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Štefan Černák

Department of Mathematics, Faculty of Civil Engineering, Technical University
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Abstract

The notion of a half lc-group G is a generalization of the notion of a
half linearly ordered group. A completion of G by means of Dedekind
cuts in linearly ordered sets and applying Świerczkowski’s representa-
tion theorem of lc-groups is constructed and studied.
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J. Jakub́ık [3] introduced and studied the notions of a half cyclically ordered
group and a half linearly cyclically ordered group (half lc-group) as a gener-
alization of the notions of a half partially ordered group and a half linearly
ordered group that were introduced by M. Giraudet and F. Lucas [2].

A completion C(H) of a linearly cyclically ordered set H has been
defined and studied by V. Novák [5] and by V. Novák and M. Novotný
[6].

In [4] it is defined and investigated a completion H∗ of a linearly cycli-
cally ordered group H. A new construction of a completion M(H) of H by
using the Dedekind cuts method in linearly ordered sets is contained in [1].
It is proved that M(H) = H∗.

Half lc-groups are dealt with in Section 4. If a half lc-group is at the
same time a half linearly ordered group, then its decreasing part consists of
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elements of the second order ([2], Proposition I.2.2). The question of the
existence of such elements in an arbitrary half lc-group, is open.

Let G be a half lc-group with the increasing part H. In this paper there
is presented a completion Mh(G) of G. It is shown that M(H) is the increas-
ing part of a half lc-group Mh(G). G is called Mh-complete if Mh(G) = G.
Necessary and sufficient conditions are found for G to be Mh-complete (The-
orem 4.12).

1. Preliminaries

Assume that A and B are linearly ordered sets. Let S = {(a, b) : a ∈ A, b ∈
B}. We put (a1, b1) ≤ (a2, b2) whenever b1 < b2 or b1 = b2 and a1 ≤ a2 for
each (a1, b1), (a2, b2) ∈ S. Then the linearly ordered set S is said to be the
lexicographic product of A and B and the notation S = A ◦B will be used.

Let L be a linearly ordered set and let X be a subset of L. Denote by
Xu(X l) the set of all upper (lower) bounds of X in L. Futher we denote by
D(L) the system of all subsets of L of the form (Xu)l where X is a nonempty
and upper bounded subset of L. Elements of D(L) are called Dedekind cuts
of L. If the system D(L) is partially ordered by inclusion, then D(L) is a
linearly ordered set. The mapping ϕ(x) = ({x}u)l is an isomorphism of the
linearly ordered set L into D(L). In the next the elements x and ϕ(x) will
be identified. Then L is a subset of D(L) and the following conditions are
fulfilled:

(α1) For each element c ∈ D(L) there exist nonempty subsets X and
Y of L such that X is upper bounded, Y is lower bounded in L and c =
sup(X) = inf(Y ) in D(L).

(α2) For each nonempty and upper (lower) bounded subset X (Y ) of L
there exists an element c ∈ D(L), c = sup(X) (c = inf(Y )) in D(L).

If A is a subset of L and a = sup(A) (a = inf(A)) in L, then a =
sup(A)(a = inf(A)) in D(L).

For the following two definitions cf. Novák [5].

Definition 1.1. Let M be a nonempty set and let C be a ternary relation
on M with the following properties:

(I) If (x, y, z) ∈ C, then (z, y, x) /∈ C.

(II) If (x, y, z) ∈ C, then (y, z, x) ∈ C.

(III) If (x, y, z) ∈ C, (x, z, u) ∈ C, then (x, y, u) ∈ C.
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Then C is said to be a cyclic order on M and the pair (M ; C) is called a
cyclically ordered set.

If A is a subset of M, then A is considered as being cyclically ordered
by the inherited cyclic order.

Definition 1.2. Let (M ; C) be a cyclically ordered set satisfying the
following condition:

(IV) If x, y and z are distinct elements of M , then either (x, y, z) ∈ C or
(z, y, x) ∈ C.

Then C is said to be an l-cyclic order on M and (M ;C) is called an
l-cyclically ordered set.

Several terms are used in papers for the term ”l-cyclic order”. Namely,
”l-cyclic order” is called ”cyclic order” in [8], ”complete cyclic order” in [7],
and ”linear cyclic order in [5]”.

Definition 1.3 (cf. Rieger [8]). Let (H; +) be a group and let (H; C) be
a cyclically ordered set satisfying the condition

(V) if x, y, z, a, b ∈ H such that (x, y, z) ∈ C, then
(a + x + b, a + y + b, a + z + b) ∈ C.

Then (H; +, C) is called a cyclically ordered group. If C is an l-cyclic order,
then (H; +, C) is called an lc-group.

Each subgroup of a cyclically ordered group is a cyclically ordered
group.

Example 1.4. Let (L; +,≤) be a linearly ordered group and let x, y, z ∈ L.
We put

(g) (x, y, z) ∈ C1 if and only if x < y < z or y < z < x or z < x < y.

Then (L; +, C1) is an lc-group. We say that the l-cyclic order C1 is generated
by the linear order ≤ on L.

