Discussiones Mathematicae General Algebra and Applications 22 (2002) 5–23

COMPLETION OF A HALF LINEARLY CYCLICALLY ORDERED GROUP

Štefan Černák

Department of Mathematics, Faculty of Civil Engineering, Technical University Vysokoškolská 4, SK–042 02 Košice, Slovakia **e-mail:** svfkm@tuke.sk

Abstract

The notion of a half lc-group G is a generalization of the notion of a half linearly ordered group. A completion of G by means of Dedekind cuts in linearly ordered sets and applying Świerczkowski's representation theorem of lc-groups is constructed and studied.

Keywords: dedekind cut, cyclically ordered group, *lc*-group, half *lc*-group, completion of a half *lc*-group.

2000 AMS Mathematics Subject Classifications: Primary 06F15; Secondary 20F60.

J. Jakubík [3] introduced and studied the notions of a half cyclically ordered group and a half linearly cyclically ordered group (half *lc*-group) as a generalization of the notions of a half partially ordered group and a half linearly ordered group that were introduced by M. Giraudet and F. Lucas [2].

A completion C(H) of a linearly cyclically ordered set H has been defined and studied by V. Novák [5] and by V. Novák and M. Novotný [6].

In [4] it is defined and investigated a completion H^* of a linearly cyclically ordered group H. A new construction of a completion M(H) of H by using the Dedekind cuts method in linearly ordered sets is contained in [1]. It is proved that $M(H) = H^*$.

Half *lc*-groups are dealt with in Section 4. If a half *lc*-group is at the same time a half linearly ordered group, then its decreasing part consists of

elements of the second order ([2], Proposition I.2.2). The question of the existence of such elements in an arbitrary half lc-group, is open.

Let G be a half *lc*-group with the increasing part H. In this paper there is presented a completion $M_h(G)$ of G. It is shown that M(H) is the increasing part of a half *lc*-group $M_h(G)$. G is called M_h -complete if $M_h(G) = G$. Necessary and sufficient conditions are found for G to be M_h -complete (Theorem 4.12).

1. Preliminaries

Assume that A and B are linearly ordered sets. Let $S = \{(a, b) : a \in A, b \in B\}$. We put $(a_1, b_1) \leq (a_2, b_2)$ whenever $b_1 < b_2$ or $b_1 = b_2$ and $a_1 \leq a_2$ for each $(a_1, b_1), (a_2, b_2) \in S$. Then the linearly ordered set S is said to be the *lexicographic product* of A and B and the notation $S = A \circ B$ will be used.

Let L be a linearly ordered set and let X be a subset of L. Denote by $X^u(X^l)$ the set of all upper (lower) bounds of X in L. Further we denote by D(L) the system of all subsets of L of the form $(X^u)^l$ where X is a nonempty and upper bounded subset of L. Elements of D(L) are called *Dedekind cuts* of L. If the system D(L) is partially ordered by inclusion, then D(L) is a linearly ordered set. The mapping $\varphi(x) = (\{x\}^u)^l$ is an isomorphism of the linearly ordered set L into D(L). In the next the elements x and $\varphi(x)$ will be identified. Then L is a subset of D(L) and the following conditions are fulfilled:

 (α_1) For each element $c \in D(L)$ there exist nonempty subsets X and Y of L such that X is upper bounded, Y is lower bounded in L and $c = \sup(X) = \inf(Y)$ in D(L).

 (α_2) For each nonempty and upper (lower) bounded subset X(Y) of L there exists an element $c \in D(L)$, $c = \sup(X)$ ($c = \inf(Y)$) in D(L).

If A is a subset of L and $a = \sup(A)$ $(a = \inf(A))$ in L, then $a = \sup(A)(a = \inf(A))$ in D(L).

For the following two definitions cf. Novák [5].

Definition 1.1. Let M be a nonempty set and let C be a ternary relation on M with the following properties:

- (I) If $(x, y, z) \in C$, then $(z, y, x) \notin C$.
- (II) If $(x, y, z) \in C$, then $(y, z, x) \in C$.
- (III) If $(x, y, z) \in C$, $(x, z, u) \in C$, then $(x, y, u) \in C$.

Then C is said to be a cyclic order on M and the pair (M; C) is called a cyclically ordered set.

If A is a subset of M, then A is considered as being cyclically ordered by the inherited cyclic order.

Definition 1.2. Let (M; C) be a cyclically ordered set satisfying the following condition:

(IV) If x, y and z are distinct elements of M, then either $(x, y, z) \in C$ or $(z, y, x) \in C$.

Then C is said to be an *l-cyclic order* on M and (M; C) is called an *l-cyclically ordered set*.

Several terms are used in papers for the term "*l*-cyclic order". Namely, "*l*-cyclic order" is called "cyclic order" in [8], "complete cyclic order" in [7], and "linear cyclic order in [5]".

Definition 1.3 (cf. Rieger [8]). Let (H; +) be a group and let (H; C) be a cyclically ordered set satisfying the condition

(V) if $x, y, z, a, b \in H$ such that $(x, y, z) \in C$, then $(a + x + b, a + y + b, a + z + b) \in C$.

Then (H; +, C) is called a *cyclically ordered group*. If C is an *l*-cyclic order, then (H; +, C) is called an *lc-group*.

Each subgroup of a cyclically ordered group is a cyclically ordered group.

Example 1.4. Let $(L; +, \leq)$ be a linearly ordered group and let $x, y, z \in L$. We put

(g) $(x, y, z) \in C_1$ if and only if x < y < z or y < z < x or z < x < y.

Then $(L; +, C_1)$ is an *lc*-group. We say that the *l*-cyclic order C_1 is generated by the linear order \leq on L.

In the next, if $(S; \leq)$ is a linearly ordered set then S is assumed to be *l*-cyclically ordered with the *l*-cyclic order defined by (g).

Example 1.5. Let K be the set of all reals k such that $0 \le k < 1$ with the natural linear order. Denote by C_2 the *l*-cyclic order on K defined by (g). The group operation + on K is defined as addition mod 1. Then $(K; +, C_2)$ is an *lc*-group.

