Discussiones Mathematicae General Algebra and Applications 21 (2001) 255–268

THE LATTICE OF SUBVARIETIES OF THE BIREGULARIZATION OF THE VARIETY OF BOOLEAN ALGEBRAS

Jerzy Płonka

Mathematical Institute of the Polish Academy of Sciences Kopernika 18, 51–617 Wrocław, Poland e-mail: jersabi@wp.pl

Abstract

Let $\tau : F \to N$ be a type of algebras, where F is a set of fundamental operation symbols and N is the set of all positive integers. An identity $\varphi \approx \psi$ is called *biregular* if it has the same variables in each of it sides and it has the same fundamental operation symbols in each of it sides. For a variety V of type τ we denote by V_b the *biregularization* of V, i.e. the variety of type τ defined by all biregular identities from Id(V).

Let *B* be the variety of Boolean algebras of type $\tau_b : \{+, \cdot, '\} \to N$, where $\tau_b(+) = \tau_b(\cdot) = 2$ and $\tau_b(') = 1$. In this paper we characterize the lattice $\mathcal{L}(B_b)$ of all subvarieties of the biregularization of the variety *B*.

Keywords: subdirectly irreducible algebra, lattice of subvarieties, Boolean algebra, biregular identity.

2000 Mathematics Subject Classification: 08B15.

0. Preliminaries

We shall consider algebras of type $\tau : F \to N$, where F is the set of all fundamental operation symbols and N is the set of all positive integers (see [3]). If φ is a term of type τ we denote by $Var(\varphi)$ the set of all variables occurring in φ and by $F(\varphi)$ – the set of fundamental operation symbols occurring in φ . Writing $\varphi(x_{i_1}, \ldots, x_{i_n})$ instead of φ we shall mean that $Var(\varphi) = \{x_{i_1}, \ldots, x_{i_n}\}$. An identity $\varphi \approx \psi$ of type τ is called *regular* (see [8]) if $Var(\varphi) = Var(\psi)$. An identity $\varphi \approx \psi$ is called *biregular* if it is regular and $F(\varphi) = F(\psi)$. Regular identities and constructions connected with them were considered in [4]–[6], [8], [9], [16] and biregular identities were considered in [10]–[12], [14], [15], [18].

For a variety V of type τ we denote by Id(V) the set of all identities of type τ satisfied in every algebra from V. For a variety V of type τ we denote by V_r the variety of type τ defined by all regular identities from Id(V) and we denote by V_b the variety of type τ defined by the set B(V) of all biregular identities from Id(V). Obviously B(V) is always an equational theory, so $Id(V_b) = B(V)$. The variety V_b is called the biregularization of V. We denote by $\mathcal{L}(V)$ the lattice of all subvarieties of V. Studying identities of some special structural forms is useful for examining lattices of subvarieties. Let B be the variety of Boolean algebras of type $\tau_b : \{+, \cdot, '\} \to N$, where $\tau_b(+) = \tau_b(\cdot) = 2$ and $\tau_b(') = 1$. In this paper we describe the lattice $\mathcal{L}(B_b)$.

Recall that an algebra \mathfrak{A} is subdirectly irreducible if its lattice of congruences has exactly one atom (see [7]). If an algebra \mathfrak{A} is subdirectly irreducible, we shall write shortly \mathfrak{A} is an s.i. algebra. The notation $\mathfrak{A} \simeq \mathfrak{A}'$ will stand for " \mathfrak{A} is isomorphic to \mathfrak{A}' ".