In the next, if (S;≤) is a linearly ordered set then S is assumed to be
l-cyclically ordered with the l-cyclic order defined by (g).

Example 1.5. Let K be the set of all reals k such that 0 ≤ k < 1 with the
natural linear order. Denote by C2 the l-cyclic order on K defined by (g).
The group operation + on K is defined as addition mod 1. Then (K; +, C2)
is an lc-group.
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We want to define a ternary relation C on the direct product L×K of the
groups L and K. Let u = (x, k1), v = (y, k2), w = (z, k3) ∈ L×K. We put
(u, v, w) ∈ C if and only if some of the following conditions is satisfied:

(i) (k1, k2, k3) ∈ C2,

(ii) k1 = k2 6= k3 and x < y,

(iii) k2 = k3 6= k1 and y < z,

(iv) k3 = k1 6= k2 and z < x,

(v) k1 = k2 = k3 and (x, y, z) ∈ C1.

Then (L×K; C) is an lc-group which is denoted by L⊗K.
An isomorphism of cyclically ordered groups is defined in a natural way.

Theorem 1.6 (Świerczkowski [9]). Let H be an lc-group. Then there exists
a linearly ordered group L such that H is isomorphic to a subgroup of L⊗K.

In the next H will be considered as a subgroup of L⊗K. We denote

L1 = {x ∈ L : there exists k ∈ K with (x, k) ∈ H},
K1= {k ∈ K : there exists x ∈ L with (x, k) ∈ H},
H0= {h ∈ H : there exists x ∈ L with h = (x, 0)}.

Then L1 is a subgroup of L,K1 is a subgroup of K, and H0 is an invariant
subgroup of H. Moreover, H0 is a linearly ordered group if we put h > 0 if
and only if x > 0. It can happen that H0 = {0}.

Let (G; +) be a group and let (G; C) be a cyclically ordered set,
x, y, z ∈ G. Form the sets

G ↑ = {g ∈ G : (x, y, z) ∈ C =⇒ (g + x, g + y, g + z) ∈ C},

G ↓ = {g ∈ G : (x, y, z) ∈ C =⇒ (g + z, g + y, g + x) ∈ C}.

Definition 1.7. (cf. Jakub́ık [3].) Let (G; +) be a group and let (G; C) be
a cyclically ordered set such that the following conditions are fulfilled:
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(1) the system C is nonempty;

(2) if g ∈ G and (x, y, z) ∈ C, then (x + g, y + g, z + g) ∈ C;

(3) G = G ↑ ∪ G ↓;
(4) if (x, y, z) ∈ C, then either {x, y, z} ⊆ G ↑ or {x, y, z} ⊆ G ↓.

Then (G; +, C) is said to be a half cyclically ordered group.
G ↑ (G ↓) is called the increasing (decreasing, resp.) part of G.
If (G; +, C) is a half cyclically ordered group, then G ↑ is a cyclically

ordered group. If G ↑ is an lc-group, then (G; +, C) is called a half lc-group.
Let (G; +, C) be a half cyclically ordered group and let G′ be a subgroup

of G with the nonempty inherited cyclic order C ′. Then (G; +, C ′) is called
an hc-subgroup of (G; +, C).

We shall often write briefly G instead of (G; +, C) or (G; C).
Each cyclically ordered group with a nontrivial cyclic order is a half

cyclically ordered group with G ↑ = G and G ↓ = ∅.
If x, y ∈ G ↑ and u, v ∈ G ↓, then x + y ∈ G ↑, u + v ∈ G ↑,

x + u ∈ G ↓, u + x ∈ G ↓. This follows from 1.7.

2. Completion of an l-cyclically ordered set

The definitions and results in this section are due to Novák [5].
Assume that (H, C) is an l-cyclically ordered set and let x ∈ H. If, for

each y, z ∈ H, we put y <x z if and only if either (x, y, z) ∈ C or x = y 6= z,
then <x is a linear order on H with the least element x.

Definition 2.1. A linear order < on H is called a cut on (H; C) if the cyclic
order generated by the linear order < coincides with the original cyclic order
C on H.

The linear order <x is a cut on (H; C).
Let < be a cut on (H;C). The following three cases can occur:

(i) (H; <) has the least and the greatest element.

(ii) (H; <) has neither the least nor the greatest element.

(iii) (H; <) has either the least or the greatest element.

In the case (ii) a cut < is called a gap. If (H; C) contains no gaps, then it
is called complete.
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Definition 2.2. A cut < on (H; C) is said to be regular if some of the
following conditions is satisfied:

(i) < is a gap,

(ii) (H; <) has the least element.

Denote by R(H) the set of all regular cuts on (H; C). Let c1 = <1,
c2 = <2, and c3 = <3 be distinct elements of R(H). We put (c1, c2, c3) ∈ C̄
if and only if there are elements x, y, z ∈ H such that

x <1 y <1 z, y <2 z <2 x, z <3 x <3 y.

For each x ∈ H we put ϕ(x) = <x.

Theorem 2.3 (cf. [5], 4.2 and 4.3). (R(H); C̄) is an l-cyclically ordered
set and ϕ is an isomorphism of the l-cyclically ordered set H into R(H).