We want to define a ternary relation C on the direct product $L \times K$ of the groups L and K. Let $u = (x, k_1), v = (y, k_2), w = (z, k_3) \in L \times K$. We put $(u, v, w) \in C$ if and only if some of the following conditions is satisfied:

- (i) $(k_1, k_2, k_3) \in C_2$,
- (ii) $k_1 = k_2 \neq k_3 \text{ and } x < y,$
- (iii) $k_2 = k_3 \neq k_1$ and y < z,
- (iv) $k_3 = k_1 \neq k_2$ and z < x,
- (v) $k_1 = k_2 = k_3$ and $(x, y, z) \in C_1$.

Then $(L \times K; C)$ is an *lc*-group which is denoted by $L \otimes K$.

An isomorphism of cyclically ordered groups is defined in a natural way.

Theorem 1.6 (Świerczkowski [9]). Let H be an lc-group. Then there exists a linearly ordered group L such that H is isomorphic to a subgroup of $L \otimes K$.

In the next H will be considered as a subgroup of $L \otimes K$. We denote

 $L_1 = \{x \in L : \text{ there exists } k \in K \text{ with } (x, k) \in H\},\$ $K_1 = \{k \in K : \text{ there exists } x \in L \text{ with } (x, k) \in H\},\$ $H_0 = \{h \in H : \text{ there exists } x \in L \text{ with } h = (x, 0)\}.$

Then L_1 is a subgroup of L, K_1 is a subgroup of K, and H_0 is an invariant subgroup of H. Moreover, H_0 is a linearly ordered group if we put h > 0 if and only if x > 0. It can happen that $H_0 = \{0\}$.

Let (G; +) be a group and let (G; C) be a cyclically ordered set, $x, y, z \in G$. Form the sets

$$\begin{split} &G\uparrow=\{g\in G:\;(x,y,z)\in C\Longrightarrow (g+x,g+y,g+z)\in C\},\\ &G\downarrow=\{g\in G:\;(x,y,z)\in C\Longrightarrow (g+z,g+y,g+x)\in C\}. \end{split}$$

Definition 1.7. (cf. Jakubík [3].) Let (G; +) be a group and let (G; C) be a cyclically ordered set such that the following conditions are fulfilled:

- (1) the system C is nonempty;
- (2) if $g \in G$ and $(x, y, z) \in C$, then $(x + g, y + g, z + g) \in C$;
- (3) $G = G \uparrow \cup G \downarrow;$
- (4) if $(x, y, z) \in C$, then either $\{x, y, z\} \subseteq G \uparrow$ or $\{x, y, z\} \subseteq G \downarrow$.

Then (G; +, C) is said to be a half cyclically ordered group.

 $G \uparrow (G \downarrow)$ is called the *increasing* (*decreasing*, resp.) part of G.

If (G; +, C) is a half cyclically ordered group, then $G \uparrow$ is a cyclically ordered group. If $G \uparrow$ is an *lc*-group, then (G; +, C) is called a *half lc-group*.

Let (G; +, C) be a half cyclically ordered group and let G' be a subgroup of G with the nonempty inherited cyclic order C'. Then (G; +, C') is called an *hc-subgroup* of (G; +, C).

We shall often write briefly G instead of (G; +, C) or (G; C).

Each cyclically ordered group with a nontrivial cyclic order is a half cyclically ordered group with $G \uparrow = G$ and $G \downarrow = \emptyset$.

If $x, y \in G \uparrow$ and $u, v \in G \downarrow$, then $x + y \in G \uparrow$, $u + v \in G \uparrow$, $x + u \in G \downarrow$, $u + x \in G \downarrow$. This follows from 1.7.

2. Completion of an L-cyclically ordered set

The definitions and results in this section are due to Novák [5].

Assume that (H, C) is an *l*-cyclically ordered set and let $x \in H$. If, for each $y, z \in H$, we put $y <_x z$ if and only if either $(x, y, z) \in C$ or $x = y \neq z$, then $<_x$ is a linear order on H with the least element x.

Definition 2.1. A linear order < on H is called a *cut* on (H; C) if the cyclic order generated by the linear order < coincides with the original cyclic order C on H.

The linear order $<_x$ is a cut on (H; C).

Let < be a cut on (H; C). The following three cases can occur:

- (i) (H; <) has the least and the greatest element.
- (ii) (H; <) has neither the least nor the greatest element.
- (iii) (H; <) has either the least or the greatest element.

In the case (ii) a cut < is called a *gap*. If (H; C) contains no gaps, then it is called *complete*.

Definition 2.2. A cut < on (H; C) is said to be *regular* if some of the following conditions is satisfied:

- (i) < is a gap,
- (ii) (H; <) has the least element.

Denote by $\mathcal{R}(H)$ the set of all regular cuts on (H; C). Let $c_1 = <_1$, $c_2 = <_2$, and $c_3 = <_3$ be distinct elements of $\mathcal{R}(H)$. We put $(c_1, c_2, c_3) \in \overline{C}$ if and only if there are elements $x, y, z \in H$ such that

$$x <_1 y <_1 z, y <_2 z <_2 x, z <_3 x <_3 y.$$

For each $x \in H$ we put $\varphi(x) = \langle x \rangle$.

Theorem 2.3 (cf. [5], 4.2 and 4.3). $(\mathcal{R}(H); \overline{C})$ is an *l*-cyclically ordered set and φ is an isomorphism of the *l*-cyclically ordered set H into $\mathcal{R}(H)$.

Elements x and $\varphi(x)$ will be identified. Hence H is considered as a subset of $\mathcal{R}(H)$. $\mathcal{R}(H)$ is a complete *l*-cyclically ordered set and it is said to be a *completion* of H.

3. Completion of an lc-group

In the whole section H is assumed to be an lc-group. A construction of a completion M(H) of H will be recalled (cf. [1]) and some auxiliary results will be derived.

Let $L_1, K_1, L_1 \otimes K_1$ be as in Section 1. The linear order on the lexicographic product $L_1 \circ K_1$ of the linearly ordered sets L_1 and K_1 is a cut on the *l*-cyclically ordered set $L_1 \otimes K_1$ and *H* is a subset of $L_1 \circ K_1$.

