COMPLETION OF A HALF LINEARLY CYCLICALLY ORDERED GROUP

Štefan Černák
Department of Mathematics, Faculty of Civil Engineering, Technical University
Vysokoškolská 4, SK-042 02 Košice, Slovakia
e-mail: svfkm@tuke.sk

Abstract

The notion of a half $l c$-group G is a generalization of the notion of a half linearly ordered group. A completion of G by means of Dedekind cuts in linearly ordered sets and applying Swierczkowski's representation theorem of $l c$-groups is constructed and studied.

Keywords: dedekind cut, cyclically ordered group, lc-group, half $l c$-group, completion of a half $l c$-group.
2000 AMS Mathematics Subject Classifications: Primary 06F15; Secondary 20F60.
J. Jakubík [3] introduced and studied the notions of a half cyclically ordered group and a half linearly cyclically ordered group (half $l c$-group) as a generalization of the notions of a half partially ordered group and a half linearly ordered group that were introduced by M. Giraudet and F. Lucas [2].

A completion $C(H)$ of a linearly cyclically ordered set H has been defined and studied by V. Novák [5] and by V. Novák and M. Novotný [6].

In [4] it is defined and investigated a completion H^{*} of a linearly cyclically ordered group H. A new construction of a completion $M(H)$ of H by using the Dedekind cuts method in linearly ordered sets is contained in [1]. It is proved that $M(H)=H^{*}$.

Half $l c$-groups are dealt with in Section 4. If a half $l c$-group is at the same time a half linearly ordered group, then its decreasing part consists of
elements of the second order ([2], Proposition I.2.2). The question of the existence of such elements in an arbitrary half $l c$-group, is open.

Let G be a half $l c$-group with the increasing part H. In this paper there is presented a completion $M_{h}(G)$ of G. It is shown that $M(H)$ is the increasing part of a half $l c$-group $M_{h}(G) . G$ is called M_{h}-complete if $M_{h}(G)=G$. Necessary and sufficient conditions are found for G to be M_{h}-complete (Theorem 4.12).

1. Preliminaries

Assume that A and B are linearly ordered sets. Let $S=\{(a, b): a \in A, b \in$ $B\}$. We put $\left(a_{1}, b_{1}\right) \leq\left(a_{2}, b_{2}\right)$ whenever $b_{1}<b_{2}$ or $b_{1}=b_{2}$ and $a_{1} \leq a_{2}$ for each $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right) \in S$. Then the linearly ordered set S is said to be the lexicographic product of A and B and the notation $S=A \circ B$ will be used.

Let L be a linearly ordered set and let X be a subset of L. Denote by $X^{u}\left(X^{l}\right)$ the set of all upper (lower) bounds of X in L. Futher we denote by $D(L)$ the system of all subsets of L of the form $\left(X^{u}\right)^{l}$ where X is a nonempty and upper bounded subset of L. Elements of $D(L)$ are called Dedekind cuts of L. If the system $D(L)$ is partially ordered by inclusion, then $D(L)$ is a linearly ordered set. The mapping $\varphi(x)=\left(\{x\}^{u}\right)^{l}$ is an isomorphism of the linearly ordered set L into $D(L)$. In the next the elements x and $\varphi(x)$ will be identified. Then L is a subset of $D(L)$ and the following conditions are fulfilled:
$\left(\alpha_{1}\right)$ For each element $c \in D(L)$ there exist nonempty subsets X and Y of L such that X is upper bounded, Y is lower bounded in L and $c=$ $\sup (X)=\inf (Y)$ in $D(L)$.
$\left(\alpha_{2}\right)$ For each nonempty and upper (lower) bounded subset $X(Y)$ of L there exists an element $c \in D(L), c=\sup (X)(c=\inf (Y))$ in $D(L)$.

If A is a subset of L and $a=\sup (A)(a=\inf (A))$ in L, then $a=$ $\sup (A)(a=\inf (A))$ in $D(L)$.

For the following two definitions cf. Novák [5].

Definition 1.1. Let M be a nonempty set and let C be a ternary relation on M with the following properties:
(I) If $(x, y, z) \in C$, then $(z, y, x) \notin C$.
(II) If $(x, y, z) \in C$, then $(y, z, x) \in C$.
(III) If $(x, y, z) \in C,(x, z, u) \in C$, then $(x, y, u) \in C$.

Then C is said to be a cyclic order on M and the pair $(M ; C)$ is called a cyclically ordered set.

If A is a subset of M, then A is considered as being cyclically ordered by the inherited cyclic order.

Definition 1.2. Let $(M ; C)$ be a cyclically ordered set satisfying the following condition:
(IV) If x, y and z are distinct elements of M, then either $(x, y, z) \in C$ or $(z, y, x) \in C$.

Then C is said to be an l-cyclic order on M and $(M ; C)$ is called an l-cyclically ordered set.

Several terms are used in papers for the term "l-cyclic order". Namely, "l-cyclic order" is called "cyclic order" in [8], "complete cyclic order" in [7], and "linear cyclic order in [5]".

Definition 1.3 (cf. Rieger [8]). Let $(H ;+)$ be a group and let $(H ; C)$ be a cyclically ordered set satisfying the condition
(V) if $x, y, z, a, b \in H$ such that $(x, y, z) \in C$, then $(a+x+b, a+y+b, a+z+b) \in C$.

Then $(H ;+, C)$ is called a cyclically ordered group. If C is an l-cyclic order, then $(H ;+, C)$ is called an lc-group.

Each subgroup of a cyclically ordered group is a cyclically ordered group.

Example 1.4. Let $(L ;+, \leq)$ be a linearly ordered group and let $x, y, z \in L$. We put
(g) $\quad(x, y, z) \in C_{1}$ if and only if $x<y<z$ or $y<z<x$ or $z<x<y$.

Then $\left(L ;+, C_{1}\right)$ is an $l c$-group. We say that the l-cyclic order C_{1} is generated by the linear order \leq on L.

In the next, if $(S ; \leq)$ is a linearly ordered set then S is assumed to be l-cyclically ordered with the l-cyclic order defined by (g).

Example 1.5. Let K be the set of all reals k such that $0 \leq k<1$ with the natural linear order. Denote by C_{2} the l-cyclic order on K defined by (g). The group operation + on K is defined as addition $\bmod 1$. Then $\left(K ;+, C_{2}\right)$ is an $l c$-group.

We want to define a ternary relation C on the direct product $L \times K$ of the groups L and K. Let $u=\left(x, k_{1}\right), v=\left(y, k_{2}\right), w=\left(z, k_{3}\right) \in L \times K$. We put $(u, v, w) \in C$ if and only if some of the following conditions is satisfied:
(i) $\left(k_{1}, k_{2}, k_{3}\right) \in C_{2}$,
(ii) $k_{1}=k_{2} \neq k_{3}$ and $x<y$,
(iii) $k_{2}=k_{3} \neq k_{1}$ and $y<z$,
(iv) $k_{3}=k_{1} \neq k_{2}$ and $z<x$,
(v) $k_{1}=k_{2}=k_{3}$ and $(x, y, z) \in C_{1}$.

Then $(L \times K ; C)$ is an $l c$-group which is denoted by $L \otimes K$.
An isomorphism of cyclically ordered groups is defined in a natural way.

Theorem 1.6 (Świerczkowski [9]). Let H be an lc-group. Then there exists a linearly ordered group L such that H is isomorphic to a subgroup of $L \otimes K$.