Elements x and ϕ(x) will be identified. Hence H is considered as a
subset of R(H). R(H) is a complete l-cyclically ordered set and it is said
to be a completion of H.

3. Completion of an lc-group

In the whole section H is assumed to be an lc-group. A construction of a
completion M(H) of H will be recalled (cf. [1]) and some auxiliary results
will be derived.

Let L1, K1, L1 ⊗K1 be as in Section 1. The linear order on the lexico-
graphic product L1 ◦K1 of the linearly ordered sets L1 and K1 is a cut on
the l-cyclically ordered set L1 ⊗K1 and H is a subset of L1 ◦K1.

Therefore, D(H) can be considered as a subset of D(L1 ◦K1). We have
H ⊆ D(H) ⊆ D(L1 ◦K1).

If the system D̄(H) = D(H) ∪ {H} is partially ordered by inclusion,
then {H} is the greatest element of the chain D̄(H).

Lemma 3.1 (cf. [1], 3.4). The l-cyclically ordered set D̄(H) is isomorphic
to R(H). R(H) and D̄(H) will be identified.
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Let c ∈ D̄(H), A ⊆ H, k ∈ K1. Denote

Ak = {a ∈ A : a = (x, k) for some x ∈ L1},

A(L1) = {x ∈ L1: there exists k1 ∈ K1 with (x, k1) ∈ A},

A(K1) = {k1 ∈ K1: there exists x ∈ L, with (x, k1) ∈ A},

U(c) = {u ∈ H : u ≥ c}, V (c) = {v ∈ H : v ≤ c}.

Then according to (α1) we obtain

c = sup(V (c)) = inf(U(c)) in D̄(H).

Let c1, c2 ∈ D̄(H). Then

c1 = sup(V (c1)) = inf(U(c1)), and c2 = sup(V (c2)) = inf(U(c2)) in D̄(H).

Now, we intend to define the operation + on D̄(H).
If for all elements v1 = (x, k1) ∈ V (c1), v2 = (y, k2) ∈ V (c2) the relation

k1 +r k2 < 1 holds, where +r is the usual operation on the group of reals,
then we put

c1 + c2 = sup{v1 + v2 : v1 ∈ V (c1), v2 ∈ V (c2)} in D̄(H).

If there are elements v1 ∈ V (c1), v2 ∈ V (c2) such that k1 +r k2 ≥ 1, then we
put

c1 + c2 = sup{v1 + v2 : v1 ∈ V (c1), v2 ∈ V (c2), k1 +r k2 ≥ 1} in D̄(H).

Then (D̄(H);+) is a semigroup and 0 ∈ H is a neutral element of (D̄(H);+).
If M(H) is the set of all elements of D̄(H) that have an inverse in D̄(H), then
M(H) is a group. The lc-group M(H) (with the inherited cyclic order from
D̄(H)) is said to be a completion of H. M(H) is a maximal subsemigroup
of D̄(H) being a group and H is a subgroup of M(H).

Remark that the notion of a completion H∗ of H was defined also in [4]
in a formally different way. It was proved in [1] that M(H) = H∗.

If M(H) = H, then H is called M -complete. From the definition of H∗,
it follows that (H∗)∗ = H∗. Therefore, M(H) is M -complete.
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At first M(H) will be investigated under the assumption H0 6= {0} and then
under that H0 = {0}.

Suppose that H0 6= {0}.
Let c ∈ D̄(H). Assume that the set V (c)(K1) has the greatest element

k ∈ K1 which is at the same time the least element of U(c)(K1). Then
we say that c is of type (τ). Therefore, the sets (V (c))k and (U(c))k are
nonempty and we have

(1) c = sup(V (c))k = inf(U(c))k in D̄(H).

Let c, ci ∈ D̄(H)(i = 1, 2, 3) be elements of type (τ). If no misunder-
standing can occur, the corresponding greatest elements of V (c)(K1) and
V (ci)(K1) will be denoted by k and ki (i = 1, 2, 3), respectively.

By (1), we have

c1 = sup (V (c1))k1
, and c2 = sup (V (c2))k2

in D̄(H).

The definition of the operation + in D̄(H) implies

(2) c1 + c2 = sup{v1 + v2 : v1 ∈ (V (c1))k1
, v2 ∈ (V (c2))k2

} in D̄(H).

Evidently, that c1 + c2 is of type (τ).
Let c ∈ D̄(H) be of type (τ), S, T ⊆ H, and c = sup(S) = inf(T ) in

D̄(H). Then k is the greatest element of S(K) and the least element of
T (K). Therefore, Sk and Tk are nonempty subsets of H and we have

(3) c = sup(Sk) = inf(Tk) in D̄(H).

Let w1, w2 ∈ H, w1 = (x1, k), and w2 = (x2, k). Evidently, w1 ≤ w2 implies
w1 + w ≤ w2 + w and w + w1 ≤ w + w2 for each w ∈ H. This result will be
applied in the sequel.