Therefore, D(H) can be considered as a subset of $D(L_1 \circ K_1)$. We have $H \subseteq D(H) \subseteq D(L_1 \circ K_1)$.

If the system $\overline{D}(H) = D(H) \cup \{H\}$ is partially ordered by inclusion, then $\{H\}$ is the greatest element of the chain $\overline{D}(H)$.

Lemma 3.1 (cf. [1], 3.4). The *l*-cyclically ordered set $\overline{D}(H)$ is isomorphic to $\mathcal{R}(H)$. $\mathcal{R}(H)$ and $\overline{D}(H)$ will be identified.

Let $c \in \overline{D}(H)$, $A \subseteq H$, $k \in K_1$. Denote

$$A_{k} = \{a \in A : a = (x, k) \text{ for some } x \in L_{1}\},\$$
$$A(L_{1}) = \{x \in L_{1}: \text{ there exists } k_{1} \in K_{1} \text{ with } (x, k_{1}) \in A\},\$$
$$A(K_{1}) = \{k_{1} \in K_{1}: \text{ there exists } x \in L, \text{ with } (x, k_{1}) \in A\},\$$
$$U(c) = \{u \in H : u \geq c\}, V(c) = \{v \in H : v \leq c\}.$$

Then according to (α_1) we obtain

$$c = \sup(V(c)) = \inf(U(c)) \ in \ \overline{D}(H).$$

Let $c_1, c_2 \in \overline{D}(H)$. Then

$$c_1 = \sup(V(c_1)) = \inf(U(c_1))$$
, and $c_2 = \sup(V(c_2)) = \inf(U(c_2))$ in $\overline{D}(H)$.

Now, we intend to define the operation + on $\overline{D}(H)$.

If for all elements $v_1 = (x, k_1) \in V(c_1), v_2 = (y, k_2) \in V(c_2)$ the relation $k_1 +_r k_2 < 1$ holds, where $+_r$ is the usual operation on the group of reals, then we put

$$c_1 + c_2 = \sup\{v_1 + v_2 : v_1 \in V(c_1), v_2 \in V(c_2)\}$$
 in $\overline{D}(H)$.

If there are elements $v_1 \in V(c_1), v_2 \in V(c_2)$ such that $k_1 + k_2 \ge 1$, then we put

$$c_1 + c_2 = \sup\{v_1 + v_2: v_1 \in V(c_1), v_2 \in V(c_2), k_1 + k_2 \ge 1\}$$
 in $\overline{D}(H)$.

Then $(\overline{D}(H); +)$ is a semigroup and $0 \in H$ is a neutral element of $(\overline{D}(H); +)$. If M(H) is the set of all elements of $\overline{D}(H)$ that have an inverse in $\overline{D}(H)$, then M(H) is a group. The *lc*-group M(H) (with the inherited cyclic order from $\overline{D}(H)$) is said to be a *completion* of H. M(H) is a maximal subsemigroup of $\overline{D}(H)$ being a group and H is a subgroup of M(H).

Remark that the notion of a completion H^* of H was defined also in [4] in a formally different way. It was proved in [1] that $M(H) = H^*$.

If M(H) = H, then H is called M-complete. From the definition of H^* , it follows that $(H^*)^* = H^*$. Therefore, M(H) is M-complete.

At first M(H) will be investigated under the assumption $H_0 \neq \{0\}$ and then under that $H_0 = \{0\}$.

Suppose that $H_0 \neq \{0\}$.

Let $c \in \overline{D}(H)$. Assume that the set $V(c)(K_1)$ has the greatest element $k \in K_1$ which is at the same time the least element of $U(c)(K_1)$. Then we say that c is of type (τ) . Therefore, the sets $(V(c))_k$ and $(U(c))_k$ are nonempty and we have

(1)
$$c = \sup(V(c))_k = \inf(U(c))_k \text{ in } \overline{D}(H)$$

Let $c, c_i \in \overline{D}(H)$ (i = 1, 2, 3) be elements of type (τ) . If no misunderstanding can occur, the corresponding greatest elements of $V(c)(K_1)$ and $V(c_i)(K_1)$ will be denoted by k and k_i (i = 1, 2, 3), respectively.

By (1), we have

$$c_1 = \sup (V(c_1))_{k_1}$$
, and $c_2 = \sup (V(c_2))_{k_2}$ in $\overline{D}(H)$.

The definition of the operation + in $\overline{D}(H)$ implies

(2)
$$c_1 + c_2 = \sup\{v_1 + v_2 : v_1 \in (V(c_1))_{k_1}, v_2 \in (V(c_2))_{k_2}\}$$
 in $\overline{D}(H)$.

Evidently, that $c_1 + c_2$ is of type (τ) .

Let $c \in \overline{D}(H)$ be of type (τ) , $S, T \subseteq H$, and $c = \sup(S) = \inf(T)$ in $\overline{D}(H)$. Then k is the greatest element of S(K) and the least element of T(K). Therefore, S_k and T_k are nonempty subsets of H and we have

(3)
$$c = \sup(S_k) = \inf(T_k) \text{ in } \overline{D}(H)$$

Let $w_1, w_2 \in H$, $w_1 = (x_1, k)$, and $w_2 = (x_2, k)$. Evidently, $w_1 \leq w_2$ implies $w_1 + w \leq w_2 + w$ and $w + w_1 \leq w + w_2$ for each $w \in H$. This result will be applied in the sequel.

Lemma 3.2. Let c_1, c_2 be elements of $\overline{D}(H)$ of type (τ) , $S_1, S_2 \subseteq H$, and let $c_1 = \sup S_1, c_2 = \sup S_2$ in $\overline{D}(H)$. Then

$$c_1 + c_2 = \sup\{s_1 + s_2 : s_1 \in S_{1k_1}, s_2 \in S_{2k_2}\}$$
 in $D(H)$.