In the next H will be considered as a subgroup of $L \otimes K$. We denote

$$
\begin{aligned}
& L_{1}=\{x \in L: \text { there exists } k \in K \text { with }(x, k) \in H\} \\
& K_{1}=\{k \in K: \text { there exists } x \in L \text { with }(x, k) \in H\} \\
& H_{0}=\{h \in H: \text { there exists } x \in L \text { with } h=(x, 0)\}
\end{aligned}
$$

Then L_{1} is a subgroup of L, K_{1} is a subgroup of K, and H_{0} is an invariant subgroup of H. Moreover, H_{0} is a linearly ordered group if we put $h>0$ if and only if $x>0$. It can happen that $H_{0}=\{0\}$.

Let $(G ;+)$ be a group and let $(G ; C)$ be a cyclically ordered set, $x, y, z \in G$. Form the sets

$$
\begin{aligned}
& G \uparrow=\{g \in G:(x, y, z) \in C \Longrightarrow(g+x, g+y, g+z) \in C\}, \\
& G \downarrow=\{g \in G:(x, y, z) \in C \Longrightarrow(g+z, g+y, g+x) \in C\} .
\end{aligned}
$$

Definition 1.7. (cf. Jakubík [3].) Let $(G ;+)$ be a group and let $(G ; C)$ be a cyclically ordered set such that the following conditions are fulfilled:
(1) the system C is nonempty;
(2) if $g \in G$ and $(x, y, z) \in C$, then $(x+g, y+g, z+g) \in C$;
(3) $G=G \uparrow \cup G \downarrow ;$
(4) if $(x, y, z) \in C$, then either $\{x, y, z\} \subseteq G \uparrow$ or $\{x, y, z\} \subseteq G \downarrow$.

Then $(G ;+, C)$ is said to be a half cyclically ordered group.
$G \uparrow(G \downarrow)$ is called the increasing (decreasing, resp.) part of G.
If $(G ;+, C)$ is a half cyclically ordered group, then $G \uparrow$ is a cyclically ordered group. If $G \uparrow$ is an $l c$-group, then $(G ;+, C)$ is called a half lc-group.

Let $(G ;+, C)$ be a half cyclically ordered group and let G^{\prime} be a subgroup of G with the nonempty inherited cyclic order C^{\prime}. Then $\left(G ;+, C^{\prime}\right)$ is called an $h c$-subgroup of $(G ;+, C)$.

We shall often write briefly G instead of $(G ;+, C)$ or $(G ; C)$.
Each cyclically ordered group with a nontrivial cyclic order is a half cyclically ordered group with $G \uparrow=G$ and $G \downarrow=\emptyset$.

If $x, y \in G \uparrow$ and $u, v \in G \downarrow$, then $x+y \in G \uparrow, u+v \in G \uparrow$, $x+u \in G \downarrow, u+x \in G \downarrow$. This follows from 1.7.

2. Completion of an l-CyClically ordered set

The definitions and results in this section are due to Novák [5].
Assume that (H, C) is an l-cyclically ordered set and let $x \in H$. If, for each $y, z \in H$, we put $y<_{x} z$ if and only if either $(x, y, z) \in C$ or $x=y \neq z$, then $<_{x}$ is a linear order on H with the least element x.

Definition 2.1. A linear order $<$ on H is called a cut on $(H ; C)$ if the cyclic order generated by the linear order $<$ coincides with the original cyclic order C on H.

The linear order $<_{x}$ is a cut on $(H ; C)$.
Let $<$ be a cut on $(H ; C)$. The following three cases can occur:
(i) $(H ;<)$ has the least and the greatest element.
(ii) $(H ;<)$ has neither the least nor the greatest element.
(iii) $(H ;<)$ has either the least or the greatest element.

In the case (ii) a cut $<$ is called a gap. If $(H ; C)$ contains no gaps, then it is called complete.

Definition 2.2. A cut $<$ on $(H ; C)$ is said to be regular if some of the following conditions is satisfied:
(i) < is a gap,
(ii) $(H ;<)$ has the least element.

Denote by $\mathcal{R}(H)$ the set of all regular cuts on $(H ; C)$. Let $c_{1}=<_{1}$, $c_{2}=<_{2}$, and $c_{3}=<_{3}$ be distinct elements of $\mathcal{R}(H)$. We put $\left(c_{1}, c_{2}, c_{3}\right) \in \bar{C}$ if and only if there are elements $x, y, z \in H$ such that

$$
x<_{1} y<_{1} z, y<_{2} z<_{2} x, z<_{3} x<_{3} y .
$$

For each $x \in H$ we put $\varphi(x)=<_{x}$.
Theorem 2.3 (cf. [5], 4.2 and 4.3). $(\mathcal{R}(H) ; \bar{C})$ is an l-cyclically ordered set and φ is an isomorphism of the l-cyclically ordered set H into $\mathcal{R}(H)$.

Elements x and $\varphi(x)$ will be identified. Hence H is considered as a subset of $\mathcal{R}(H) . \mathcal{R}(H)$ is a complete l-cyclically ordered set and it is said to be a completion of H.

3. Completion of an $l c$-Group

In the whole section H is assumed to be an $l c$-group. A construction of a completion $M(H)$ of H will be recalled (cf. [1]) and some auxiliary results will be derived.

Let $L_{1}, K_{1}, L_{1} \otimes K_{1}$ be as in Section 1. The linear order on the lexicographic product $L_{1} \circ K_{1}$ of the linearly ordered sets L_{1} and K_{1} is a cut on the l-cyclically ordered set $L_{1} \otimes K_{1}$ and H is a subset of $L_{1} \circ K_{1}$.

Therefore, $D(H)$ can be considered as a subset of $D\left(L_{1} \circ K_{1}\right)$. We have $H \subseteq D(H) \subseteq D\left(L_{1} \circ K_{1}\right)$.

If the system $\bar{D}(H)=D(H) \cup\{H\}$ is partially ordered by inclusion, then $\{H\}$ is the greatest element of the chain $\bar{D}(H)$.

Lemma 3.1 (cf. [1], 3.4). The l-cyclically ordered set $\bar{D}(H)$ is isomorphic to $\mathcal{R}(H) . \mathcal{R}(H)$ and $\bar{D}(H)$ will be identified.

