applying Lemma
3.5 and ¢y € M(H), we get —c1 + h < to for each to € Tp. This yields
—c1 4+ h < ¢p. Again by using Lemma 3.5 and ¢; € M(H), we obtain h < c.
Therefore, h € (V(¢))g. |

By summarising the previous results, we get:

Theorem 3.7. Let Hy # {0}. The lc-group M(H) has the following
properties:

(a) M(H) is M-complete;
(b) H is a subgroup of M (H);
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(c) for each element ¢ € M(H) there exist k € K1 and S,T C H such
that Sy and Ty, are nonempty subsets of H, and ¢ = sup(Sk) = inf(T})
in M(H). |

Theorem 3.8. Let Hy # {0}. Assume that H' is an lc-group fulfilling
the conditions (a)-(c) (with H' instead of M(H)). Then there exists an
isomorphism ¢ of the le-group M (H) onto H'such that ¢(h) = h for each
heH.

Proof. Assume that ¢ € M(H). According respect to (c), there exist k €
K1,S,T C H such that ¢ = sup(Sk) = inf(T}) in M(H) (recall that k is the
greatest (least) element of S(K1)(T(K1))). Let Zy = {t—s: t € Ty, s € Sk}
and Zo = {—s+1t: s € Sk, t € Ty}. With respect to Lemma 3.4, we get
inf(Z1) = inf(Z3) =0in H. Let T" = {I € H' : h' > s for each s € Sy}
and " ={h € H': b’ <t for each t' € T'}. There exists ¢ € D(H') with
¢ =sup(S’) =inf(7") in D(H'). We have ¢ = sup(S},) = inf(7}) in D(H').
Let us denote Z] = {t' — ' : s € S,/ € T} and Z) = {-s' +t': s €
Sy, t e T}, We get inf(Z;) = inf(Z]) = 0,inf(Z3) = inf(Z}) = 0 in H'.
Then Lemma 3.4 yields that ¢ € M(H'). According to (a), M(H') = H'
and so ¢ € H'.

We put ¢(c) = . It is easy to verify that ¢ is correctly defined and
that ¢ is an isomorphism of the le-group M (H) onto H' with ¢(h) = h for
each h € H. ™

Now assume that Hy = {0}. We may suppose that H is a subgroup of K.
If H is finite then M (H) = H. If H is infinite, then the lc-group M (H) is
isomorphic to K (cf. [4] and [1]).

In both cases Hy # {0} and Hy = {0} the following theorem holds.

Theorem 3.9 (cf. [4], 7.5). Let H be an lc-group. Then H is M-complete
if and only if some of the following conditions is satisfied:
(i) H is finite;
(ii) H isomorphic to K;
(iii) Ho # {0} and Hy is M-complete.
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4. COMPLETION OF A HALF lc-GROUP

In the present section we suppose that G is a half lc-group with a cyclic
order C' and with G | # (). Then G fails to be an lc-group.

We shall use the notations G T = H and G | = H’'. As in the previous
sections H C Ly o Ky and D(H) C D(Lj o K1). Assume that there exists
an element a € H' of the second order. The mapping ¢» : H — H' defined
by ¥(h) = a + h is a bijection reversing the [-cyclic order of H. If for each
hi,hs € H we set a + hy < a+ hs if and only if hy < hy, then a + H is a
linearly ordered set. We have hy + a < hg + a if and only if h; < hs.

Assume that Hy # {0}.

Lemma 4.1 (cf. [3], 3.6). Hy is a normal subgroup of G.

Lemma 4.2 (cf. [3], 3.8). A= HoU (a+ H,) is a half lc-subgroup of G.
Moreover, A is a half linearly ordered group.

Lemma 4.3. Let hy, he € H hy = (z1,k1), he = (22,k2), a+ h1 +a =
(), K}), and a + ha + a = (xh, k). Then ki = ko if and only if ki = K.

Proof. Let ky = ky. Then hy — hy € Hy. Using Lemma 4.1 we get
a+hi+a—(a+hs+a)=a+ (hy —hg) +a € Hy. Hence k| = k. The
converse is analogous. [

Lemma 4.4. Let hy,ho € H, hy = (z1,k) and he = (z2,k). Assume that
hi1 < hy. Thena+hys+a < a-+ hy +a.