Proof. There exists $c \in \overline{D}(H)$, $c = \sup\{s_1 + s_2 : s_1 \in S_{1k_1}, s_2 \in S_{2k_2}\}$. Therefore, c is of type (τ) , $k = k_1 + k_2$ is the greatest element of $V(c)(K_1)$ and also the least element of $U(c)(K_1)$. From $S_{1k_1} \subseteq (V(c_1))_{k_1}, S_{2k_2} \subseteq V(c_2)_{k_2}$ and from (2), we infer that $c \leq c_1 + c_2$. We are going to show that $c_1 + c_2 \leq c$, i.e., $(U(c))_k \subseteq (U(c_1 + c_2))_k$. Let $h \in (U(c))_k$. Then $h \geq s_1 + s_2$ for each $s_1 \in S_{1k_1}, s_2 \in S_{2k_2}, -s_1 + h \geq s_2$ for each $s_2 \in S_{2k_2}$. With respect to (3) and (1), we get $-s_1 + h \geq c_2 \geq v_2$ for each $v_2 \in (V(c_2))_{k_2}$. By using (3) and (1), from $h - v_2 \geq s_1$ for each $s_1 \in S_{1k_1}$, it follows that $h - v_2 \geq c_1 \geq v_1$ for each $v_1 \in (V(c_1))_{k_1}$, and so $h \geq v_1 + v_2$ for each $v_1 \in (V(c_1))_{k_1}, v_2 \in (V(c_2))_{k_2}$. In view of (2), we get $h \geq c_1 + c_2$. We conclude that $h \in (U(c_1 + c_2))_k$.

Lemma 3.3 (cf. [1], 3.6 and 3.9). Let $c \in \overline{D}(H)$.

- (i) If $c = \{H\}$, then $c \notin M(H)$.
- (ii) If $c \neq \{H\}$, then $c \in M(H)$ if and only if the following conditions are satisfied in H:

(p₁)

$$\inf\{u - v : u \in U(c), v \in V(c)\} = 0,$$

$$\inf\{-v + u : u \in U(c), v \in V(c)\} = 0.$$

(iii) If $c \in M(H)$, then c is of type (τ) .

Lemma 3.4. Let $c \in \overline{D}(H)$ be of type (τ) , $S, T \subseteq H$, $c = \sup(S) = \inf(T)$ in $\overline{D}(H)$. Then $c \in M(H)$ if and only if the following conditions are satisfied in H:

(p₂) inf{ $t - s : s \in S_k, t \in T_k$ } = 0 and inf{ $-s + t : s \in S_k, t \in T_k$ } = 0.

Proof. Let $c \in \overline{D}(H)$ be of type (τ) . Hence $c \neq \{H\}$. In view of Lemma 3.3, we prove that the conditions (p_1) and (p_2) are equivalent. It suffices to show that (p_1) implies (p_2) .

Assume that (p_1) holds. With respect to (3), we get $c = \sup(S_k) = \inf(T_k)$ in $\overline{D}(H)$. From $s \leq t$, we infer $t - s \geq 0$ for each $s \in S_k$, $t \in T_k$.

Assume that $d \in H$, d = (x, k'), $d \leq t - s$ for each $s \in S_k$, $t \in T_k$. Hence k' = 0. We have to prove that $d \leq 0$. Since $d + s \leq t$ for each $t \in T_k$, $d + s \leq c$. Therefore, $d + s \leq u$ for each $u \in (U(c))_k$, and $s \leq -d + u$ for each $s \in S_k$. This implies that $c \leq -d + u$ and so $v \leq -d + u$ for each $v \in (V(c))_k$. Hence $d \leq u - v$ for each $u \in (U(c))_k$, $v \in (V(c))_k$ and then also for each $u \in U(c)$, $v \in V(c)$. The condition (p_1) implies $d \leq 0$. The remaining case is similar.

The following lemma is easy to verify.

Lemma 3.5. Let c_1 , c_2 and c be elements of $\overline{D}(H)$ of type (τ) such that $k_1 = k_2$. If $c_1 \leq c_2$, then $c_1 + c \leq c_2 + c$ and $c + c_1 \leq c + c_2$.

Lemma 3.6. Let $c_1, c_2 \in M(H), S_i, T_i \subseteq H, c_i = \sup(S_i) = \inf(T_i)$ (i = 1, 2) in $\overline{D}(H)$. Then

$$c_1 + c_2 = \inf\{t_1 + t_2 : t_1 \in T_{1k_1}, t_2 \in T_{2k_2}\}$$
 in $D(H)$.

Proof. Let $c_1, c_2 \in M(H)$. According to Lemma 3.3, c_1 and c_2 are of type (τ) . We have $s_1 + s_2 \leq t_1 + t_2$ for each $s_i \in S_{ik_i}, t_i \in T_{ik_i} (i = 1, 2)$. Denote $c = c_1 + c_2$ and $c' = \inf\{t_1 + t_2 : t_1 \in T_{1k_1}, t_2 \in T_{2k_2}\}$. Since $c \in M(H), c$ is of type (τ) . For the greatest element k of $(V(c))(K_1)$, we have $k = k_1 + k_2$. The element c' is also of type (τ) and k is the greatest element of $(V(c'))(K_1)$. With respect to Lemma 3.2, we have $c = \sup\{s_1 + s_2 : s_1 \in S_{1k_1}, s_2 \in S_{2k_2}\}$. Then $c \leq c'$. We have to show that $c' \leq c$, i.e., $(V(c'))_k \subseteq (V(c))_k$. Let $h \in (V(c'))_k$. From $h \leq c'$, we infer $h \leq t_1 + t_2$ for each $t_1 \in T_{1k_1}, t_2 \in T_{2k_2}$. Hence $h - t_2 \leq t_1$ for each $t_1 \in T_{1k_1}$ and so $h - t_2 \leq c_1$. Applying Lemma 3.5 and $c_1 \in M(H)$, we get $-c_1 + h \leq t_2$ for each $t_2 \in T_2$. This yields $-c_1 + h \leq c_2$. Again by using Lemma 3.5 and $c_1 \in M(H)$, we obtain $h \leq c$.

By summarising the previous results, we get:

Theorem 3.7. Let $H_0 \neq \{0\}$. The lc-group M(H) has the following properties:

- (a) M(H) is M-complete;
- (b) H is a subgroup of M(H);

(c) for each element $c \in M(H)$ there exist $k \in K_1$ and $S, T \subseteq H$ such that S_k and T_k are nonempty subsets of H, and $c = \sup(S_k) = \inf(T_k)$ in M(H).