1. Subdirectly irreducible algebras in B_b

Let us consider the following 14 algebras of type τ_b .

$$\begin{aligned} \mathfrak{A}_{1} &= (\{a_{1}, b_{1}\}; +, \cdot, '), \text{ where } x + y &= \begin{cases} b_{1}, \text{ if } b_{1} \in \{x, y\}, \\ a_{1} \text{ otherwise}, \end{cases} \\ x \cdot y &= \begin{cases} a_{1}, \text{ if } a_{1} \in \{x, y\}, \\ b_{1} \text{ otherwise}, \end{cases} \\ a_{1}' = b_{1}, \quad b_{1}' = a_{1}; \end{cases} \\ \\ \mathfrak{A}_{2} &= (\{a_{2}, b_{2}\}; +, \cdot, '), \text{ where } x + y &= \begin{cases} b_{2} \text{ if } b_{2} \in \{x, y\} \\ a_{3} \text{ otherwise}, \end{cases} \end{aligned}$$

 $= (\{a_2, b_2\}; +, \cdot, \prime), \text{ where } x + y = \begin{cases} a_2 & \text{if } b_2 \in \{x, y\} \\ a_2 & \text{otherwise,} \end{cases}$ $x \cdot y = x' = b_2 \quad \text{for every} \quad x, y \in \{a_2, b_2\};$

$$\mathfrak{A}_{3} = (\{a_{3}, b_{3}\}; +, \cdot, '), \text{ where } x \cdot y = \begin{cases} b_{3}, \text{ if } b_{3} \in \{x, y\}, \\ a_{3} \text{ otherwise}, \end{cases}$$
$$x + y = x' = b_{3} \text{ for every } x, y \in \{a_{3}, b_{3}\};$$

 $\mathfrak{A}_4 = (\{a_4, b_4\}; +, \cdot, \prime), \text{ where }$

$$x + y = x \cdot y = x' = b_4$$
 for every $x, y \in \{a_4, b_4\};$

$$\mathfrak{A}_5 = (\{a_5, b_5\}; +, \cdot, '), \text{ where}$$

 $x + y = x \cdot y = b_5, \ x' = x \text{ for every } x, y \in \{a_5, b_5\};$

 $\mathfrak{A}_6 = (\{a_6, c_6, b_6\}; +, \cdot, \prime), \text{ where }$

$$x + y = x \cdot y = b_6$$
, for every $x, y \in \{a_6, c_6, b_6\}$,
 $a'_6 = c_6, c'_6 = a_6, b'_6 = b_6$;

 $\mathfrak{A}_7 = (\{a_7, b_7\}; +, \cdot, \prime), \text{ where }$

$$x + y = x \cdot y = \begin{cases} b_7, & \text{if } b_7 \in \{x, y\}, \\ a_7 & \text{otherwise}, \end{cases}$$
$$x' = x \quad \text{for every} \quad x \in \{a_7, b_7\};$$

 $\mathfrak{A}_8 = (\{a_8, c_8, b_8\}; \, +, \cdot, '\,),$ where

$$\begin{aligned} x + y &= \begin{cases} b_8, & \text{if } b_8 \in \{x, y\}, \\ c_8, & \text{if } c_8 \in \{x, y\} \text{ and } b_8 \notin \{x, y\}, \\ a_8 & \text{otherwise}, \end{cases} \\ x \cdot y &= \begin{cases} b_8, & \text{if } b_8 \in \{x, y\}, \\ a_8, & \text{if } a_8 \in \{x, y\} \text{ and } b_8 \notin \{x, y\}, \\ c_8 & \text{otherwise}, \\ a_8' = c_8, & c_8' = a_8, & b_8' = b_8; \end{cases}$$

 $\mathfrak{A}_9 = (\{a_9, b_9\}; +, \cdot, \prime),$ where

$$x + y = x \cdot y = \begin{cases} b_9, & \text{if } b_9 \in \{x, y\}, \\ a_9 & \text{otherwise,} \end{cases}$$

$$x' = b_9$$
, for every $x \in \{a_9, b_9\}$;