Let $c \in \bar{D}(H), A \subseteq H, k \in K_{1}$. Denote

$$
\begin{aligned}
& A_{k}=\left\{a \in A: a=(x, k) \text { for some } x \in L_{1}\right\}, \\
& A\left(L_{1}\right)=\left\{x \in L_{1}: \text { there exists } k_{1} \in K_{1} \text { with }\left(x, k_{1}\right) \in A\right\}, \\
& A\left(K_{1}\right)=\left\{k_{1} \in K_{1}: \text { there exists } x \in L, \text { with }\left(x, k_{1}\right) \in A\right\}, \\
& U(c)=\{u \in H: u \geq c\}, V(c)=\{v \in H: v \leq c\} .
\end{aligned}
$$

Then according to $\left(\alpha_{1}\right)$ we obtain

$$
c=\sup (V(c))=\inf (U(c)) \text { in } \bar{D}(H) .
$$

Let $c_{1}, c_{2} \in \bar{D}(H)$. Then
$c_{1}=\sup \left(V\left(c_{1}\right)\right)=\inf \left(U\left(c_{1}\right)\right)$, and $c_{2}=\sup \left(V\left(c_{2}\right)\right)=\inf \left(U\left(c_{2}\right)\right)$ in $\bar{D}(H)$.
Now, we intend to define the operation + on $\bar{D}(H)$.
If for all elements $v_{1}=\left(x, k_{1}\right) \in V\left(c_{1}\right), v_{2}=\left(y, k_{2}\right) \in V\left(c_{2}\right)$ the relation $k_{1}+_{r} k_{2}<1$ holds, where $+_{r}$ is the usual operation on the group of reals, then we put

$$
c_{1}+c_{2}=\sup \left\{v_{1}+v_{2}: v_{1} \in V\left(c_{1}\right), v_{2} \in V\left(c_{2}\right)\right\} \text { in } \bar{D}(H)
$$

If there are elements $v_{1} \in V\left(c_{1}\right), v_{2} \in V\left(c_{2}\right)$ such that $k_{1}+{ }_{r} k_{2} \geq 1$, then we put

$$
c_{1}+c_{2}=\sup \left\{v_{1}+v_{2}: v_{1} \in V\left(c_{1}\right), v_{2} \in V\left(c_{2}\right), k_{1}+_{r} k_{2} \geq 1\right\} \text { in } \bar{D}(H) .
$$

Then $(\bar{D}(H) ;+)$ is a semigroup and $0 \in H$ is a neutral element of $(\bar{D}(H) ;+)$. If $M(H)$ is the set of all elements of $\bar{D}(H)$ that have an inverse in $\bar{D}(H)$, then $M(H)$ is a group. The $l c$-group $M(H)$ (with the inherited cyclic order from $\bar{D}(H))$ is said to be a completion of $H . M(H)$ is a maximal subsemigroup of $\bar{D}(H)$ being a group and H is a subgroup of $M(H)$.

Remark that the notion of a completion H^{*} of H was defined also in [4] in a formally different way. It was proved in [1] that $M(H)=H^{*}$.

If $M(H)=H$, then H is called M-complete. From the definition of H^{*}, it follows that $\left(H^{*}\right)^{*}=H^{*}$. Therefore, $M(H)$ is M-complete.

At first $M(H)$ will be investigated under the assumption $H_{0} \neq\{0\}$ and then under that $H_{0}=\{0\}$.

Suppose that $H_{0} \neq\{0\}$.
Let $c \in \bar{D}(H)$. Assume that the set $V(c)\left(K_{1}\right)$ has the greatest element $k \in K_{1}$ which is at the same time the least element of $U(c)\left(K_{1}\right)$. Then we say that c is of type (τ). Therefore, the sets $(V(c))_{k}$ and $(U(c))_{k}$ are nonempty and we have

$$
\begin{equation*}
c=\sup (V(c))_{k}=\inf (U(c))_{k} \text { in } \bar{D}(H) \tag{1}
\end{equation*}
$$

Let $c, c_{i} \in \bar{D}(H)(i=1,2,3)$ be elements of type (τ). If no misunderstanding can occur, the corresponding greatest elements of $V(c)\left(K_{1}\right)$ and $V\left(c_{i}\right)\left(K_{1}\right)$ will be denoted by k and $k_{i}(i=1,2,3)$, respectively.

By (1), we have

$$
c_{1}=\sup \left(V\left(c_{1}\right)\right)_{k_{1}}, \text { and } c_{2}=\sup \left(V\left(c_{2}\right)\right)_{k_{2}} \text { in } \bar{D}(H)
$$

The definition of the operation + in $\bar{D}(H)$ implies

$$
\begin{equation*}
c_{1}+c_{2}=\sup \left\{v_{1}+v_{2}: v_{1} \in\left(V\left(c_{1}\right)\right)_{k_{1}}, v_{2} \in\left(V\left(c_{2}\right)\right)_{k_{2}}\right\} \text { in } \bar{D}(H) \tag{2}
\end{equation*}
$$

Evidently, that $c_{1}+c_{2}$ is of type (τ).
Let $c \in \bar{D}(H)$ be of type $(\tau), S, T \subseteq H$, and $c=\sup (S)=\inf (T)$ in $\bar{D}(H)$. Then k is the greatest element of $S(K)$ and the least element of $T(K)$. Therefore, S_{k} and T_{k} are nonempty subsets of H and we have

$$
\begin{equation*}
c=\sup \left(S_{k}\right)=\inf \left(T_{k}\right) \text { in } \bar{D}(H) \tag{3}
\end{equation*}
$$

Let $w_{1}, w_{2} \in H, w_{1}=\left(x_{1}, k\right)$, and $w_{2}=\left(x_{2}, k\right)$. Evidently, $w_{1} \leq w_{2}$ implies $w_{1}+w \leq w_{2}+w$ and $w+w_{1} \leq w+w_{2}$ for each $w \in H$. This result will be applied in the sequel.

Lemma 3.2. Let c_{1}, c_{2} be elements of $\bar{D}(H)$ of type $(\tau), S_{1}, S_{2} \subseteq H$, and let $c_{1}=\sup S_{1}, c_{2}=\sup S_{2}$ in $\bar{D}(H)$. Then

$$
c_{1}+c_{2}=\sup \left\{s_{1}+s_{2}: s_{1} \in S_{1 k_{1}}, s_{2} \in S_{2 k_{2}}\right\} \text { in } \bar{D}(H)
$$

Proof. There exists $c \in \bar{D}(H), c=\sup \left\{s_{1}+s_{2}: s_{1} \in S_{1 k_{1}}, s_{2} \in S_{2 k_{2}}\right\}$. Therefore, c is of type $(\tau), k=k_{1}+k_{2}$ is the greatest element of $V(c)\left(K_{1}\right)$ and also the least element of $U(c)\left(K_{1}\right)$. From $S_{1 k_{1}} \subseteq\left(V\left(c_{1}\right)\right)_{k_{1}}, S_{2 k_{2}} \subseteq V\left(c_{2}\right)_{k_{2}}$ and from (2), we infer that $c \leq c_{1}+c_{2}$. We are going to show that $c_{1}+c_{2} \leq c$, i.e., $\quad(U(c))_{k} \subseteq\left(U\left(c_{1}+c_{2}\right)\right)_{k}$. Let $h \in(U(c))_{k}$. Then $h \geq s_{1}+s_{2}$ for each $s_{1} \in S_{1 k_{1}}, s_{2} \in S_{2 k_{2}},-s_{1}+h \geq s_{2}$ for each $s_{2} \in S_{2 k_{2}}$. With respect to (3) and (1), we get $-s_{1}+h \geq c_{2} \geq v_{2}$ for each $v_{2} \in\left(V\left(c_{2}\right)\right)_{k_{2}}$. By using (3) and (1), from $h-v_{2} \geq s_{1}$ for each $s_{1} \in S_{1 k_{1}}$, it follows that $h-v_{2} \geq c_{1} \geq v_{1}$ for each $v_{1} \in\left(V\left(c_{1}\right)\right)_{k_{1}}$, and so $h \geq v_{1}+v_{2}$ for each $v_{1} \in\left(V\left(c_{1}\right)\right)_{k_{1}}, v_{2} \in\left(V\left(c_{2}\right)\right)_{k_{2}}$. In view of (2), we get $h \geq c_{1}+c_{2}$. We conclude that $h \in\left(U\left(c_{1}+c_{2}\right)\right)_{k}$.