Lemma 3.2. Let c1, c2 be elements of D̄(H) of type (τ), S1, S2 ⊆ H, and
let c1 = supS1, c2 = supS2 in D̄(H). Then

c1 + c2 = sup{s1 + s2 : s1 ∈ S1k1 , s2 ∈ S2k2} in D̄(H).
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Proof. There exists c ∈ D̄(H), c = sup{s1 + s2 : s1 ∈ S1k1 , s2 ∈ S2k2}.
Therefore, c is of type (τ), k = k1+k2 is the greatest element of V (c)(K1) and
also the least element of U(c)(K1). From S1k1 ⊆ (V (c1))k1

, S2k2 ⊆ V (c2)k2

and from (2), we infer that c ≤ c1+c2. We are going to show that c1+c2 ≤ c,
i.e., (U(c))k ⊆ (U(c1 + c2))k. Let h ∈ (U(c))k. Then h ≥ s1 + s2 for each
s1 ∈ S1k1 , s2 ∈ S2k2 ,−s1+h ≥ s2 for each s2 ∈ S2k2 . With respect to (3) and
(1), we get −s1 +h ≥ c2 ≥ v2 for each v2 ∈ (V (c2))k2 . By using (3) and (1),
from h− v2 ≥ s1 for each s1 ∈ S1k1 , it follows that h− v2 ≥ c1 ≥ v1 for each
v1 ∈ (V (c1))k1 , and so h ≥ v1 + v2 for each v1 ∈ (V (c1))k1 , v2 ∈ (V (c2))k2 .
In view of (2), we get h ≥ c1 + c2. We conclude that h ∈ (U(c1 + c2))k.

Lemma 3.3 (cf. [1], 3.6 and 3.9). Let c ∈ D̄(H).

(i) If c = {H}, then c /∈ M(H).

(ii) If c 6= {H}, then c ∈ M(H) if and only if the following conditions are
satisfied in H:

(p1)
inf{u− v : u ∈ U(c), v ∈ V (c)} = 0,

inf{−v + u : u ∈ U(c), v ∈ V (c)} = 0.

(iii) If c ∈ M(H), then c is of type (τ).

Lemma 3.4. Let c ∈ D̄(H) be of type (τ), S, T ⊆ H, c = sup(S) = inf(T )
in D̄(H). Then c ∈ M(H) if and only if the following conditions are satisfied
in H:

(p2) inf{t− s : s ∈ Sk, t ∈ Tk} = 0 and inf{−s + t : s ∈ Sk, t ∈ Tk} = 0.

Proof. Let c ∈ D̄(H) be of type (τ). Hence c 6= {H}. In view of Lemma
3.3, we prove that the conditions (p1) and (p2) are equivalent. It suffices to
show that (p1) implies (p2).

Assume that (p1) holds. With respect to (3), we get c = sup(Sk) =
inf(Tk) in D̄(H). From s ≤ t, we infer t − s ≥ 0 for each s ∈ Sk, t ∈ Tk.
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Assume that d ∈ H, d = (x, k′), d ≤ t − s for each s ∈ Sk, t ∈ Tk.
Hence k′ = 0. We have to prove that d ≤ 0. Since d + s ≤ t for each
t ∈ Tk, d+ s ≤ c. Therefore, d+ s ≤ u for each u ∈ (U(c))k, and s ≤ −d+u
for each s ∈ Sk. This implies that c ≤ −d + u and so v ≤ −d + u for each
v ∈ (V (c))k. Hence d ≤ u − v for each u ∈ (U(c))k, v ∈ (V (c))k and then
also for each u ∈ U(c), v ∈ V (c). The condition (p1) implies d ≤ 0. The
remaining case is similar.

The following lemma is easy to verify.

Lemma 3.5. Let c1, c2 and c be elements of D̄(H) of type (τ) such that
k1 = k2. If c1 ≤ c2, then c1 + c ≤ c2 + c and c + c1 ≤ c + c2.

Lemma 3.6. Let c1, c2 ∈ M(H), Si, Ti ⊆ H, ci = sup(Si) = inf(Ti) (i =
1, 2) in D̄(H). Then

c1 + c2 = inf{t1 + t2 : t1 ∈ T1k1 , t2 ∈ T2k2} in D̄(H).

Proof. Let c1, c2 ∈ M(H). According to Lemma 3.3, c1 and c2 are of type
(τ). We have s1 + s2 ≤ t1 + t2 for each si ∈ Siki

, ti ∈ Tiki
(i = 1, 2). Denote

c = c1 + c2 and c′ = inf{t1 + t2 : t1 ∈ T1k1 , t2 ∈ T2k2}. Since c ∈ M(H), c is
of type (τ). For the greatest element k of (V (c))(K1), we have k = k1 + k2.
The element c′ is also of type (τ) and k is the greatest element of (V (c′))(K1).
With respect to Lemma 3.2, we have c = sup{s1 +s2 : s1 ∈ S1k1 , s2 ∈ S2k2}.
Then c ≤ c′. We have to show that c′ ≤ c, i.e., (V (c′))k ⊆ (V (c))k. Let
h ∈ (V (c′))k. From h ≤ c′, we infer h ≤ t1 + t2 for each t1 ∈ T1k1 , t2 ∈ T2k2 .
Hence h − t2 ≤ t1 for each t1 ∈ T1k1 and so h − t2 ≤ c1. Applying Lemma
3.5 and c1 ∈ M(H), we get −c1 + h ≤ t2 for each t2 ∈ T2. This yields
−c1 + h ≤ c2. Again by using Lemma 3.5 and c1 ∈ M(H), we obtain h ≤ c.
Therefore, h ∈ (V (c))k.

