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Abstract

Let τ : F → N be a type of algebras, where F is a set of funda-
mental operation symbols and N is the set of all positive integers. An
identity ϕ ≈ ψ is called biregular if it has the same variables in each of
it sides and it has the same fundamental operation symbols in each of
it sides. For a variety V of type τ we denote by Vb the biregularization
of V , i.e. the variety of type τ defined by all biregular identities from
Id (V ).

Let B be the variety of Boolean algebras of type τb : {+, ·,′ } → N ,
where τb(+) = τb(·) = 2 and τb(′) = 1. In this paper we character-
ize the lattice L(Bb) of all subvarieties of the biregularization of the
variety B.
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0. Preliminaries

We shall consider algebras of type τ : F → N , where F is the set of all
fundamental operation symbols and N is the set of all positive integers (see
[3]). If ϕ is a term of type τ we denote by Var (ϕ) the set of all variables
occurring in ϕ and by F (ϕ) – the set of fundamental operation symbols
occurring in ϕ. Writing ϕ(xi1 , . . . , xin) instead of ϕ we shall mean that
Var (ϕ) = {xi1 , . . . , xin}. An identity ϕ ≈ ψ of type τ is called regular (see
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[8]) if Var (ϕ) = Var (ψ). An identity ϕ ≈ ψ is called biregular if it is regular
and F (ϕ) = F (ψ). Regular identities and constructions connected with
them were considered in [4]–[6], [8], [9], [16] and biregular identities were
considered in [10]–[12], [14], [15], [18].

For a variety V of type τ we denote by Id (V ) the set of all identities
of type τ satisfied in every algebra from V . For a variety V of type τ we
denote by Vr the variety of type τ defined by all regular identities from
Id (V ) and we denote by Vb the variety of type τ defined by the set B(V ) of
all biregular identities from Id (V ). Obviously B(V ) is always an equational
theory, so Id (Vb) = B(V ). The variety Vb is called the biregularization of V .
We denote by L(V ) the lattice of all subvarieties of V . Studying identities of
some special structural forms is useful for examining lattices of subvarieties.
Let B be the variety of Boolean algebras of type τb : {+, ·,′ } → N , where
τb(+) = τb(·) = 2 and τb(′) = 1. In this paper we describe the lattice L(Bb).

Recall that an algebra A is subdirectly irreducible if its lattice of con-
gruences has exactly one atom (see [7]). If an algebra A is subdirectly
irreducible, we shall write shortly A is an s.i. algebra. The notation A ' A′

will stand for “A is isomorphic to A′”.

1. Subdirectly irreducible algebras in Bb

Let us consider the following 14 algebras of type τb.

A1 = ({a1, b1}; +, ·,′ ), where x + y =





b1, if b1 ∈ {x, y},
a1 otherwise,

x · y =





a1, if a1 ∈ {x, y},
b1 otherwise,

a′1 = b1, b′1 = a1;

A2 = ({a2, b2}; +, ·,′ ), where x + y =





b2 if b2 ∈ {x, y}
a2 otherwise,

x · y = x′ = b2 for every x, y ∈ {a2, b2};
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A3 = ({a3, b3}; +, ·,′ ), where x · y =





b3, if b3 ∈ {x, y},
a3 otherwise,

x + y = x′ = b3 for every x, y ∈ {a3, b3};

A4 = ({a4, b4}; +, ·,′ ), where

x + y = x · y = x′ = b4 for every x, y ∈ {a4, b4};

A5 = ({a5, b5}; +, ·,′ ), where

x + y = x · y = b5, x′ = x for every x, y ∈ {a5, b5};

A6 = ({a6, c6, b6}; +, ·,′ ), where

x + y = x · y = b6, for every x, y ∈ {a6, c6, b6},
a′6 = c6, c′6 = a6, b′6 = b6;

A7 = ({a7, b7}; +, ·,′ ), where

x + y = x · y =





b7, if b7 ∈ {x, y},
a7 otherwise,

x′ = x for every x ∈ {a7, b7};

A8 = ({a8, c8, b8}; +, ·,′ ), where

x + y =





b8, if b8 ∈ {x, y},
c8, if c8 ∈ {x, y} and b8 6∈ {x, y},
a8 otherwise,

x · y =





b8, if b8 ∈ {x, y},
a8, if a8 ∈ {x, y} and b8 6∈ {x, y},
c8 otherwise,

a′8 = c8, c′8 = a8, b′8 = b8;
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A9 = ({a9, b9}; +, ·,′ ), where

x + y = x · y =





b9, if b9 ∈ {x, y},
a9 otherwise,

x′ = b9, for every x ∈ {a9, b9};