Proof. Let a4+ h1 +a = (z,k1) and a + he + a = (y, k2). By Lemma 4.3,
we get k1 = ko.
If K =0, then hq, he € Hy and the assertion follows from Lemma 4.2.
If k£ # 0, then k1 # 0 as well and 0 < hy < hg yields that (0, hy, he) € C.
This implies that (a + he + a,a + h; + a,0) € C. Hence y < z and thus
a+hy+a<a+h+a. [

Assume that c1,co € D(H) are of type (7),8;,T; C H,c; = sup(S;
inf(7;)(i = 1,2) in D(H) and that k; € K; corresponds to ¢; (i

)
= 1,2)
as in Section 3. Then ¢; = sup(Siy,) = inf(Ty,) (i = 1,2) in D

).
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Let s; € Sik;, ti € T, (i = 1,2). From s; < t1, so < tg for each s; € Si,, t; €
Tik, (i = 1,2), we obtain a +t1 + a+ s2 < a+t; + a + ta. According to
Lemma 4.4 we get a+t1 +a+t2 <a+s;1+a-+ty. Hencea+t14+a+ s2 <
a+ s1 + a + ta. Thus there exist sup{a+t1 +a+s2: s2 € Sop,,t1 € Tig, }
and inf{a +s14+a+d+i2: 51 € S]_k-l,tQ S TQkQ} in D(H)

Lemma 4.5.  Let S;,T; & H,¢; € M(H),c; = sup(S;) = inf(T;) (i =
1,2),c€ D(H), and ¢ =sup{a+ti+a+s2: s2 € Sop,,t1 € Thg, } in D(H).
Then

(i) ce M(H),
(ii) c=inf{a+s1 +a+ty: 81 € Sig,,tor,} in D(H).

Proof. (i) We have to prove that there exists an inverse to ¢ in D(H). By
Lemma 3.3 elements ¢; and ¢y are of type (7). Hence c is of type (7) as well.
Denote B={a+t1+a+s2: s € Sop,,t1 € Tigy }, D ={a+s1 +a+ta:
S1 € Sig,,ta € Toy,}. For the element k € K corresponding to ¢ we have
k = ki + ko, k is the greatest element of B(K7) and the least element of
D(K;). From b < d for each b € B,d € D,b = (z,k),d = (y,k), we
infer that d — b > 0. Let h € H h < d—b for each b € B,d € D. Then
h € Hy,h = (2,0). We have h < a+s1+a+te—(a+t1+a+s2) =a+s1+a+
to—so+a—t1+a € Hy. This yields that a—s1+a+h+a+t1+a < to—so for
each sy € So,,t2 € Tok,. Since ¢ € M(H), by using Lemma 3.4, we obtain
inf{tQ—SQ I S9 € SQkQ,tQ S T2k2} =0in H. Thena—si+a+h+a+t;4+a <
0, a+h+a> s —t1, a—h+a <t —s; for each s1 € Sy, ,t1 € Tig,. Since
c1 € M(H), Lemma 3.4 implies a — h+a < 0,h < 0.

Therefore

(%) inf{d—b: be B,de D} =0in H.

In an analogous way, we get inf{—b+d: b€ B,de€ D} =01in H.

We have —d < —b for each b € B,d € D. Hence the set —D={—d € H:
d € D} is nonempty and upper bounded. Hence there exists ¢’ € D(H),c =
sup(—D). We have ¢+ ¢ =sup{b+d: b€ B,d € —D} =sup{b—d: b €
B,d € D} = inf{d — b: b € B,d € D} in D(H). By using (%), we get
inf{d — b: b€ B,d € D} = 0in D(H). Thus ¢+ ¢ = 0. Analogously, we
get ¢ + ¢ = 0. We conclude that ¢’ is an inverse to ¢ in D(H).

(ii) The proof is analogous to that of Lemma 3.6. |



18 S. CERNAK
We denote

a+M(H)={a+c:c € M(H)Y},

My(G) = M(H) U (a+ M(H)).

Recall that D(H) and R(H) are identified. The I-cyclic order on M (H) C
D(H) is denoted by the same symbol C' as on R(H).

Let c1,co,c3 € M(H). We define the ternary relation C; on Mp,(G) to
coincide with C on M(H) and with C on G. Further we put (a+cs, a+cs,
a+c1) € Cy if and only if (c1,c,c3) € C. If a,b,é € My(G), (a,b,¢) € Cy,
then either {a,b,¢} C M(H) or {a,b,¢} C a + M(H). Therefore, M(G) is
a cyclically ordered set.

We intend to define a binary operation + on M} (G) to coincide with
the group operations + on M (H) and G.