By summarising the previous results, we get:

Theorem 3.7. Let H0 6= {0}. The lc-group M(H) has the following
properties:

(a) M(H) is M -complete;

(b) H is a subgroup of M(H);
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(c) for each element c ∈ M(H) there exist k ∈ K1 and S, T ⊆ H such
that Sk and Tk are nonempty subsets of H, and c = sup(Sk) = inf(Tk)
in M(H).

Theorem 3.8. Let H0 6= {0}. Assume that H ′ is an lc-group fulfilling
the conditions (a)–(c) (with H ′ instead of M(H)). Then there exists an
isomorphism φ of the lc-group M(H) onto H ′such that φ(h) = h for each
h ∈ H.

Proof. Assume that c ∈ M(H). According respect to (c), there exist k ∈
K1, S, T ⊆ H such that c = sup(Sk) = inf(Tk) in M(H) (recall that k is the
greatest (least) element of S(K1)(T (K1))). Let Z1 = {t−s : t ∈ Tk, s ∈ Sk}
and Z2 = {−s + t : s ∈ Sk, t ∈ Tk}. With respect to Lemma 3.4, we get
inf(Z1) = inf(Z2) = 0 in H. Let T ′ = {h′ ∈ H ′ : h′ ≥ s for each s ∈ Sk}
and S′ = {h′ ∈ H ′ : h′ ≤ t′ for each t′ ∈ T ′}. There exists c′ ∈ D(H ′) with
c′ = sup(S′) = inf(T ′) in D(H ′). We have c′ = sup(S′k) = inf(T ′k) in D(H ′).
Let us denote Z ′1 = {t′ − s′ : s′ ∈ S′k, t

′ ∈ T ′k} and Z ′2 = {−s′ + t′ : s′ ∈
S′k, t′ ∈ T ′k}. We get inf(Z1) = inf(Z ′1) = 0, inf(Z2) = inf(Z ′2) = 0 in H ′.
Then Lemma 3.4 yields that c′ ∈ M(H ′). According to (a), M(H ′) = H ′

and so c′ ∈ H ′.
We put φ(c) = c′. It is easy to verify that φ is correctly defined and

that φ is an isomorphism of the lc-group M(H) onto H ′ with φ(h) = h for
each h ∈ H.

Now assume that H0 = {0}. We may suppose that H is a subgroup of K.
If H is finite then M(H) = H. If H is infinite, then the lc-group M(H) is
isomorphic to K (cf. [4] and [1]).

In both cases H0 6= {0} and H0 = {0} the following theorem holds.

Theorem 3.9 (cf. [4], 7.5). Let H be an lc-group. Then H is M -complete
if and only if some of the following conditions is satisfied:

(i) H is finite;

(ii) H isomorphic to K;

(iii) H0 6= {0} and H0 is M -complete.
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4. Completion of a half lc-group

In the present section we suppose that G is a half lc-group with a cyclic
order C and with G ↓ 6= ∅. Then G fails to be an lc-group.

We shall use the notations G ↑ = H and G ↓ = H ′. As in the previous
sections H ⊆ L1 ◦K1 and D(H) ⊆ D(L1 ◦K1). Assume that there exists
an element a ∈ H ′ of the second order. The mapping ψ : H → H ′ defined
by ψ(h) = a + h is a bijection reversing the l-cyclic order of H. If for each
h1, h2 ∈ H we set a + h1 ≤ a + h2 if and only if h2 ≤ h1, then a + H is a
linearly ordered set. We have h1 + a ≤ h2 + a if and only if h1 ≤ h2.

Assume that H0 6= {0}.

Lemma 4.1 (cf. [3], 3.6). H0 is a normal subgroup of G.

Lemma 4.2 (cf. [3], 3.8). A = H0 ∪ (a + Ho) is a half lc-subgroup of G.
Moreover, A is a half linearly ordered group.

Lemma 4.3. Let h1, h2 ∈ H, h1 = (x1, k1), h2 = (x2, k2), a + h1 + a =
(x′1, k

′
1), and a + h2 + a = (x′2, k

′
2). Then k1 = k2 if and only if k′1 = k′2.

Proof. Let k1 = k2. Then h1 − h2 ∈ H0. Using Lemma 4.1 we get
a + h1 + a − (a + h2 + a) = a + (h1 − h2) + a ∈ H0. Hence k′1 = k′2. The
converse is analogous.

Lemma 4.4. Let h1, h2 ∈ H, h1 = (x1, k) and h2 = (x2, k). Assume that
h1 < h2. Then a + h2 + a < a + h1 + a.

Proof. Let a + h1 + a = (x, k1) and a + h2 + a = (y, k2). By Lemma 4.3,
we get k1 = k2.