Theorem 3.8. Let $H_0 \neq \{0\}$. Assume that H' is an lc-group fulfilling the conditions (a)–(c) (with H' instead of M(H)). Then there exists an isomorphism ϕ of the lc-group M(H) onto H' such that $\phi(h) = h$ for each $h \in H$.

Proof. Assume that $c \in M(H)$. According respect to (c), there exist $k \in K_1, S, T \subseteq H$ such that $c = \sup(S_k) = \inf(T_k)$ in M(H) (recall that k is the greatest (least) element of $S(K_1)(T(K_1))$). Let $Z_1 = \{t - s : t \in T_k, s \in S_k\}$ and $Z_2 = \{-s + t : s \in S_k, t \in T_k\}$. With respect to Lemma 3.4, we get $\inf(Z_1) = \inf(Z_2) = 0$ in H. Let $T' = \{h' \in H' : h' \geq s \text{ for each } s \in S_k\}$ and $S' = \{h' \in H' : h' \leq t' \text{ for each } t' \in T'\}$. There exists $c' \in D(H')$ with $c' = \sup(S') = \inf(T')$ in D(H'). We have $c' = \sup(S'_k) = \inf(T'_k)$ in D(H'). Let us denote $Z'_1 = \{t' - s' : s' \in S'_k, t' \in T'_k\}$ and $Z'_2 = \{-s' + t' : s' \in S'_k, t' \in T'_k\}$. We get $\inf(Z_1) = \inf(Z'_1) = 0$, $\inf(Z_2) = \inf(Z'_2) = 0$ in H'. Then Lemma 3.4 yields that $c' \in M(H')$. According to (a), M(H') = H' and so $c' \in H'$.

We put $\phi(c) = c'$. It is easy to verify that ϕ is correctly defined and that ϕ is an isomorphism of the *lc*-group M(H) onto H' with $\phi(h) = h$ for each $h \in H$.

Now assume that $H_0 = \{0\}$. We may suppose that H is a subgroup of K. If H is finite then M(H) = H. If H is infinite, then the *lc*-group M(H) is isomorphic to K (cf. [4] and [1]).

In both cases $H_0 \neq \{0\}$ and $H_0 = \{0\}$ the following theorem holds.

Theorem 3.9 (cf. [4], 7.5). Let H be an lc-group. Then H is M-complete if and only if some of the following conditions is satisfied:

- (i) *H* is finite;
- (ii) H isomorphic to K;
- (iii) $H_0 \neq \{0\}$ and H_0 is *M*-complete.

4. Completion of a half lc-group

In the present section we suppose that G is a half *lc*-group with a cyclic order C and with $G \downarrow \neq \emptyset$. Then G fails to be an *lc*-group.

We shall use the notations $G \uparrow = H$ and $G \downarrow = H'$. As in the previous sections $H \subseteq L_1 \circ K_1$ and $D(H) \subseteq D(L_1 \circ K_1)$. Assume that there exists an element $a \in H'$ of the second order. The mapping $\psi : H \to H'$ defined by $\psi(h) = a + h$ is a bijection reversing the *l*-cyclic order of H. If for each $h_1, h_2 \in H$ we set $a + h_1 \leq a + h_2$ if and only if $h_2 \leq h_1$, then a + H is a linearly ordered set. We have $h_1 + a \leq h_2 + a$ if and only if $h_1 \leq h_2$.

Assume that $H_0 \neq \{0\}$.

Lemma 4.1 (cf. [3], 3.6). H_0 is a normal subgroup of G.

Lemma 4.2 (cf. [3], 3.8). $A = H_0 \cup (a + H_o)$ is a half lc-subgroup of G. Moreover, A is a half linearly ordered group.

Lemma 4.3. Let h_1 , $h_2 \in H$, $h_1 = (x_1, k_1)$, $h_2 = (x_2, k_2)$, $a + h_1 + a = (x'_1, k'_1)$, and $a + h_2 + a = (x'_2, k'_2)$. Then $k_1 = k_2$ if and only if $k'_1 = k'_2$.

Proof. Let $k_1 = k_2$. Then $h_1 - h_2 \in H_0$. Using Lemma 4.1 we get $a + h_1 + a - (a + h_2 + a) = a + (h_1 - h_2) + a \in H_0$. Hence $k'_1 = k'_2$. The converse is analogous.

Lemma 4.4. Let $h_1, h_2 \in H$, $h_1 = (x_1, k)$ and $h_2 = (x_2, k)$. Assume that $h_1 < h_2$. Then $a + h_2 + a < a + h_1 + a$.

Proof. Let $a + h_1 + a = (x, k_1)$ and $a + h_2 + a = (y, k_2)$. By Lemma 4.3, we get $k_1 = k_2$.

If k = 0, then $h_1, h_2 \in H_0$ and the assertion follows from Lemma 4.2.

If $k \neq 0$, then $k_1 \neq 0$ as well and $0 < h_1 < h_2$ yields that $(0, h_1, h_2) \in C$. This implies that $(a + h_2 + a, a + h_1 + a, 0) \in C$. Hence y < x and thus $a + h_2 + a < a + h_1 + a$.

Assume that $c_1, c_2 \in D(H)$ are of type $(\tau), S_i, T_i \subseteq H, c_i = \sup(S_i) = \inf(T_i)(i = 1, 2)$ in $\overline{D}(H)$ and that $k_i \in K_1$ corresponds to c_i (i = 1, 2) as in Section 3. Then $c_i = \sup(S_{ik_i}) = \inf(T_{ik_i})$ (i = 1, 2) in $\overline{D}(H)$.

Let $s_i \in S_{ik_i}, t_i \in T_{ik_i} (i = 1, 2)$. From $s_1 \leq t_1, s_2 \leq t_2$ for each $s_i \in S_{ik_i}, t_i \in T_{ik_i} (i = 1, 2)$, we obtain $a + t_1 + a + s_2 \leq a + t_1 + a + t_2$. According to Lemma 4.4 we get $a + t_1 + a + t_2 \leq a + s_1 + a + t_2$. Hence $a + t_1 + a + s_2 \leq a + s_1 + a + t_2$. Thus there exist $\sup\{a + t_1 + a + s_2 : s_2 \in S_{2k_2}, t_1 \in T_{1k_1}\}$ and $\inf\{a + s_1 + a + t_2 : s_1 \in S_{1k_1}, t_2 \in T_{2k_2}\}$ in $\overline{D}(H)$.