Let ¢; € M(H),S;,T; € H,¢; =sup(S;) = inf(T;) (i =1,2).
Then ¢; = sup(Si,) = inf(Ti,) (i = 1,2) in D(H).
As before, we put

c1+co =sup{s; + s2: s1 € Sig,, 52 € Sop,} in D(H).
Further we put
(a+c1)+ (a+co) =sup{a+t1 +a+sy: s2 € Sopy,t1 € Thg, } in D(H),
c+(a+c2)=a+((a+ca)+(at+c)),
(a+c1)+co=a+(c1+c2).
According to Lemma 4.5, we have (a + ¢1) + (a + ¢2) € M(H).

Lemma 4.6. (M,(G),+) is a group.

Proof. We begin with the proof that + is an associative operation on
My(G).

Denote (a + ¢1) + (a + ¢2) = ¢ and (a + ¢2) + (a + ¢3) = ¢/. Hence
d =sup{a+ta+a+s3: s3€ Sap,,ta € Top,}. In view of Lemma 4.5, we
have c = inf{a+ s1 +a+ta: s1 € Siky,t2 € Tok, }-



COMPLETION OF A HALF LINEARLY CYCLICALLY ORDERED GROUP 19

Then
((a+ci)+(a+ec))+(a+ez)=c+(a+cz)=a+((a+c)+(a+c3)) =
=a+sup{a+a+si+a+ta+a+ss: s1€ Sk, S3€ Ssky, t2 € Top,} =
=a+sup{si+a+ta+a+s3: s1 € Sk, S3 € S3ky, t2 € Top, },

(atc)+((ate)+(ate))=(ata)+d=a+(a+d)=
=a-+sup{si +a+ta+a+s3: s1 € Sk, 53 € Ssky,t2 € Tog, }-

We have seen that ((a+c1)+(a+c2))+(a+c3) = (a+c1))+((a+c2)+(a+cs3)).

The remaining cases can be verified in a similar way.
Elements of M (H) have inverses in M (H). Let a+c € a+M(H). Then

a+ (a—c+a) is an inverse to a+ ¢ in a+ M (H) which completes the proof.
|

Lemma 4.7. Letc,c; € M(H) (i =1,2,3).
If (c1,co,c3) € Cy, then
(i1) (c1+e¢, ca+c, c3+c)€Cy,
(i2) (c+ec1, c+ca, c+c3) € Cy,
(i3) (c1 + (a+¢), co+ (a+¢), cs+ (a+¢)) € Ch,
(is) ((a+c)+ ez, (a+c)+c2 (at+c)+cr)) €l
If (a+c1, a+ca,a+c3) € Ch, then
(ii1) ((a+c1)+e (a+e2)+e (at+es)+c)€Ch,
(iiz) (c+(a+c1), c+(a+ca), c+(a+c3)) € Ch,
(ii3) ((a+c1) +(a+c), (a+e2)+(a+c), (a+ec3)+ (a+c)) €Oy,

(iig) ((a+c)+ (a+c3), (a+c)+(a+c2), (a+c)+ (a+c1)) € Ch.
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Proof. There are subsets S,T,S;, T; of H with ¢ = sup(S) = inf(T), ¢; =
sup(S;) = inf(7;) (i = 1,2, 3). Then ¢ = sup(S;) = inf(7}), ¢; = sup(Si,) =
inf(Ty,) in D(H) where k, k; are as before (i = 1,2,3). As for M(H) is an
lc-group, (i) and (i2) are valid.

(i3) Let (c1,c2,c3) € C1. Consider several cases:

(o) Assume that kp, ko, k3 are different elements of K. Then (k1, ko, k3)
€ Oy and so (t1,t9,t3) € C for each t; € Ty, (i =1,2,3). Hence (t1+(a+5),
ta+(a+s), ts+(a+s)) =(a+(a+t1)+(a+s), a+ (a+t2)+ (a+s),a+
(a+t3) + (a+s)) € C for each s € Sk, t; € Ty, (1 = 1,2,3). This yields
that (a +sup{a+t1+a+s: s € Sg, t1 € Tig,}, a+sup{a+t2 + at+
s: 8 € Syt € Top,}, a+sup{fa+ts+a+s: s € Sgty € Tap}) =
(a+((a+c1)+(atc)), a+((a+c2)+(a+c)), a+((a+c3)+(atc))) =
(c1+(a+c), ca+(a+c), cs+ (a+c)) € Ch.

(B) Let k1 = ko # k3. Then either ¢; < co < ¢3 or ¢3 < ¢1 < co. Assume
that ¢; < g < c3. We have ¢; = inf{h € H: ty €Ty, \TQkQ}. Hence t; <
to < t3 and so (tl,tg,tg,) € C for each t; € lel ~N TQkZ,tQ S Tgkz,tg S T3k3.
Futher we apply the same steps as in the case (a). If ¢3 < ¢1 < ¢ the proof
is similar.