A10 = ({a10, c10, b10}; +, ·,′ ), where

x + y =





b10, if b10 ∈ {x, y},
c10, if c10 ∈ {x, y} and b10 6∈ {x, y},
a10 otherwise,

x · y =





b10, if b10 ∈ {x, y},
a10, if a10 ∈ {x, y} and b10 6∈ {x, y},
c10 otherwise,

x′ = b10 for every x ∈ {a10, c10, b10};

A11 = ({a11, b11}; +, ·,′ ), where

x + y =





b11, if b11 ∈ {x, y},
a11 otherwise,

x · y = b11 for every x, y ∈ {a11, b11},

x′ = x for every x ∈ {a11, b11};
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A12 = ({a12, c12, b12}; +, ·,′ ), where

x + y =





b12, if b12 ∈ {x, y},
c12, if c12 ∈ {x, y} and b12 6∈ {x, y},
a12 otherwise,

x · y = b12 for every x, y ∈ {a12, c12, b12},

a′12 = c12, c′12 = a12, b′12 = b12;

A13 = ({a13, b13}; +, ·,′ ), where

x + y = b13 for every x, y ∈ {a13, b13},

x · y =





b13, if b13 ∈ {x, y},
a13 otherwise,

x′ = x for every x ∈ {a13, b13};

A14 = ({a14, c14, b14}; +, ·,′ ), where

x + y = b14 for every x, y ∈ {a14, c14, b14},

x · y =





b14, if b14 ∈ {x, y},
a14, if a14 ∈ {x, y} and b14 6∈ {x, y},
c14 otherwise,

a′14 = c14, c′14 = a14, b′14 = b14.

It is easy to check that none two of above 14 algebras are isomorphic.
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Theorem 1.1. Let A = (A; +, ·,′ ) be an algebra of type τb. Then A is
subdirectly irreducible and belongs to Bb if and only if A is isomorphic to
one of the algebras A1, . . . , A14.

Proof. For varieties K1, . . . , Kn of the same type we denote by K1⊗· · ·⊗
Kn the class of all algebras isomorphic to a subdirect product of a family
{A1, . . . , An} of algebras, where Ai runs over Ki for every i = 1, . . . , n.

For F̃ ⊆ {+, ·,′ }, we denote by B eF the variety of type τb satisfying all
regular identities ϕ ≈ ψ from Id (B) with F (ϕ)∪F (ψ) ⊆ F̃ and satisfying all
identities of type τb such that F (ϕ) ∩ ({+, ·,′ } rF̃ ) 6= ∅ 6= F (ψ) ∩ ({+, ·,′ }
rF̃ ). It was proved in [12], Theorem 9, that

(1.1) Bb = Br ⊗B{+,·} ⊗B{+,′} ⊗B{·,′} ⊗B{+} ⊗B{·} ⊗B{′} ⊗B∅

Consequently to find all subdirectly irreducible algebras from Bb it is enough
to find all s.i. algebras from the varieties of the right side of (1.1).

It was proved in [6] that A is s.i. and A ∈ Br iff A is isomorphic to one
of the algebras A1, A7 or A8. It was proved in [13] that A is s.i. and belongs
to B{+} iff A is isomorphic to A2; A is s.i. and A ∈ B{·} iff A ' A3; A is
s.i. and A ∈ B∅ iff A ' A4 (cf. also [2]); A is s.i. and A ∈ B{′} iff A ' A5

or A ' A6. It was proved in [19] (see Section 3, Examples 3.3–3.5) that A
is s.i. and A ∈ B{+,·} iff A ' A9 or A ' A10 and A ∈ B{+,′} iff A ' A11 or
A ' A12; A is s.i. and A ∈ B{·,′} iff A ' A13 or A ' A14.

2. The lattice of subvarieties of Bb

Denote Ir (Bb) = {A1, . . . , A14}. For a variety V ⊆ Bb we denote Ir (V ) =
{Ak ∈ Ir (Bb) : Ak ∈ V }. Consequently, to describe the lattice L(Bb) we
have to find all subsets T of Ir (Bb) being of the form Ir (V ) for some V ⊆ Bb.
Apriory we have 214 possibilities. However due to the lemmas below we can
essentially reduce this amount.

Lemma 2.1. A1 ∈ HSP (A8).