Lemma 4.5. Let $S_i, T_i \subseteq H, c_i \in M(H), c_i = \sup(S_i) = \inf(T_i)$ $(i = 1, 2), c \in \overline{D}(H)$, and $c = \sup\{a + t_1 + a + s_2 : s_2 \in S_{2k_2}, t_1 \in T_{1k_1}\}$ in $\overline{D}(H)$. Then

- (i) $c \in M(H)$,
- (ii) $c = \inf\{a + s_1 + a + t_2 : s_1 \in S_{1k_1}, t_{2k_2}\}$ in $\overline{D}(H)$.

Proof. (i) We have to prove that there exists an inverse to c in D(H). By Lemma 3.3 elements c_1 and c_2 are of type (τ) . Hence c is of type (τ) as well. Denote $B = \{a + t_1 + a + s_2 : s_2 \in S_{2k_2}, t_1 \in T_{1k_1}\}, D = \{a + s_1 + a + t_2 : s_1 \in S_{1k_1}, t_2 \in T_{2k_2}\}$. For the element $k \in K_1$ corresponding to c we have $k = k_1 + k_2$, k is the greatest element of $B(K_1)$ and the least element of $D(K_1)$. From $b \leq d$ for each $b \in B, d \in D, b = (x, k), d = (y, k)$, we infer that $d - b \geq 0$. Let $h \in H, h \leq d - b$ for each $b \in B, d \in D$. Then $h \in H_0, h = (z, 0)$. We have $h \leq a + s_1 + a + t_2 - (a + t_1 + a + s_2) = a + s_1 + a + t_2 - s_2 + a - t_1 + a \in H_0$. This yields that $a - s_1 + a + h + a + t_1 + a \leq t_2 - s_2$ for each $s_2 \in S_{2k_2}, t_2 \in T_{2k_2}$. Since $c_2 \in M(H)$, by using Lemma 3.4, we obtain $\inf\{t_2 - s_2 : s_2 \in S_{2k_2}, t_2 \in T_{2k_2}\} = 0$ in H. Then $a - s_1 + a + h + a + t_1 + a \leq 0$, $a + h + a \geq s_1 - t_1$, $a - h + a \leq t_1 - s_1$ for each $s_1 \in S_{1k_1}, t_1 \in T_{1k_1}$. Since $c_1 \in M(H)$, Lemma 3.4 implies $a - h + a \leq 0$, $h \leq 0$.

(*)
$$\inf\{d-b: b \in B, d \in D\} = 0 \text{ in } H.$$

In an analogous way, we get $\inf\{-b + d : b \in B, d \in D\} = 0$ in H.

We have $-d \leq -b$ for each $b \in B, d \in D$. Hence the set $-D = \{-d \in H: d \in D\}$ is nonempty and upper bounded. Hence there exists $c' \in \overline{D}(H), c' = \sup\{-D)$. We have $c + c' = \sup\{b + d: b \in B, d \in -D\} = \sup\{b - d: b \in B, d \in D\} = \inf\{d - b: b \in B, d \in D\}$ in $\overline{D}(H)$. By using (*), we get $\inf\{d - b: b \in B, d \in D\} = 0$ in $\overline{D}(H)$. Thus c + c' = 0. Analogously, we get c' + c = 0. We conclude that c' is an inverse to c in $\overline{D}(H)$.

(ii) The proof is analogous to that of Lemma 3.6.

_	
_	

We denote

$$a + M(H) = \{a + c \colon c \in M(H)\},\$$

$$M_h(G) = M(H) \cup (a + M(H)).$$

Recall that $\overline{D}(H)$ and $\mathcal{R}(H)$ are identified. The *l*-cyclic order on $M(H) \subseteq \overline{D}(H)$ is denoted by the same symbol \overline{C} as on $\mathcal{R}(H)$.

Let $c_1, c_2, c_3 \in M(H)$. We define the ternary relation C_1 on $M_h(G)$ to coincide with \overline{C} on M(H) and with C on G. Further we put $(a+c_3, a+c_2, a+c_1) \in \overline{C}_1$ if and only if $(c_1, c_2, c_3) \in \overline{C}$. If $\overline{a}, \overline{b}, \overline{c} \in M_h(G), (\overline{a}, \overline{b}, \overline{c}) \in \overline{C}_1$, then either $\{\overline{a}, \overline{b}, \overline{c}\} \subseteq M(H)$ or $\{\overline{a}, \overline{b}, \overline{c}\} \subseteq a + M(H)$. Therefore, $M_h(G)$ is a cyclically ordered set.

We intend to define a binary operation + on $M_h(G)$ to coincide with the group operations + on M(H) and G.

Let $c_i \in M(H), S_i, T_i \subseteq H, c_i = \sup(S_i) = \inf(T_i) \ (i = 1, 2).$ Then $c_i = \sup(S_{ik_i}) = \inf(T_{ik_i}) \ (i = 1, 2) \ \text{in } \overline{D}(H).$

As before, we put

$$\begin{split} c_1 + c_2 &= \sup\{s_1 + s_2: \ s_1 \in S_{1k_1}, \ s_2 \in S_{2k_2}\} \text{ in } \bar{D}(H). \\ \text{Further we put} \\ (a + c_1) + (a + c_2) &= \sup\{a + t_1 + a + s_2: \ s_2 \in S_{2k_2}, t_1 \in T_{1k_1}\} \text{ in } \bar{D}(H), \\ c_1 + (a + c_2) &= a + ((a + c_1) + (a + c_2)), \\ (a + c_1) + c_2 &= a + (c_1 + c_2). \end{split}$$

According to Lemma 4.5, we have $(a + c_1) + (a + c_2) \in M(H)$.

Lemma 4.6. $(M_h(G), +)$ is a group.