The cases ko = k3 # k1 and k3 = k1 # ko are analogous.

(7) Let k1 = ko = k3. We have ¢; < ¢3 < ¢3 or ¢cg < ¢3 < ¢1 Or
c3 < ¢1 < ¢g. Suppose that ¢; < co < ¢3. From ¢; = inf{t; € H: t; €
Tigy s\ Top, },co = inf{ts € H : to € Tog, \ T, } we infer that t; < t2 < t3
and thus (t1,t2,t3) € C for each t; € Thg, \ Tog,, t2 € Togy \ Taiy, b3 € Ty,
Now we apply the same procedure as in the case (a). Cases ¢y < c3 <
c1,c3 < ¢1 < cg are analogous.

We conclude that (i3) is satisfied.

(iiy) Assume that (a + c1,a + c2,a + c3) € Cy. Hence (c3,c2,¢1) € C.

According to (i1), we get (c3 + c,ca + ¢, +¢) € C. This yields that
(a+(c1+c), a+(ca+c), a+(c3+c)) = ((a+c1)+c, (a+ca)+e, (a+c3)+c) € Cy.

(ii3) Again, assume that (a+c1,a+c2,a+c3) € C1. Then (c3,c2,¢1) € C.
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With respect to (iz), we obtain (¢34 (a4 ¢),ca+ (a+¢),c1+ (a+¢)) €
ie., (a+((a-+es)+(a+0)), a+ ((a+ea) +(a+e)), at((a+e)+(a+e)) €
Therefore, ((a+c1) + (a +¢), (a+c2) + (a +¢), (a+¢3) + (a +¢)) € Cy.

The remaining cases can be proved similarly. [

From Lemmas 4.6 and 4.7 it immediately follows

Theorem 4.8. (My(G);+,C1) is a half le-group with My,(G) T = M(H)
and My(G) | =a+ M(H).

|
The half lc-group M} (G) is said to be a completion of G. If M, (G) = G,

then G is called My, -complete.
Evidently that the following lemma is valid.

Lemma 4.9. G is My-complete if and only if H is M -complete. [

With respect to Theorem 3.7 and Lemma 4.9 we have:

Theorem 4.10. Let Hy # {0}. Then the half lc-group My(G) has the
following properties:

(a1) Mp(G) is Mp-complete;
(b1) G is an he-subgroup of My (G);

(c1) For each element ¢ € My(G) 1 there exist k € K1 and S,T C H such
that S and Ty, are nonempty subsets of H and ¢ = sup(Sy) = inf(T})
mn Mh(G) T. |

Theorem 4.11. Let Hy # {0}. Assume that G’ is a half lc-group satisfying
the above conditions (a1), (b1) and (c1) (with G’ instead of Mp(QG)). Then
there exists an isomorphism ¢1 of the half le-group Mp(G) onto G' with

#1(g9) = g for each g € G.

Proof. Since G’ fulfils the conditions (a;)—(c1), G’ 7 fulfils the conditions
(a)—(c) from Theorem 3.7 (G’ 7 instead of M (H)). Hence there exists an
isomorphism ¢ of the lc-group M(H) onto G’ 1 with ¢(h) = h for each
h € H. For each ¢ € M(H), we put ¢1(c) = ¢(c) and ¢1(a+ ¢) = a + ¢(c).
Therefore, ¢, is an isomorphism of the half lc-group My, (G) onto G’. For
each h € H, we have ¢1(a+h) = a+ ¢(h) = a+h and the proof is complete.

|
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Remark. The question whether half lc-groups with isomorphic increasing
parts are isomorphic is open.

Let a’ be an element from G | of the second order, a’ # a. The operation
+ and the cyclic order on the set M; (G) = M(H)U(a'+ M(H)) are defined
formally in the same way as on Mp(G). It can be easily verified that the
half le-group Mj (G) is equal Mp(G).

My} (G) and Mp-completness are defined in the same way also in the case
Hy = {0}. From Theorem 3.9 and Lemma 4.9, we infer that the following
theorem holds in both cases H, = {0} and Hy # {0}.

Theorem 4.12. Let G be a half lc-group. Then G is Mpy-complete if and
only if some of the following conditions is satisfied:

(i) H is finite;
(i) H is isomorphic to K;
(iii) Ho # {0} and Hy is M-complete.
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