Proof. Observe that the subalgebra ({a8, c8}; {+, ·,′ }|{a8,c8}) of A8 is
isomorphic to A1.

Lemma 2.2. A2n−1 ∈ HSP (A2n) for 3 ≤ n ≤ 7.

Proof. Put h(a2n) = h(c2n) = a2n−1, h(b2n) = b2n−1. Thus h is a homo-
morphism.
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Lemma 2.3. A2n ∈ HSP ({A1,A2n−1}) for 3 ≤ n ≤ 7.

Proof. In the direct product A1 ×A2n−1 put h(〈a1, a2n−1〉) = a2n,
h(〈b1, a2n−1〉) = c2n, h(〈a1, b2n−1〉) = h(〈b1, b2n−1〉) = b2n.

Lemma 2.4. A2 ∈ HSP ({A9,A11}).

Proof. In the direct product A9×A11 put h(〈a9, a11〉) = a2, h(〈a9, b11〉) =
h(〈b9, a11〉) = h(〈b9, b11〉) = b2.

Lemma 2.5. A3 ∈ HSP ({A9,A13}).

Proof. The proof is analogous to that of Lemma 2.4.

Lemma 2.6. A5 ∈ HSP ({A11,A13}).

Proof. The proof is analogous to that of Lemma 2.4.

Lemma 2.7. A6 ∈ HSP ({A5,A12}).

Proof. In the direct product A5×A12 put h(〈a5, a12〉) = a6, h(〈a5, c12〉) =
c6, h(〈x, y〉) = b6 otherwise.

Lemma 2.8. A6 ∈ HSP ({A5,A14}).

Proof. The proof is analogous to that of Lemma 2.7.

Lemma 2.9. A6 ∈ HSP ({A11,A14}).

Proof. In the direct product A11×A14 put h(〈a11, a14〉) = a6, h(〈a11, c14〉) =
c6 and h(〈x, y〉) = b6 otherwise.

Lemma 2.10. A6 ∈ HSP ({A12,A13}).

Proof. The proof is analogous to that of Lemma 2.9.

Lemma 2.11. A4 belongs to each of the sets HSP ({A2,A3}), HSP ({A2,A5}),
HSP ({A3,A5}), HSP ({A2,A13}), HSP ({A3,A11}), HSP ({A5,A9}).

Proof. The proof is easy and it is left to the reader.
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A set T ⊆ Ir (Bb) will be called Bb–closed or briefly closed if it satisfies the
following conditions (c1)–(c11):

(c1) if A8 ∈ T , then A1 ∈ T ;

(c2) if 3 ≤ n ≤ 7 and A2n ∈ T , then A2n−1 ∈ T ;

(c3) if 3 ≤ n ≤ 7 and {A1,A2n−1} ⊆ T , then A2n ∈ T ;

(c4) if {A9,A11} ⊆ T , then A2 ∈ T ;

(c5) if {A9,A13} ⊆ T , then A3 ∈ T ;

(c6) if {A11,A13} ⊆ T , then A5 ∈ T ;

(c7) if {A5,A12} ⊆ T , then A6 ∈ T ;

(c8) if {A5,A14} ⊆ T , then A6 ∈ T ;

(c9) if {A11,A14} ⊆ T , then A6 ∈ T ;

(c10) if {A12,A13} ⊆ T , then A6 ∈ T ;

(c11)





if {A2,A3} ⊆ T, then A4 ∈ T ; if {A2,A5} ⊆ T, then A4 ∈ T ;

if {A3,A5} ⊆ T, then A4 ∈ T ; if {A2,A13} ⊆ T, then A4 ∈ T ;

if {A3,A11} ⊆ T, then A4 ∈ T ; if {A5,A9} ⊆ T, then A4 ∈ T.

Lemma 2.12. If T ⊆ Ir (Bb), T is Bb–closed and Ak 6∈ T for some k ∈
{1, . . . , 14}, then Ak 6∈ HSP (T ).

Proof. Let k = 1. Then T ⊆ {A2, . . . ,A14}. By (c1) A8 6∈ T . Thus
T ⊆ {A2, . . . ,A14} r{A8}. Take the identity

(2.1) (((x + y) · (x + y))′)
′ ≈ (((x · y) + (x · y))′)

′
.

Then we check that (2.1) is satisfied in every algebra Ai for i ∈ {2, . . . , 14}
r{8}, so (2.1) is satisfied in HSP (T ) but (2.1) is not satisfied in A1. Con-
sequently A1 6∈ HSP (T ).