If k = 0, then h1, h2 ∈ H0 and the assertion follows from Lemma 4.2.
If k 6= 0, then k1 6= 0 as well and 0 < h1 < h2 yields that (0, h1, h2) ∈ C.

This implies that (a + h2 + a, a + h1 + a, 0) ∈ C. Hence y < x and thus
a + h2 + a < a + h1 + a.

Assume that c1, c2 ∈ D̄(H) are of type (τ), Si, Ti ⊆ H, ci = sup(Si) =
inf(Ti)(i = 1, 2) in D̄(H) and that ki ∈ K1 corresponds to ci (i = 1, 2)
as in Section 3. Then ci = sup(Siki) = inf(Tiki) (i = 1, 2) in D̄(H).



Completion of a half linearly cyclically ordered group 17

Let si ∈ Siki , ti ∈ Tiki(i = 1, 2). From s1 ≤ t1, s2 ≤ t2 for each si ∈ Siki , ti ∈
Tiki(i = 1, 2), we obtain a + t1 + a + s2 ≤ a + t1 + a + t2. According to
Lemma 4.4 we get a + t1 + a + t2 ≤ a + s1 + a + t2. Hence a + t1 + a + s2 ≤
a + s1 + a + t2. Thus there exist sup{a + t1 + a + s2 : s2 ∈ S2k2 , t1 ∈ T1k1}
and inf{a + s1 + a + t2 : s1 ∈ S1k1 , t2 ∈ T2k2} in D̄(H).

Lemma 4.5. Let Si, Ti j H, ci ∈ M(H), ci = sup(Si) = inf(Ti) (i =
1, 2), c ∈ D̄(H), and c = sup{a+ t1 +a+s2 : s2 ∈ S2k2 , t1 ∈ T1k1} in D̄(H).
Then

(i) c ∈ M(H),

(ii) c = inf{a + s1 + a + t2 : s1 ∈ S1k1 , t2k2} in D̄(H).

Proof. (i) We have to prove that there exists an inverse to c in D̄(H). By
Lemma 3.3 elements c1 and c2 are of type (τ). Hence c is of type (τ) as well.
Denote B = {a + t1 + a + s2 : s2 ∈ S2k2 , t1 ∈ T1k1}, D = {a + s1 + a + t2 :
s1 ∈ S1k1 , t2 ∈ T2k2}. For the element k ∈ K1 corresponding to c we have
k = k1 + k2, k is the greatest element of B(K1) and the least element of
D(K1). From b ≤ d for each b ∈ B, d ∈ D, b = (x, k), d = (y, k), we
infer that d − b ≥ 0. Let h ∈ H, h ≤ d − b for each b ∈ B, d ∈ D. Then
h ∈ H0, h = (z, 0). We have h ≤ a+s1+a+t2−(a+t1+a+s2) = a+s1+a+
t2−s2+a−t1+a ∈ H0. This yields that a−s1+a+h+a+t1+a ≤ t2−s2 for
each s2 ∈ S2k2 , t2 ∈ T2k2 . Since c2 ∈ M(H), by using Lemma 3.4, we obtain
inf{t2−s2 : s2 ∈ S2k2 , t2 ∈ T2k2} = 0 in H. Then a−s1+a+h+a+t1+a ≤
0, a+h+a ≥ s1− t1, a−h+a ≤ t1− s1 for each s1 ∈ S1k1 , t1 ∈ T1k1 . Since
c1 ∈ M(H), Lemma 3.4 implies a− h + a ≤ 0, h ≤ 0.
Therefore

(∗) inf{d− b : b ∈ B, d ∈ D} = 0 in H.

In an analogous way, we get inf{−b + d : b ∈ B, d ∈ D} = 0 in H.
We have −d ≤ −b for each b ∈ B, d ∈ D. Hence the set −D={−d ∈ H :

d ∈ D} is nonempty and upper bounded. Hence there exists c′ ∈ D̄(H), c′ =
sup(−D). We have c + c′ = sup{b + d : b ∈ B, d ∈ −D} = sup{b − d : b ∈
B, d ∈ D} = inf{d − b : b ∈ B, d ∈ D} in D̄(H). By using (∗), we get
inf{d − b : b ∈ B, d ∈ D} = 0 in D̄(H). Thus c + c′ = 0. Analogously, we
get c′ + c = 0. We conclude that c′ is an inverse to c in D̄(H).

(ii) The proof is analogous to that of Lemma 3.6.
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We denote

a + M(H) = {a + c : c ∈ M(H)},

Mh(G) = M(H) ∪ (a + M(H)).

Recall that D̄(H) and R(H) are identified. The l-cyclic order on M(H) ⊆
D̄(H) is denoted by the same symbol C̄ as on R(H).

Let c1, c2, c3 ∈ M(H). We define the ternary relation C̄1 on Mh(G) to
coincide with C̄ on M(H) and with C on G. Further we put (a+c3, a+c2,
a + c1) ∈ C̄1 if and only if (c1, c2, c3) ∈ C̄. If ā, b̄, c̄ ∈ Mh(G), (ā, b̄, c̄) ∈ C̄1,
then either {ā, b̄, c̄} ⊆ M(H) or {ā, b̄, c̄} ⊆ a + M(H). Therefore, Mh(G) is
a cyclically ordered set.