Lemma 3.3 (cf. [1], 3.6 and 3.9). Let $c \in \bar{D}(H)$.
(i) If $c=\{H\}$, then $c \notin M(H)$.
(ii) If $c \neq\{H\}$, then $c \in M(H)$ if and only if the following conditions are satisfied in H :

$$
\inf \{u-v: u \in U(c), v \in V(c)\}=0
$$

$\left(\mathrm{p}_{1}\right)$

$$
\inf \{-v+u: u \in U(c), v \in V(c)\}=0
$$

(iii) If $c \in M(H)$, then c is of type (τ).

Lemma 3.4. Let $c \in \bar{D}(H)$ be of type $(\tau), S, T \subseteq H, c=\sup (S)=\inf (T)$ in $\bar{D}(H)$. Then $c \in M(H)$ if and only if the following conditions are satisfied in H :
$\left(\mathrm{p}_{2}\right) \inf \left\{t-s: s \in S_{k}, t \in T_{k}\right\}=0$ and $\inf \left\{-s+t: s \in S_{k}, t \in T_{k}\right\}=0$.
Proof. Let $c \in \bar{D}(H)$ be of type (τ). Hence $c \neq\{H\}$. In view of Lemma 3.3, we prove that the conditions $\left(p_{1}\right)$ and $\left(p_{2}\right)$ are equivalent. It suffices to show that $\left(p_{1}\right)$ implies $\left(p_{2}\right)$.

Assume that $\left(p_{1}\right)$ holds. With respect to (3), we get $c=\sup \left(S_{k}\right)=$ $\inf \left(T_{k}\right)$ in $\bar{D}(H)$. From $s \leq t$, we infer $t-s \geq 0$ for each $s \in S_{k}, t \in T_{k}$.

Assume that $d \in H, d=\left(x, k^{\prime}\right), d \leq t-s$ for each $s \in S_{k}, t \in T_{k}$. Hence $k^{\prime}=0$. We have to prove that $d \leq 0$. Since $d+s \leq t$ for each $t \in T_{k}, d+s \leq c$. Therefore, $d+s \leq u$ for each $u \in(U(c))_{k}$, and $s \leq-d+u$ for each $s \in S_{k}$. This implies that $c \leq-d+u$ and so $v \leq-d+u$ for each $v \in(V(c))_{k}$. Hence $d \leq u-v$ for each $u \in(U(c))_{k}, v \in(V(c))_{k}$ and then also for each $u \in U(c), v \in V(c)$. The condition $\left(p_{1}\right)$ implies $d \leq 0$. The remaining case is similar.

The following lemma is easy to verify.
Lemma 3.5. Let c_{1}, c_{2} and c be elements of $\bar{D}(H)$ of type (τ) such that $k_{1}=k_{2}$. If $c_{1} \leq c_{2}$, then $c_{1}+c \leq c_{2}+c$ and $c+c_{1} \leq c+c_{2}$.

Lemma 3.6. Let $c_{1}, c_{2} \in M(H), S_{i}, T_{i} \subseteq H, c_{i}=\sup \left(S_{i}\right)=\inf \left(T_{i}\right)(i=$ $1,2)$ in $\bar{D}(H)$. Then

$$
c_{1}+c_{2}=\inf \left\{t_{1}+t_{2}: t_{1} \in T_{1 k_{1}}, t_{2} \in T_{2 k_{2}}\right\} \text { in } \bar{D}(H)
$$

Proof. Let $c_{1}, c_{2} \in M(H)$. According to Lemma 3.3, c_{1} and c_{2} are of type (τ). We have $s_{1}+s_{2} \leq t_{1}+t_{2}$ for each $s_{i} \in S_{i k_{i}}, t_{i} \in T_{i k_{i}}(i=1,2)$. Denote $c=c_{1}+c_{2}$ and $c^{\prime}=\inf \left\{t_{1}+t_{2}: t_{1} \in T_{1 k_{1}}, t_{2} \in T_{2 k_{2}}\right\}$. Since $c \in M(H), c$ is of type (τ). For the greatest element k of $(V(c))\left(K_{1}\right)$, we have $k=k_{1}+k_{2}$. The element c^{\prime} is also of type (τ) and k is the greatest element of $\left(V\left(c^{\prime}\right)\right)\left(K_{1}\right)$. With respect to Lemma 3.2, we have $c=\sup \left\{s_{1}+s_{2}: s_{1} \in S_{1 k_{1}}, s_{2} \in S_{2 k_{2}}\right\}$. Then $c \leq c^{\prime}$. We have to show that $c^{\prime} \leq c$, i.e., $\left(V\left(c^{\prime}\right)\right)_{k} \subseteq(V(c))_{k}$. Let $h \in\left(V\left(c^{\prime}\right)\right)_{k}$. From $h \leq c^{\prime}$, we infer $h \leq t_{1}+t_{2}$ for each $t_{1} \in T_{1 k_{1}}, t_{2} \in T_{2 k_{2}}$. Hence $h-t_{2} \leq t_{1}$ for each $t_{1} \in T_{1 k_{1}}$ and so $h-t_{2} \leq c_{1}$. Applying Lemma 3.5 and $c_{1} \in M(H)$, we get $-c_{1}+h \leq t_{2}$ for each $t_{2} \in T_{2}$. This yields $-c_{1}+h \leq c_{2}$. Again by using Lemma 3.5 and $c_{1} \in M(H)$, we obtain $h \leq c$. Therefore, $h \in(V(c))_{k}$.

By summarising the previous results, we get:
Theorem 3.7. Let $H_{0} \neq\{0\}$. The lc-group $M(H)$ has the following properties:
(a) $M(H)$ is M-complete;
(b) H is a subgroup of $M(H)$;
(c) for each element $c \in M(H)$ there exist $k \in K_{1}$ and $S, T \subseteq H$ such that S_{k} and T_{k} are nonempty subsets of H, and $c=\sup \left(S_{k}\right)=\inf \left(T_{k}\right)$ in $M(H)$.

Theorem 3.8. Let $H_{0} \neq\{0\}$. Assume that H^{\prime} is an lc-group fulfilling the conditions (a)-(c) (with H^{\prime} instead of $M(H)$). Then there exists an isomorphism ϕ of the lc-group $M(H)$ onto H^{\prime} such that $\phi(h)=h$ for each $h \in H$.