Let k = 2. Then none of the sets {A9,A11}, {A9,A12}, {A10,A11},
{A10,A12} is included in T . In fact, by (c2), if one of the sets is included in
T , then {A9,A11} ⊆ T and by (c4) A2 ∈ T , a contradiction. So, it must be
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(2.2) T ∩ {A11,A12} = ∅

or

(2.3) T ∩ {A9,A10} = ∅.

If (2.2) holds, then take the identity

x + x ≈ (x + x) · (x + x).

Then every algebra from T satisfies this identity, so it is satisfied in HSP (T )
but A2 does not satisfy it. In case (2.3) we take the identity

x + x ≈ ((x + x)′)′.

Let k = 3. Then by (c5) and (c2) none of the sets {A9,A13}, {A9,A14},
{A10,A13}, {A10,A14} can be included in T . If T ∩ {A13,A14} = ∅, we
take the identity

x · x ≈ (x · x) + (x · x).

If T ∩ {A9,A10} = ∅, we take the identity

((x · x)′)′ ≈ x · x.

Let k = 4. By (c2) and (c11) T must be included in one of the sets:

{A1,A2,A7,A8,A9,A10,A11,A12}, {A1,A3,A7,A8,A9,A10,A13,A14},
{A1,A5,A6,A7,A8,A11,A12,A13,A14}.

We take the identities x + x ≈ x, x · x ≈ x, (x′)′ ≈ x, respectively.
Let k = 5. By (c2), A6 6∈ T and, by (c6) and (c2), none of the sets

{A11,A13}, {A11,A14}, {A12,A13}, {A12,A14} is included in T . If T ∩
{A13,A14} = ∅, we take

(x′)′ ≈ (x′)′ + (x′)′.

If T ∩ {A11,A12} = ∅, we take the identity

(x′)′ ≈ (x′)′ · (x′)′.

Let k = 6. If A5 ∈ T , then T ∩ {A8,A1,A12,A14} = ∅ by (c3), (c1), (c7),
(c8). We take the identity (x′)′ ≈ x′. Let A5 6∈ T . If A1 ∈ T , then, by (c2),
(c3), (c9), (c10), it must be
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(2.4) T ∩ {A13,A14} = ∅

or

(2.5) T ∩ {A11,A12} = ∅.

If (2.4) holds, we take the identity

(x′)′ ≈ ((x + x)′)′.

If (2.5) holds, we take the identity

(x′)′ ≈ ((x · x)′)′.

If A5 6∈ T and A1 6∈ T , then A8 6∈ T by (c1). Then, by (c9), (c10) and (c6) we
have two possibilities: (2.4), (2.5). We take the identities (x′)′ ≈ ((x + x)′)′,
(x′)′ ≈ ((x · x)′)′, respectively.

Let k = 7. Then by (c2) A8 6∈ T . We take the identity

(2.6) ((x + (x · y))′)
′ ≈ ((x + (x · z))′)

′
.

Let k = 8. Then T does not contain both A1 and A7 by (c3). If A7 6∈ T, we
take the identity (2.6). If A1 6∈ T we take the identity (2.1).

Let k = 9. Then A10 6∈ T by (c2). We take

(2.7) (((x + y) · (x + y))′)
′ ≈ (x + y) · (x + y).

Let k = 10. If A9 6∈ T , then we take the identity (2.7). If A9 ∈ T , then
{A1,A8} 6⊆ T by (c3) and (c1). We take

(x · y) + (x · y) ≈ (x + y) · (x + y).

Let k = 11. Then A12 6∈ T by (c2). We take

(2.8) (((x + y) · (x + y))′)
′ ≈ ((x + y)′)′.

Let k = 12. If A11 6∈ T , then we take the identity (2.8). If A11 ∈ T , then
A1,A8 6∈ T by (c3) and (c1). Then we take

((x + y)′)′ ≈ (x + y)′.
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Let k = 13. Then A14 6∈ T by (c2). We take

(2.9) (((x · y) + (x · y))′)
′ ≈ ((x · y)′)′.

Let k = 14. If A13 6∈ T, we take the identity (2.9). If A13 ∈ T , then
A1, A8 6∈ T by (c3) and (c1). We take

((x · y)′)′ ≈ (x · y)′.

Lemma 2.13. If a variety V belongs to L(Bb) and A ∈ V , then A is iso-
morphic to a subdirect product of a family of subdirectly irreducible algebras
belonging to Ir (V ).