We intend to define a binary operation + on Mh(G) to coincide with
the group operations + on M(H) and G.

Let ci ∈ M(H), Si, Ti ⊆ H, ci = sup(Si) = inf(Ti) (i = 1, 2).
Then ci = sup(Siki) = inf(Tiki) (i = 1, 2) in D̄(H).

As before, we put

c1 + c2 = sup{s1 + s2 : s1 ∈ S1k1 , s2 ∈ S2k2} in D̄(H).
Further we put

(a + c1) + (a + c2) = sup{a + t1 + a + s2 : s2 ∈ S2k2 , t1 ∈ T1k1} in D̄(H),

c1 + (a + c2) = a + ((a + c1) + (a + c2)),

(a + c1) + c2 = a + (c1 + c2).

According to Lemma 4.5, we have (a + c1) + (a + c2) ∈ M(H).

Lemma 4.6. (Mh(G), +) is a group.

Proof. We begin with the proof that + is an associative operation on
Mh(G).

Denote (a + c1) + (a + c2) = c and (a + c2) + (a + c3) = c′. Hence
c′ = sup{a + t2 + a + s3 : s3 ∈ S3k3 , t2 ∈ T2k2}. In view of Lemma 4.5, we
have c = inf{a + s1 + a + t2 : s1 ∈ S1k1 , t2 ∈ T2k2}.
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Then

((a + c1) + (a + c2)) + (a + c3) = c + (a + c3) = a + ((a + c) + (a + c3)) =

= a + sup{a + a + s1 + a + t2 + a + s3 : s1 ∈ S1k1 , s3 ∈ S3k3 , t2 ∈ T2k2} =

= a + sup{s1 + a + t2 + a + s3 : s1 ∈ S1k1 , s3 ∈ S3k3 , t2 ∈ T2k2},

(a + c1) + ((a + c2) + (a + c3)) = (a + c1) + c′ = a + (c1 + c′) =

= a + sup{s1 + a + t2 + a + s3 : s1 ∈ S1k1 , s3 ∈ S3k3 , t2 ∈ T2k2}.

We have seen that ((a+c1)+(a+c2))+(a+c3) = (a+c1))+((a+c2)+(a+c3)).
The remaining cases can be verified in a similar way.
Elements of M(H) have inverses in M(H). Let a+c ∈ a+M(H). Then

a+(a− c+a) is an inverse to a+ c in a+M(H) which completes the proof.

Lemma 4.7. Let c, ci ∈ M(H) (i = 1, 2, 3).

If (c1, c2, c3) ∈ C̄1, then

(i1) (c1 + c, c2 + c, c3 + c) ∈ C̄1,

(i2) (c + c1, c + c2, c + c3) ∈ C̄1,

(i3) (c1 + (a + c), c2 + (a + c), c3 + (a + c)) ∈ C̄1,

(i4) ((a + c) + c3, (a + c) + c2, (a + c) + c1)) ∈ C̄1.

If (a + c1, a + c2, a + c3) ∈ C̄1, then

(ii1) ((a + c1) + c, (a + c2) + c, (a + c3) + c) ∈ C̄1,

(ii2) (c + (a + c1), c + (a + c2), c + (a + c3)) ∈ C̄1,

(ii3) ((a + c1) + (a + c), (a + c2) + (a + c), (a + c3) + (a + c)) ∈ C̄1,

(ii4) ((a + c) + (a + c3), (a + c) + (a + c2), (a + c) + (a + c1)) ∈ C̄1.
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Proof. There are subsets S, T, Si, Ti of H with c = sup(S) = inf(T ), ci =
sup(Si) = inf(Ti) (i = 1, 2, 3). Then c = sup(Sk) = inf(Tk), ci = sup(Siki) =
inf(Tiki

) in D̄(H) where k, ki are as before (i = 1, 2, 3). As for M(H) is an
lc-group, (i1) and (i2) are valid.

(i3) Let (c1, c2, c3) ∈ C̄1. Consider several cases:

(α) Assume that k1, k2, k3 are different elements of K1. Then (k1, k2, k3)
∈C2 and so (t1, t2, t3)∈C for each ti ∈ Tiki

(i = 1, 2, 3). Hence (t1+(a+s),
t2 + (a + s), t3 + (a + s)) = (a + (a + t1) + (a + s), a + (a + t2) + (a + s), a+
(a + t3) + (a + s)) ∈ C for each s ∈ Sk, ti ∈ Tiki(i = 1, 2, 3). This yields
that (a + sup{a + t1 + a + s : s ∈ Sk, t1 ∈ T1k1}, a + sup{a + t2 + a+
s : s ∈ Sk, t2 ∈ T2k2}, a + sup{a + t3 + a + s : s ∈ Sk, t3 ∈ T3k3}) =
(a + ((a + c1) + (a + c)), a + ((a + c2) + (a + c)), a + ((a + c3) + (a + c))) =
(c1 + (a + c), c2 + (a + c), c3 + (a + c)) ∈ C̄1.