Proof. Assume that $c \in M(H)$. According respect to (c), there exist $k \in$ $K_{1}, S, T \subseteq H$ such that $c=\sup \left(S_{k}\right)=\inf \left(T_{k}\right)$ in $M(H)$ (recall that k is the greatest (least) element of $\left.S\left(K_{1}\right)\left(T\left(K_{1}\right)\right)\right)$. Let $Z_{1}=\left\{t-s: t \in T_{k}, s \in S_{k}\right\}$ and $Z_{2}=\left\{-s+t: s \in S_{k}, t \in T_{k}\right\}$. With respect to Lemma 3.4, we get $\inf \left(Z_{1}\right)=\inf \left(Z_{2}\right)=0$ in H. Let $T^{\prime}=\left\{h^{\prime} \in H^{\prime}: h^{\prime} \geq s\right.$ for each $\left.s \in S_{k}\right\}$ and $S^{\prime}=\left\{h^{\prime} \in H^{\prime}: h^{\prime} \leq t^{\prime}\right.$ for each $\left.t^{\prime} \in T^{\prime}\right\}$. There exists $c^{\prime} \in D\left(H^{\prime}\right)$ with $c^{\prime}=\sup \left(S^{\prime}\right)=\inf \left(T^{\prime}\right)$ in $D\left(H^{\prime}\right)$. We have $c^{\prime}=\sup \left(S_{k}^{\prime}\right)=\inf \left(T_{k}^{\prime}\right)$ in $D\left(H^{\prime}\right)$. Let us denote $Z_{1}^{\prime}=\left\{t^{\prime}-s^{\prime}: s^{\prime} \in S_{k}^{\prime}, t^{\prime} \in T_{k}^{\prime}\right\}$ and $Z_{2}^{\prime}=\left\{-s^{\prime}+t^{\prime}: s^{\prime} \in\right.$ $\left.S_{k}^{\prime}, t^{\prime} \in T_{k}^{\prime}\right\}$. We get $\inf \left(Z_{1}\right)=\inf \left(Z_{1}^{\prime}\right)=0, \inf \left(Z_{2}\right)=\inf \left(Z_{2}^{\prime}\right)=0$ in H^{\prime}. Then Lemma 3.4 yields that $c^{\prime} \in M\left(H^{\prime}\right)$. According to (a), $M\left(H^{\prime}\right)=H^{\prime}$ and so $c^{\prime} \in H^{\prime}$.

We put $\phi(c)=c^{\prime}$. It is easy to verify that ϕ is correctly defined and that ϕ is an isomorphism of the $l c$-group $M(H)$ onto H^{\prime} with $\phi(h)=h$ for each $h \in H$.

Now assume that $H_{0}=\{0\}$. We may suppose that H is a subgroup of K. If H is finite then $M(H)=H$. If H is infinite, then the $l c$-group $M(H)$ is isomorphic to K (cf. [4] and [1]).

In both cases $H_{0} \neq\{0\}$ and $H_{0}=\{0\}$ the following theorem holds.

Theorem 3.9 (cf. [4], 7.5). Let H be an lc-group. Then H is M-complete if and only if some of the following conditions is satisfied:
(i) H is finite;
(ii) H isomorphic to K;
(iii) $H_{0} \neq\{0\}$ and H_{0} is M-complete.

4. Completion of a half $l c$-group

In the present section we suppose that G is a half $l c$-group with a cyclic order C and with $G \downarrow \neq \emptyset$. Then G fails to be an $l c$-group.

We shall use the notations $G \uparrow=H$ and $G \downarrow=H^{\prime}$. As in the previous sections $H \subseteq L_{1} \circ K_{1}$ and $D(H) \subseteq D\left(L_{1} \circ K_{1}\right)$. Assume that there exists an element $a \in H^{\prime}$ of the second order. The mapping $\psi: H \rightarrow H^{\prime}$ defined by $\psi(h)=a+h$ is a bijection reversing the l-cyclic order of H. If for each $h_{1}, h_{2} \in H$ we set $a+h_{1} \leq a+h_{2}$ if and only if $h_{2} \leq h_{1}$, then $a+H$ is a linearly ordered set. We have $h_{1}+a \leq h_{2}+a$ if and only if $h_{1} \leq h_{2}$.

Assume that $H_{0} \neq\{0\}$.
Lemma 4.1 (cf. [3], 3.6). H_{0} is a normal subgroup of G.
Lemma 4.2 (cf. [3], 3.8). $A=H_{0} \cup\left(a+H_{o}\right)$ is a half lc-subgroup of G. Moreover, A is a half linearly ordered group.

Lemma 4.3. Let $h_{1}, h_{2} \in H, h_{1}=\left(x_{1}, k_{1}\right), h_{2}=\left(x_{2}, k_{2}\right), a+h_{1}+a=$ $\left(x_{1}^{\prime}, k_{1}^{\prime}\right)$, and $a+h_{2}+a=\left(x_{2}^{\prime}, k_{2}^{\prime}\right)$. Then $k_{1}=k_{2}$ if and only if $k_{1}^{\prime}=k_{2}^{\prime}$.

Proof. Let $k_{1}=k_{2}$. Then $h_{1}-h_{2} \in H_{0}$. Using Lemma 4.1 we get $a+h_{1}+a-\left(a+h_{2}+a\right)=a+\left(h_{1}-h_{2}\right)+a \in H_{0}$. Hence $k_{1}^{\prime}=k_{2}^{\prime}$. The converse is analogous.

Lemma 4.4. Let $h_{1}, h_{2} \in H, h_{1}=\left(x_{1}, k\right)$ and $h_{2}=\left(x_{2}, k\right)$. Assume that $h_{1}<h_{2}$. Then $a+h_{2}+a<a+h_{1}+a$.

Proof. Let $a+h_{1}+a=\left(x, k_{1}\right)$ and $a+h_{2}+a=\left(y, k_{2}\right)$. By Lemma 4.3, we get $k_{1}=k_{2}$.

If $k=0$, then $h_{1}, h_{2} \in H_{0}$ and the assertion follows from Lemma 4.2.
If $k \neq 0$, then $k_{1} \neq 0$ as well and $0<h_{1}<h_{2}$ yields that $\left(0, h_{1}, h_{2}\right) \in C$. This implies that $\left(a+h_{2}+a, a+h_{1}+a, 0\right) \in C$. Hence $y<x$ and thus $a+h_{2}+a<a+h_{1}+a$.

Assume that $c_{1}, c_{2} \in \bar{D}(H)$ are of type $(\tau), S_{i}, T_{i} \subseteq H, c_{i}=\sup \left(S_{i}\right)=$ $\inf \left(T_{i}\right)(i=1,2)$ in $\bar{D}(H)$ and that $k_{i} \in K_{1}$ corresponds to $c_{i}(i=1,2)$ as in Section 3. Then $c_{i}=\sup \left(S_{i k_{i}}\right)=\inf \left(T_{i k_{i}}\right)(i=1,2)$ in $\bar{D}(H)$.

Let $s_{i} \in S_{i k_{i}}, t_{i} \in T_{i k_{i}}(i=1,2)$. From $s_{1} \leq t_{1}, s_{2} \leq t_{2}$ for each $s_{i} \in S_{i k_{i}}, t_{i} \in$ $T_{i k_{i}}(i=1,2)$, we obtain $a+t_{1}+a+s_{2} \leq a+t_{1}+a+t_{2}$. According to Lemma 4.4 we get $a+t_{1}+a+t_{2} \leq a+s_{1}+a+t_{2}$. Hence $a+t_{1}+a+s_{2} \leq$ $a+s_{1}+a+t_{2}$. Thus there exist $\sup \left\{a+t_{1}+a+s_{2}: s_{2} \in S_{2 k_{2}}, t_{1} \in T_{1 k_{1}}\right\}$ and $\inf \left\{a+s_{1}+a+t_{2}: s_{1} \in S_{1 k_{1}}, t_{2} \in T_{2 k_{2}}\right\}$ in $\bar{D}(H)$.