Proof. By Birkhoff’s Subdirect Representation Theorem (see [1]), if A ∈
V , then it is isomorphic to an algebra A′ being a subdirect product of a
family {Aj}j∈J of subdirectly irreducible algebras from V . By Theorem 1.1,
each Aj is isomorphic to an algebra A

∗
j from Ir (Bb). Thus A

∗
j belongs to

V and belongs to Ir (Bb), hence A
∗
j belongs to Ir (V ). Consequently, A′ is

isomorphic to an algebra A
∗

being a subdirect product of the family {A∗
j}j∈J

and A is isomorphic to A
∗
.

We denote by T (Bb) the set of all Bb-closed sets.

Lemma 2.14. We have:

(i) For every variety V ∈ L(Bb), the set Ir (V ) is Bb-closed;

(ii) For every variety V ∈ L(Bb), we have V = HSP (Ir (V ));

(iii) If T ∈ T (Bb), then T = Ir (HSP (T ));

(iv) If V1, V2 ∈ L(Bb), then V1 ⊆ V2 iff Ir (V1) ⊆ Ir (V2).

Proof. (i): If A8 ∈ Ir (V ), then, by Lemma 2.1, we have A1 ∈ HSP (A8) ⊆
HSP (Ir (V )) ⊆ V , but A1 ∈ Ir (Bb), so A1 ∈ V ∩ Ir (Bb) = Ir (V ). Conse-
quently, the set Ir (V ) satisfies (c1). Similarly, using Lemmas 2.2–2.11, we
show that Ir (V ) satisfies (c2)–(c11).

(ii): Since Ir (V ) ⊆ V , HSP (Ir (V )) ⊆ V . The converse inclusion follows
at once from Lemma 2.13.

(iii): If an algebra A belongs to T , then A ∈ HSP (T ). But A ∈ Ir (Bb)
since T ⊆ Ir (Bb), so A ∈ Ir (HSP (T )). If A 6∈ T , then A 6∈ HSP (T ) by
Lemma 2.12, hence A 6∈ Ir (HSP (T )).
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(iv): If V1 ⊆ V2, then Ir (V1) ⊆ Ir (V2) by the definition of Ir (V ). The
converse implication follows at once from Lemma 2.13.

Theorem 2.15. The set T ⊆ Ir (Bb) is equal to Ir (V ) for some variety
V ∈ L(Bb) iff T is Bb-closed. There are 490 Bb-closed sets.

Proof. The first statement follows from Lemma 2.14 (i) and (iii).
Using a computer and transforming our considerations to indices of

algebras Ak from Ir (Bb) one can find out |T (Bb)| = 490.

Theorem 2.16. The lattice (L(Bb);⊆ ) as a poset is isomorphic to the
poset (T (Bb);⊆ ). Therefore the lattice (L(Bb);⊆ ) is isomorphic to the
lattice (T (Bb);⊆ ) and card (L(Bb)) = 490.

Proof. For V ∈ L(Bb) put ϕ(V ) = Ir (V ). Then ϕ is well defined
by the definition of Ir (V ) and, by Lemma 2.14 (i), ϕ maps L(Bb) into
T (Bb). If Ir (V1) = Ir (V2), then, by Lemma 2.14 (ii), V1 = HSP (Ir (V1)) =
HSP (Ir (V2)) = V2. Thus ϕ is 1-1. By Lemma 2.14 (iii), ϕ is onto. If
V1 ⊆ V2, then Ir (V1) ⊆ Ir (V2) by the definition of Ir (V ). The converse
inclusion follows at once from Lemma 2.13.

Remark 2.17. Results of this paper were presented on the conference “9th
Workshop in Mathematics”, organized by Technical University of Zielona
Góra at September 2001, in Gronów (Poland).

The statement card (L(Bb)) = 490 was confirmed on this conference
by Peter Burmeister (Darmstadt, Germany) using his ConImp computer
program based on the Formal Concept Analysis. For the documentation
of the program see P. Burmeister, ConImp – Ein Programm zur Formalen
Begriffsanalyse in: G. Stumme and R. Wille (Eds.), Begriffliche Wissensver-
arbeitung: Methoden und Anwendungen, Springer-Verlag, Berlin 2000, pp.
25–56; extended English version – Formal Concept Analysis with ConImp:
Introduction to the basic features – one can find on the WWW-server:

http://www.mathematik. tu-darmstadt.de/ags/ag1/Software/software_de.html
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