Proof. We begin with the proof that + is an associative operation on $M_h(G)$.

Denote $(a + c_1) + (a + c_2) = c$ and $(a + c_2) + (a + c_3) = c'$. Hence $c' = \sup\{a + t_2 + a + s_3 : s_3 \in S_{3k_3}, t_2 \in T_{2k_2}\}$. In view of Lemma 4.5, we have $c = \inf\{a + s_1 + a + t_2 : s_1 \in S_{1k_1}, t_2 \in T_{2k_2}\}$.

Then

$$\begin{split} &((a+c_1)+(a+c_2))+(a+c_3)=c+(a+c_3)=a+((a+c)+(a+c_3))=\\ &=a+\sup\{a+a+s_1+a+t_2+a+s_3:\ s_1\in S_{1k_1},\ s_3\in S_{3k_3},\ t_2\in T_{2k_2}\}=\\ &=a+\sup\{s_1+a+t_2+a+s_3:\ s_1\in S_{1k_1},\ s_3\in S_{3k_3},\ t_2\in T_{2k_2}\},\\ &(a+c_1)+((a+c_2)+(a+c_3))=(a+c_1)+c'=a+(c_1+c')=\\ &=a+\sup\{s_1+a+t_2+a+s_3:\ s_1\in S_{1k_1},\ s_3\in S_{3k_3},t_2\in T_{2k_2}\}. \end{split}$$

We have seen that $((a+c_1)+(a+c_2))+(a+c_3) = (a+c_1))+((a+c_2)+(a+c_3))$. The remaining cases can be verified in a similar way.

Elements of M(H) have inverses in M(H). Let $a + c \in a + M(H)$. Then a + (a - c + a) is an inverse to a + c in a + M(H) which completes the proof.

Lemma 4.7. Let $c, c_i \in M(H)$ (i = 1, 2, 3).

If $(c_1, c_2, c_3) \in \overline{C}_1$, then

- (i₁) $(c_1 + c, c_2 + c, c_3 + c) \in \overline{C}_1,$
- (i₂) $(c + c_1, c + c_2, c + c_3) \in \overline{C}_1$,
- (i₃) $(c_1 + (a + c), c_2 + (a + c), c_3 + (a + c)) \in \overline{C}_1,$
- (i₄) $((a+c)+c_3, (a+c)+c_2, (a+c)+c_1)) \in \overline{C}_1.$

If $(a + c_1, a + c_2, a + c_3) \in \overline{C}_1$, then

$$\begin{array}{l} (\mathrm{ii}_1) \ ((a+c_1)+c, \ (a+c_2)+c, \ (a+c_3)+c) \in \bar{C}_1, \\ \\ (\mathrm{ii}_2) \ (c+(a+c_1), \ c+(a+c_2), \ c+(a+c_3)) \in \bar{C}_1, \\ \\ (\mathrm{ii}_3) \ ((a+c_1)+(a+c), \ (a+c_2)+(a+c), \ (a+c_3)+(a+c)) \in \bar{C}_1, \\ \\ (\mathrm{ii}_4) \ ((a+c)+(a+c_3), \ (a+c)+(a+c_2), \ (a+c)+(a+c_1)) \in \bar{C}_1. \end{array}$$

Proof. There are subsets S, T, S_i , T_i of H with $c = \sup(S) = \inf(T)$, $c_i = \sup(S_i) = \inf(T_i)$ (i = 1, 2, 3). Then $c = \sup(S_k) = \inf(T_k)$, $c_i = \sup(S_{ik_i}) = \inf(T_{ik_i})$ in $\overline{D}(H)$ where k, k_i are as before (i = 1, 2, 3). As for M(H) is an lc-group, (i_1) and (i_2) are valid.

(i₃) Let $(c_1, c_2, c_3) \in \overline{C_1}$. Consider several cases:

(α) Assume that k_1, k_2, k_3 are different elements of K_1 . Then $(k_1, k_2, k_3) \in C_2$ and so $(t_1, t_2, t_3) \in C$ for each $t_i \in T_{ik_i}(i = 1, 2, 3)$. Hence $(t_1 + (a + s), t_2 + (a + s), t_3 + (a + s)) = (a + (a + t_1) + (a + s), a + (a + t_2) + (a + s), a + (a + t_3) + (a + s)) \in C$ for each $s \in S_k, t_i \in T_{ik_i}(i = 1, 2, 3)$. This yields that $(a + \sup\{a + t_1 + a + s : s \in S_k, t_1 \in T_{1k_1}\}, a + \sup\{a + t_2 + a + s : s \in S_k, t_2 \in T_{2k_2}\}, a + \sup\{a + t_3 + a + s : s \in S_k, t_3 \in T_{3k_3}\}) = (a + ((a + c_1) + (a + c)), a + ((a + c_2) + (a + c)), a + ((a + c_3) + (a + c))) = (c_1 + (a + c), c_2 + (a + c), c_3 + (a + c)) \in \overline{C_1}$.

 (β) Let $k_1 = k_2 \neq k_3$. Then either $c_1 < c_2 < c_3$ or $c_3 < c_1 < c_2$. Assume that $c_1 < c_2 < c_3$. We have $c_1 = \inf\{t_1 \in H : t_1 \in T_{1k_1} \setminus T_{2k_2}\}$. Hence $t_1 < t_2 < t_3$ and so $(t_1, t_2, t_3) \in C$ for each $t_1 \in T_{1k_1} \setminus T_{2k_2}, t_2 \in T_{2k_2}, t_3 \in T_{3k_3}$. Further we apply the same steps as in the case (α) . If $c_3 < c_1 < c_2$ the proof is similar.

The cases $k_2 = k_3 \neq k_1$ and $k_3 = k_1 \neq k_2$ are analogous.