Lemma 4.5. Let $S_{i}, T_{i} \subseteq H, c_{i} \in M(H), c_{i}=\sup \left(S_{i}\right)=\inf \left(T_{i}\right)(i=$ $1,2), c \in \bar{D}(H)$, and $c=\sup \left\{a+t_{1}+a+s_{2}: s_{2} \in S_{2 k_{2}}, t_{1} \in T_{1 k_{1}}\right\}$ in $\bar{D}(H)$. Then
(i) $c \in M(H)$,
(ii) $c=\inf \left\{a+s_{1}+a+t_{2}: s_{1} \in S_{1 k_{1}}, t_{2 k_{2}}\right\}$ in $\bar{D}(H)$.

Proof. (i) We have to prove that there exists an inverse to c in $\bar{D}(H)$. By Lemma 3.3 elements c_{1} and c_{2} are of type (τ). Hence c is of type (τ) as well. Denote $B=\left\{a+t_{1}+a+s_{2}: s_{2} \in S_{2 k_{2}}, t_{1} \in T_{1 k_{1}}\right\}, D=\left\{a+s_{1}+a+t_{2}\right.$: $\left.s_{1} \in S_{1 k_{1}}, t_{2} \in T_{2 k_{2}}\right\}$. For the element $k \in K_{1}$ corresponding to c we have $k=k_{1}+k_{2}, k$ is the greatest element of $B\left(K_{1}\right)$ and the least element of $D\left(K_{1}\right)$. From $b \leq d$ for each $b \in B, d \in D, b=(x, k), d=(y, k)$, we infer that $d-b \geq 0$. Let $h \in H, h \leq d-b$ for each $b \in B, d \in D$. Then $h \in H_{0}, h=(z, 0)$. We have $h \leq a+s_{1}+a+t_{2}-\left(a+t_{1}+a+s_{2}\right)=a+s_{1}+a+$ $t_{2}-s_{2}+a-t_{1}+a \in H_{0}$. This yields that $a-s_{1}+a+h+a+t_{1}+a \leq t_{2}-s_{2}$ for each $s_{2} \in S_{2 k_{2}}, t_{2} \in T_{2 k_{2}}$. Since $c_{2} \in M(H)$, by using Lemma 3.4, we obtain $\inf \left\{t_{2}-s_{2}: s_{2} \in S_{2 k_{2}}, t_{2} \in T_{2 k_{2}}\right\}=0$ in H. Then $a-s_{1}+a+h+a+t_{1}+a \leq$ $0, a+h+a \geq s_{1}-t_{1}, a-h+a \leq t_{1}-s_{1}$ for each $s_{1} \in S_{1 k_{1}}, t_{1} \in T_{1 k_{1}}$. Since $c_{1} \in M(H)$, Lemma 3.4 implies $a-h+a \leq 0, h \leq 0$.
Therefore

$$
\begin{equation*}
\inf \{d-b: b \in B, d \in D\}=0 \text { in } H \tag{*}
\end{equation*}
$$

In an analogous way, we get $\inf \{-b+d: b \in B, d \in D\}=0$ in H.
We have $-d \leq-b$ for each $b \in B, d \in D$. Hence the set $-D=\{-d \in H$: $d \in D\}$ is nonempty and upper bounded. Hence there exists $c^{\prime} \in \bar{D}(H), c^{\prime}=$ $\sup (-D)$. We have $c+c^{\prime}=\sup \{b+d: b \in B, d \in-D\}=\sup \{b-d: b \in$ $B, d \in D\}=\inf \{d-b: b \in B, d \in D\}$ in $\bar{D}(H)$. By using (*), we get $\inf \{d-b: b \in B, d \in D\}=0$ in $\bar{D}(H)$. Thus $c+c^{\prime}=0$. Analogously, we get $c^{\prime}+c=0$. We conclude that c^{\prime} is an inverse to c in $\bar{D}(H)$.
(ii) The proof is analogous to that of Lemma 3.6.

We denote

$$
\begin{gathered}
a+M(H)=\{a+c: c \in M(H)\}, \\
M_{h}(G)=M(H) \cup(a+M(H)) .
\end{gathered}
$$

Recall that $\bar{D}(H)$ and $\mathcal{R}(H)$ are identified. The l-cyclic order on $M(H) \subseteq$ $\bar{D}(H)$ is denoted by the same symbol \bar{C} as on $\mathcal{R}(H)$.

Let $c_{1}, c_{2}, c_{3} \in M(H)$. We define the ternary relation \bar{C}_{1} on $M_{h}(G)$ to coincide with \bar{C} on $M(H)$ and with C on G. Further we put $\left(a+c_{3}, a+c_{2}\right.$, $\left.a+c_{1}\right) \in \bar{C}_{1}$ if and only if $\left(c_{1}, c_{2}, c_{3}\right) \in \bar{C}$. If $\bar{a}, \bar{b}, \bar{c} \in M_{h}(G),(\bar{a}, \bar{b}, \bar{c}) \in \bar{C}_{1}$, then either $\{\bar{a}, \bar{b}, \bar{c}\} \subseteq M(H)$ or $\{\bar{a}, \bar{b}, \bar{c}\} \subseteq a+M(H)$. Therefore, $M_{h}(G)$ is a cyclically ordered set.

We intend to define a binary operation + on $M_{h}(G)$ to coincide with the group operations + on $M(H)$ and G.

Let $c_{i} \in M(H), S_{i}, T_{i} \subseteq H, c_{i}=\sup \left(S_{i}\right)=\inf \left(T_{i}\right)(i=1,2)$.
Then $c_{i}=\sup \left(S_{i k_{i}}\right)=\inf \left(T_{i k_{i}}\right)(i=1,2)$ in $\bar{D}(H)$.
As before, we put

$$
c_{1}+c_{2}=\sup \left\{s_{1}+s_{2}: s_{1} \in S_{1 k_{1}}, s_{2} \in S_{2 k_{2}}\right\} \text { in } \bar{D}(H) .
$$

Further we put

$$
\begin{aligned}
& \left(a+c_{1}\right)+\left(a+c_{2}\right)=\sup \left\{a+t_{1}+a+s_{2}: s_{2} \in S_{2 k_{2}}, t_{1} \in T_{1 k_{1}}\right\} \text { in } \bar{D}(H), \\
& c_{1}+\left(a+c_{2}\right)=a+\left(\left(a+c_{1}\right)+\left(a+c_{2}\right)\right), \\
& \left(a+c_{1}\right)+c_{2}=a+\left(c_{1}+c_{2}\right) .
\end{aligned}
$$

According to Lemma 4.5, we have $\left(a+c_{1}\right)+\left(a+c_{2}\right) \in M(H)$.

Lemma 4.6. $\left(M_{h}(G),+\right)$ is a group.
Proof. We begin with the proof that + is an associative operation on $M_{h}(G)$.

Denote $\left(a+c_{1}\right)+\left(a+c_{2}\right)=c$ and $\left(a+c_{2}\right)+\left(a+c_{3}\right)=c^{\prime}$. Hence $c^{\prime}=\sup \left\{a+t_{2}+a+s_{3}: s_{3} \in S_{3 k_{3}}, t_{2} \in T_{2 k_{2}}\right\}$. In view of Lemma 4.5, we have $c=\inf \left\{a+s_{1}+a+t_{2}: s_{1} \in S_{1 k_{1}}, t_{2} \in T_{2 k_{2}}\right\}$.