(β) Let k1 = k2 6= k3. Then either c1 < c2 < c3 or c3 < c1 < c2. Assume
that c1 < c2 < c3. We have c1 = inf{t1 ∈ H : t1 ∈ T1k1 rT2k2}. Hence t1 <
t2 < t3 and so (t1, t2, t3) ∈ C for each t1 ∈ T1k1 r T2k2 , t2 ∈ T2k2 , t3 ∈ T3k3 .
Futher we apply the same steps as in the case (α). If c3 < c1 < c2 the proof
is similar.

The cases k2 = k3 6= k1 and k3 = k1 6= k2 are analogous.

(γ) Let k1 = k2 = k3. We have c1 < c2 < c3 or c2 < c3 < c1 or
c3 < c1 < c2. Suppose that c1 < c2 < c3. From c1 = inf{t1 ∈ H : t1 ∈
T1k1 ,r T2k2}, c2 = inf{t2 ∈ H : t2 ∈ T2k2 r T3k3} we infer that t1 < t2 < t3
and thus (t1, t2, t3) ∈ C for each t1 ∈ T1k1 rT2k2 , t2 ∈ T2k2 rT3k3 , t3 ∈ T3k3 .
Now we apply the same procedure as in the case (α). Cases c2 < c3 <
c1, c3 < c1 < c2 are analogous.

We conclude that (i3) is satisfied.

(ii1) Assume that (a + c1, a + c2, a + c3) ∈ C̄1. Hence (c3, c2, c1) ∈ C̄.

According to (i1), we get (c3 + c, c2 + c, c1 + c) ∈ C̄. This yields that
(a+(c1+c), a+(c2+c), a+(c3+c)) = ((a+c1)+c, (a+c2)+c, (a+c3)+c) ∈ C̄1.

(ii3) Again, assume that (a+c1, a+c2, a+c3) ∈ C̄1. Then (c3, c2, c1) ∈ C̄.
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With respect to (i2), we obtain (c3 + (a + c), c2 + (a + c), c1 + (a + c)) ∈ C̄1,
i.e., (a+((a+c3)+(a+c)), a+((a+c2)+(a+c)), a+((a+c1)+(a+c))) ∈ C̄1.
Therefore, ((a + c1) + (a + c), (a + c2) + (a + c), (a + c3) + (a + c)) ∈ C̄1.

The remaining cases can be proved similarly.

From Lemmas 4.6 and 4.7 it immediately follows

Theorem 4.8. (Mh(G);+, C̄1) is a half lc-group with Mh(G) ↑ = M(H)
and Mh(G) ↓ = a + M(H).

The half lc-group Mh(G) is said to be a completion of G. If Mh(G) = G,
then G is called Mh-complete.

Evidently that the following lemma is valid.

Lemma 4.9. G is Mh-complete if and only if H is M -complete.

With respect to Theorem 3.7 and Lemma 4.9 we have:

Theorem 4.10. Let H0 6= {0}. Then the half lc-group Mh(G) has the
following properties:

(a1) Mh(G) is Mh-complete;

(b1) G is an hc-subgroup of Mh(G);

(c1) For each element c ∈ Mh(G) ↑ there exist k ∈ K1 and S, T ⊆ H such
that Sk and Tk are nonempty subsets of H and c = sup(Sk) = inf(Tk)
in Mh(G) ↑ .

Theorem 4.11. Let H0 6= {0}. Assume that G′ is a half lc-group satisfying
the above conditions (a1), (b1) and (c1) (with G′ instead of Mh(G)). Then
there exists an isomorphism φ1 of the half lc-group Mh(G) onto G′ with
φ1(g) = g for each g ∈ G.

Proof. Since G′ fulfils the conditions (a1)–(c1), G′ ↑ fulfils the conditions
(a)–(c) from Theorem 3.7 (G′ ↑ instead of M(H)). Hence there exists an
isomorphism φ of the lc-group M(H) onto G′ ↑ with φ(h) = h for each
h ∈ H. For each c ∈ M(H), we put φ1(c) = φ(c) and φ1(a + c) = a + φ(c).
Therefore, φ1 is an isomorphism of the half lc-group Mh(G) onto G′. For
each h ∈ H, we have φ1(a+h) = a+φ(h) = a+h and the proof is complete.
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Remark. The question whether half lc-groups with isomorphic increasing
parts are isomorphic is open.

Let a′ be an element from G ↓ of the second order, a′ 6= a. The operation
+ and the cyclic order on the set M ′

h(G) = M(H)∪ (a′+M(H)) are defined
formally in the same way as on Mh(G). It can be easily verified that the
half lc-group M ′

h(G) is equal Mh(G).
Mh(G) and Mh-completness are defined in the same way also in the case

H0 = {0}. From Theorem 3.9 and Lemma 4.9, we infer that the following
theorem holds in both cases Ho = {0} and H0 6= {0}.

Theorem 4.12. Let G be a half lc-group. Then G is Mh-complete if and
only if some of the following conditions is satisfied:

(i) H is finite;

(ii) H is isomorphic to K;

(iii) H0 6= {0} and H0 is M -complete.
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