(γ) Let $k_1 = k_2 = k_3$. We have $c_1 < c_2 < c_3$ or $c_2 < c_3 < c_1$ or $c_3 < c_1 < c_2$. Suppose that $c_1 < c_2 < c_3$. From $c_1 = \inf\{t_1 \in H : t_1 \in T_{1k_1} \setminus T_{2k_2}\}, c_2 = \inf\{t_2 \in H : t_2 \in T_{2k_2} \setminus T_{3k_3}\}$ we infer that $t_1 < t_2 < t_3$ and thus $(t_1, t_2, t_3) \in C$ for each $t_1 \in T_{1k_1} \setminus T_{2k_2}, t_2 \in T_{2k_2} \setminus T_{3k_3}, t_3 \in T_{3k_3}$. Now we apply the same procedure as in the case (α). Cases $c_2 < c_3 < c_1, c_3 < c_1 < c_2$ are analogous.

We conclude that (i_3) is satisfied.

(ii₁) Assume that $(a + c_1, a + c_2, a + c_3) \in \overline{C}_1$. Hence $(c_3, c_2, c_1) \in \overline{C}$.

According to (i₁), we get $(c_3 + c, c_2 + c, c_1 + c) \in \overline{C}$. This yields that $(a+(c_1+c), a+(c_2+c), a+(c_3+c)) = ((a+c_1)+c, (a+c_2)+c, (a+c_3)+c) \in \overline{C}_1$.

(ii₃) Again, assume that $(a+c_1, a+c_2, a+c_3) \in \overline{C}_1$. Then $(c_3, c_2, c_1) \in \overline{C}$.

With respect to (i₂), we obtain $(c_3 + (a + c), c_2 + (a + c), c_1 + (a + c)) \in \bar{C}_1$, i.e., $(a + ((a + c_3) + (a + c)), a + ((a + c_2) + (a + c)), a + ((a + c_1) + (a + c))) \in \bar{C}_1$. Therefore, $((a + c_1) + (a + c), (a + c_2) + (a + c), (a + c_3) + (a + c)) \in \bar{C}_1$. The remaining cases can be proved similarly.

From Lemmas 4.6 and 4.7 it immediately follows

Theorem 4.8. $(M_h(G); +, \overline{C}_1)$ is a half lc-group with $M_h(G) \uparrow = M(H)$ and $M_h(G) \downarrow = a + M(H)$.

The half *lc*-group $M_h(G)$ is said to be a *completion* of G. If $M_h(G) = G$, then G is called M_h -complete.

Evidently that the following lemma is valid.

Lemma 4.9. G is M_h -complete if and only if H is M-complete.

With respect to Theorem 3.7 and Lemma 4.9 we have:

Theorem 4.10. Let $H_0 \neq \{0\}$. Then the half lc-group $M_h(G)$ has the following properties:

- (a₁) $M_h(G)$ is M_h -complete;
- (b₁) G is an hc-subgroup of $M_h(G)$;
- (c₁) For each element $c \in M_h(G) \uparrow$ there exist $k \in K_1$ and $S, T \subseteq H$ such that S_k and T_k are nonempty subsets of H and $c = \sup(S_k) = \inf(T_k)$ in $M_h(G) \uparrow$.

Theorem 4.11. Let $H_0 \neq \{0\}$. Assume that G' is a half lc-group satisfying the above conditions (a₁), (b₁) and (c₁) (with G' instead of $M_h(G)$). Then there exists an isomorphism ϕ_1 of the half lc-group $M_h(G)$ onto G' with $\phi_1(g) = g$ for each $g \in G$.

Proof. Since G' fulfils the conditions $(a_1)-(c_1), G' \uparrow$ fulfils the conditions (a)-(c) from Theorem 3.7 $(G' \uparrow \text{ instead of } M(H))$. Hence there exists an isomorphism ϕ of the *lc*-group M(H) onto $G' \uparrow$ with $\phi(h) = h$ for each $h \in H$. For each $c \in M(H)$, we put $\phi_1(c) = \phi(c)$ and $\phi_1(a+c) = a + \phi(c)$. Therefore, ϕ_1 is an isomorphism of the half *lc*-group $M_h(G)$ onto G'. For each $h \in H$, we have $\phi_1(a+h) = a + \phi(h) = a + h$ and the proof is complete.

Remark. The question whether half *lc*-groups with isomorphic increasing parts are isomorphic is open.

Let a' be an element from $G \downarrow$ of the second order, $a' \neq a$. The operation + and the cyclic order on the set $M'_h(G) = M(H) \cup (a' + M(H))$ are defined formally in the same way as on $M_h(G)$. It can be easily verified that the half lc-group $M'_h(G)$ is equal $M_h(G)$.

 $M_h(G)$ and M_h -completness are defined in the same way also in the case $H_0 = \{0\}$. From Theorem 3.9 and Lemma 4.9, we infer that the following theorem holds in both cases $H_o = \{0\}$ and $H_0 \neq \{0\}$.

Theorem 4.12. Let G be a half lc-group. Then G is M_h -complete if and only if some of the following conditions is satisfied:

- (i) *H* is finite;
- (ii) H is isomorphic to K;
- (iii) $H_0 \neq \{0\}$ and H_0 is *M*-complete.

References

- Š. Černák, On the completion of cyclically ordered groups, Math. Slovaca 41 (1991), 41–49.
- [2] M. Giraudet and F. Lucas, Groupes à moitié ordonnés, Fund. Math. 139 (1991), 75–89.
- [3] J. Jakubík, On half cyclically ordered groups, Czechoslovak Math. J. (to appear).
- [4] J. Jakubík and Š. Černák, Completion of a cyclically ordered group, Czechoslovak Math. J. 37 (112) (1987), 157–174.
- [5] V. Novák, Cuts in cyclically ordered sets, Czechoslovak Math. J. 34 (109) (1984), 322–333.
- [6] V. Novák and M. Novotný, On completion of cyclically ordered sets, Czechoslovak Math. J. 37 (112) (1987), 407–414.
- [7] A. Quilliot, Cyclic orders, Europan J. Combin. 10 (1989), 477–488.

- [8] L. Rieger, On ordered and cyclically ordered groups. I, II, and III, (Czech) Věstník Královské České Společnosti Nauk. Třida Matemat.-Přirodověd. 1946, no. 6, p. 1–31, 1947, no 1, p. 1–33, 1948, no. 1, p. 1–26.
- [9] S. Świerczkowski, On cyclically ordered groups, Fundamenta Math. 47 (1959), 161–166.

Received 6 June 2001