Then

$$
\begin{aligned}
& \left(\left(a+c_{1}\right)+\left(a+c_{2}\right)\right)+\left(a+c_{3}\right)=c+\left(a+c_{3}\right)=a+\left((a+c)+\left(a+c_{3}\right)\right)= \\
= & a+\sup \left\{a+a+s_{1}+a+t_{2}+a+s_{3}: s_{1} \in S_{1 k_{1}}, s_{3} \in S_{3 k_{3}}, t_{2} \in T_{2 k_{2}}\right\}= \\
= & a+\sup \left\{s_{1}+a+t_{2}+a+s_{3}: s_{1} \in S_{1 k_{1}}, s_{3} \in S_{3 k_{3}}, t_{2} \in T_{2 k_{2}}\right\}, \\
& \left(a+c_{1}\right)+\left(\left(a+c_{2}\right)+\left(a+c_{3}\right)\right)=\left(a+c_{1}\right)+c^{\prime}=a+\left(c_{1}+c^{\prime}\right)= \\
= & a+\sup \left\{s_{1}+a+t_{2}+a+s_{3}: s_{1} \in S_{1 k_{1}}, s_{3} \in S_{3 k_{3}}, t_{2} \in T_{2 k_{2}}\right\} .
\end{aligned}
$$

We have seen that $\left.\left(\left(a+c_{1}\right)+\left(a+c_{2}\right)\right)+\left(a+c_{3}\right)=\left(a+c_{1}\right)\right)+\left(\left(a+c_{2}\right)+\left(a+c_{3}\right)\right)$.
The remaining cases can be verified in a similar way.
Elements of $M(H)$ have inverses in $M(H)$. Let $a+c \in a+M(H)$. Then $a+(a-c+a)$ is an inverse to $a+c$ in $a+M(H)$ which completes the proof.

Lemma 4.7. Let $c, c_{i} \in M(H)(i=1,2,3)$.
If $\left(c_{1}, c_{2}, c_{3}\right) \in \bar{C}_{1}$, then
$\left(\mathrm{i}_{1}\right)\left(c_{1}+c, c_{2}+c, c_{3}+c\right) \in \bar{C}_{1}$,
$\left(\mathrm{i}_{2}\right)\left(c+c_{1}, c+c_{2}, c+c_{3}\right) \in \bar{C}_{1}$,
($\left.\mathrm{i}_{3}\right)\left(c_{1}+(a+c), c_{2}+(a+c), c_{3}+(a+c)\right) \in \bar{C}_{1}$,
$\left.\left(\mathrm{i}_{4}\right)\left((a+c)+c_{3},(a+c)+c_{2},(a+c)+c_{1}\right)\right) \in \bar{C}_{1}$.
If $\left(a+c_{1}, a+c_{2}, a+c_{3}\right) \in \bar{C}_{1}$, then
$\left(\mathrm{ii}_{1}\right)\left(\left(a+c_{1}\right)+c,\left(a+c_{2}\right)+c,\left(a+c_{3}\right)+c\right) \in \bar{C}_{1}$,
(ii 2$)\left(c+\left(a+c_{1}\right), c+\left(a+c_{2}\right), c+\left(a+c_{3}\right)\right) \in \bar{C}_{1}$,
(ii $\left.{ }_{3}\right)\left(\left(a+c_{1}\right)+(a+c),\left(a+c_{2}\right)+(a+c),\left(a+c_{3}\right)+(a+c)\right) \in \bar{C}_{1}$,
(ii $\left.)_{4}\right)\left((a+c)+\left(a+c_{3}\right),(a+c)+\left(a+c_{2}\right),(a+c)+\left(a+c_{1}\right)\right) \in \bar{C}_{1}$.

Proof. There are subsets S, T, S_{i}, T_{i} of H with $c=\sup (S)=\inf (T), c_{i}=$ $\sup \left(S_{i}\right)=\inf \left(T_{i}\right)(i=1,2,3)$. Then $c=\sup \left(S_{k}\right)=\inf \left(T_{k}\right), c_{i}=\sup \left(S_{i k_{i}}\right)=$ $\inf \left(T_{i k_{i}}\right)$ in $\bar{D}(H)$ where k, k_{i} are as before $(i=1,2,3)$. As for $M(H)$ is an $l c$-group, (i_{1}) and (i_{2}) are valid.
$\left(\mathrm{i}_{3}\right)$ Let $\left(c_{1}, c_{2}, c_{3}\right) \in \bar{C}_{1}$. Consider several cases:
(α) Assume that k_{1}, k_{2}, k_{3} are different elements of K_{1}. Then $\left(k_{1}, k_{2}, k_{3}\right)$ $\in C_{2}$ and so $\left(t_{1}, t_{2}, t_{3}\right) \in C$ for each $t_{i} \in T_{i k_{i}}(i=1,2,3)$. Hence $\left(t_{1}+(a+s)\right.$, $\left.t_{2}+(a+s), t_{3}+(a+s)\right)=\left(a+\left(a+t_{1}\right)+(a+s), a+\left(a+t_{2}\right)+(a+s), a+\right.$ $\left.\left(a+t_{3}\right)+(a+s)\right) \in C$ for each $s \in S_{k}, t_{i} \in T_{i k_{i}}(i=1,2,3)$. This yields that $\left(a+\sup \left\{a+t_{1}+a+s: s \in S_{k}, t_{1} \in T_{1 k_{1}}\right\}, a+\sup \left\{a+t_{2}+a+\right.\right.$ $\left.\left.s: s \in S_{k}, t_{2} \in T_{2 k_{2}}\right\}, a+\sup \left\{a+t_{3}+a+s: s \in S_{k}, t_{3} \in T_{3 k_{3}}\right\}\right)=$ $\left(a+\left(\left(a+c_{1}\right)+(a+c)\right), a+\left(\left(a+c_{2}\right)+(a+c)\right), a+\left(\left(a+c_{3}\right)+(a+c)\right)\right)=$ $\left(c_{1}+(a+c), c_{2}+(a+c), c_{3}+(a+c)\right) \in \bar{C}_{1}$.
(β) Let $k_{1}=k_{2} \neq k_{3}$. Then either $c_{1}<c_{2}<c_{3}$ or $c_{3}<c_{1}<c_{2}$. Assume that $c_{1}<c_{2}<c_{3}$. We have $c_{1}=\inf \left\{t_{1} \in H: t_{1} \in T_{1 k_{1}} \backslash T_{2 k_{2}}\right\}$. Hence $t_{1}<$ $t_{2}<t_{3}$ and so $\left(t_{1}, t_{2}, t_{3}\right) \in C$ for each $t_{1} \in T_{1 k_{1}} \backslash T_{2 k_{2}}, t_{2} \in T_{2 k_{2}}, t_{3} \in T_{3 k_{3}}$. Futher we apply the same steps as in the case (α). If $c_{3}<c_{1}<c_{2}$ the proof is similar.

The cases $k_{2}=k_{3} \neq k_{1}$ and $k_{3}=k_{1} \neq k_{2}$ are analogous.
(γ) Let $k_{1}=k_{2}=k_{3}$. We have $c_{1}<c_{2}<c_{3}$ or $c_{2}<c_{3}<c_{1}$ or $c_{3}<c_{1}<c_{2}$. Suppose that $c_{1}<c_{2}<c_{3}$. From $c_{1}=\inf \left\{t_{1} \in H: t_{1} \in\right.$ $\left.T_{1 k_{1}}, \backslash T_{2 k_{2}}\right\}, c_{2}=\inf \left\{t_{2} \in H: t_{2} \in T_{2 k_{2}} \backslash T_{3 k_{3}}\right\}$ we infer that $t_{1}<t_{2}<t_{3}$ and thus $\left(t_{1}, t_{2}, t_{3}\right) \in C$ for each $t_{1} \in T_{1 k_{1}} \backslash T_{2 k_{2}}, t_{2} \in T_{2 k_{2}} \backslash T_{3 k_{3}}, t_{3} \in T_{3 k_{3}}$. Now we apply the same procedure as in the case (α). Cases $c_{2}<c_{3}<$ $c_{1}, c_{3}<c_{1}<c_{2}$ are analogous.

We conclude that $\left(\mathrm{i}_{3}\right)$ is satisfied.
(ii i_{1}) Assume that $\left(a+c_{1}, a+c_{2}, a+c_{3}\right) \in \bar{C}_{1}$. Hence $\left(c_{3}, c_{2}, c_{1}\right) \in \bar{C}$.
According to (i_{1}), we get $\left(c_{3}+c, c_{2}+c, c_{1}+c\right) \in \bar{C}$. This yields that $\left(a+\left(c_{1}+c\right), a+\left(c_{2}+c\right), a+\left(c_{3}+c\right)\right)=\left(\left(a+c_{1}\right)+c,\left(a+c_{2}\right)+c,\left(a+c_{3}\right)+c\right) \in \bar{C}_{1}$.
(iii $)$ Again, assume that $\left(a+c_{1}, a+c_{2}, a+c_{3}\right) \in \bar{C}_{1}$. Then $\left(c_{3}, c_{2}, c_{1}\right) \in \bar{C}$.

With respect to (i_{2}), we obtain $\left(c_{3}+(a+c), c_{2}+(a+c), c_{1}+(a+c)\right) \in \bar{C}_{1}$, i.e., $\left(a+\left(\left(a+c_{3}\right)+(a+c)\right), a+\left(\left(a+c_{2}\right)+(a+c)\right), a+\left(\left(a+c_{1}\right)+(a+c)\right)\right) \in \bar{C}_{1}$. Therefore, $\left(\left(a+c_{1}\right)+(a+c),\left(a+c_{2}\right)+(a+c),\left(a+c_{3}\right)+(a+c)\right) \in \bar{C}_{1}$.

The remaining cases can be proved similarly.
From Lemmas 4.6 and 4.7 it immediately follows
Theorem 4.8. $\left(M_{h}(G) ;+, \bar{C}_{1}\right)$ is a half lc-group with $M_{h}(G) \uparrow=M(H)$ and $M_{h}(G) \downarrow=a+M(H)$.

The half $l c$-group $M_{h}(G)$ is said to be a completion of G. If $M_{h}(G)=G$, then G is called M_{h}-complete.

Evidently that the following lemma is valid.
Lemma 4.9. G is M_{h}-complete if and only if H is M-complete.
With respect to Theorem 3.7 and Lemma 4.9 we have:
Theorem 4.10. Let $H_{0} \neq\{0\}$. Then the half lc-group $M_{h}(G)$ has the following properties:
(a_{1}) $M_{h}(G)$ is M_{h}-complete;
$\left(\mathrm{b}_{1}\right) \quad G$ is an hc-subgroup of $M_{h}(G)$;
(c_{1}) For each element $c \in M_{h}(G) \uparrow$ there exist $k \in K_{1}$ and $S, T \subseteq H$ such that S_{k} and T_{k} are nonempty subsets of H and $c=\sup \left(S_{k}\right)=\inf \left(T_{k}\right)$ in $M_{h}(G) \uparrow$.

Theorem 4.11. Let $H_{0} \neq\{0\}$. Assume that G^{\prime} is a half lc-group satisfying the above conditions $\left(\mathrm{a}_{1}\right),\left(\mathrm{b}_{1}\right)$ and $\left(\mathrm{c}_{1}\right)$ (with G^{\prime} instead of $\left.M_{h}(G)\right)$. Then there exists an isomorphism ϕ_{1} of the half lc-group $M_{h}(G)$ onto G^{\prime} with $\phi_{1}(g)=g$ for each $g \in G$.
Proof. Since G^{\prime} fulfils the conditions ($\left.\mathrm{a}_{1}\right)-\left(\mathrm{c}_{1}\right), G^{\prime} \uparrow$ fulfils the conditions (a)-(c) from Theorem $3.7\left(G^{\prime} \uparrow\right.$ instead of $M(H)$). Hence there exists an isomorphism ϕ of the $l c$-group $M(H)$ onto $G^{\prime} \uparrow$ with $\phi(h)=h$ for each $h \in H$. For each $c \in M(H)$, we put $\phi_{1}(c)=\phi(c)$ and $\phi_{1}(a+c)=a+\phi(c)$. Therefore, ϕ_{1} is an isomorphism of the half $l c$-group $M_{h}(G)$ onto G^{\prime}. For each $h \in H$, we have $\phi_{1}(a+h)=a+\phi(h)=a+h$ and the proof is complete.

Remark. The question whether half $l c$-groups with isomorphic increasing parts are isomorphic is open.

Let a^{\prime} be an element from $G \downarrow$ of the second order, $a^{\prime} \neq a$. The operation + and the cyclic order on the set $M_{h}^{\prime}(G)=M(H) \cup\left(a^{\prime}+M(H)\right)$ are defined formally in the same way as on $M_{h}(G)$. It can be easily verified that the half $l c$-group $M_{h}^{\prime}(G)$ is equal $M_{h}(G)$.
$M_{h}(G)$ and M_{h}-completness are defined in the same way also in the case $H_{0}=\{0\}$. From Theorem 3.9 and Lemma 4.9, we infer that the following theorem holds in both cases $H_{o}=\{0\}$ and $H_{0} \neq\{0\}$.

Theorem 4.12. Let G be a half lc-group. Then G is M_{h}-complete if and only if some of the following conditions is satisfied:
(i) H is finite;
(ii) H is isomorphic to K;
(iii) $H_{0} \neq\{0\}$ and H_{0} is M-complete.

References

[1] Š. Černák, On the completion of cyclically ordered groups, Math. Slovaca 41 (1991), 41-49.
[2] M. Giraudet and F. Lucas, Groupes à moitié ordonnés, Fund. Math. 139 (1991), 75-89.
[3] J. Jakubík, On half cyclically ordered groups, Czechoslovak Math. J. (to appear).
[4] J. Jakubík and Š. Černák, Completion of a cyclically ordered group, Czechoslovak Math. J. 37 (112) (1987), 157-174.
[5] V. Novák, Cuts in cyclically ordered sets, Czechoslovak Math. J. 34 (109) (1984), 322-333.
[6] V. Novák and M. Novotný, On completion of cyclically ordered sets, Czechoslovak Math. J. 37 (112) (1987), 407-414.
[7] A. Quilliot, Cyclic orders, Europan J. Combin. 10 (1989), 477-488.
[8] L. Rieger, On ordered and cyclically ordered groups. I, II, and III, (Czech) Věstník Královské České Společnosti Nauk. Třida Matemat.-Přirodověd. 1946, no. 6, p. 1-31, 1947, no 1, p. 1-33, 1948, no. 1, p. 1-26.
[9] S. Świerczkowski, On cyclically ordered groups, Fundamenta Math. 47 (1959), 161-166.