 $\mathfrak{A}_{10} = (\{a_{10}, c_{10}, b_{10}\}; +, \cdot, '),$ where

$$\begin{aligned} x + y &= \begin{cases} b_{10}, & \text{if } b_{10} \in \{x, y\}, \\ c_{10}, & \text{if } c_{10} \in \{x, y\} \text{ and } b_{10} \notin \{x, y\}, \\ a_{10} & \text{otherwise}, \end{cases} \\ x \cdot y &= \begin{cases} b_{10}, & \text{if } b_{10} \in \{x, y\}, \\ a_{10}, & \text{if } a_{10} \in \{x, y\} \text{ and } b_{10} \notin \{x, y\}, \\ c_{10} & \text{otherwise}, \end{cases}$$

$$x' = b_{10}$$
 for every $x \in \{a_{10}, c_{10}, b_{10}\};$

 $\mathfrak{A}_{11} = (\{a_{11}, b_{11}\}; +, \cdot, \prime),$ where

$$x + y = \begin{cases} b_{11}, & \text{if } b_{11} \in \{x, y\}, \\ a_{11} & \text{otherwise}, \end{cases}$$

$$x \cdot y = b_{11}$$
 for every $x, y \in \{a_{11}, b_{11}\},$
 $x' = x$ for every $x \in \{a_{11}, b_{11}\};$

 $\mathfrak{A}_{12} = (\{a_{12}, c_{12}, b_{12}\}; +, \cdot, \prime), \text{ where }$

$$x + y = \begin{cases} b_{12}, & \text{if } b_{12} \in \{x, y\}, \\ c_{12}, & \text{if } c_{12} \in \{x, y\} \text{ and } b_{12} \notin \{x, y\}, \\ a_{12} & \text{otherwise}, \end{cases}$$

$$x \cdot y = b_{12}$$
 for every $x, y \in \{a_{12}, c_{12}, b_{12}\},$
 $a'_{12} = c_{12}, c'_{12} = a_{12}, b'_{12} = b_{12};$

 $\mathfrak{A}_{13} = (\{a_{13}, b_{13}\}; +, \cdot, \prime), \text{ where }$

$$\begin{aligned} x + y &= b_{13} \text{ for every } x, y \in \{a_{13}, b_{13}\}, \\ x \cdot y &= \begin{cases} b_{13}, & \text{if } b_{13} \in \{x, y\}, \\ a_{13} & \text{otherwise}, \end{cases} \\ x' &= x \text{ for every } x \in \{a_{13}, b_{13}\}; \end{aligned}$$

 $\mathfrak{A}_{14} = (\{a_{14}, c_{14}, b_{14}\}; +, \cdot, \prime),$ where

$$\begin{aligned} x + y &= b_{14} \text{ for every } x, y \in \{a_{14}, c_{14}, b_{14}\}, \\ x \cdot y &= \begin{cases} b_{14}, & \text{if } b_{14} \in \{x, y\}, \\ a_{14}, & \text{if } a_{14} \in \{x, y\} \text{ and } b_{14} \notin \{x, y\}, \\ c_{14} & \text{otherwise}, \end{cases} \end{aligned}$$

$$a'_{14} = c_{14}, \ c'_{14} = a_{14}, \ b'_{14} = b_{14}.$$

It is easy to check that none two of above 14 algebras are isomorphic.

Theorem 1.1. Let $\mathfrak{A} = (A; +, \cdot, \prime)$ be an algebra of type τ_b . Then \mathfrak{A} is subdirectly irreducible and belongs to B_b if and only if \mathfrak{A} is isomorphic to one of the algebras $\mathfrak{A}_1, \ldots, \mathfrak{A}_{14}$.

Proof. For varieties K_1, \ldots, K_n of the same type we denote by $K_1 \otimes \cdots \otimes K_n$ the class of all algebras isomorphic to a subdirect product of a family $\{\mathfrak{A}_1, \ldots, \mathfrak{A}_n\}$ of algebras, where \mathfrak{A}_i runs over K_i for every $i = 1, \ldots, n$.

For $F \subseteq \{+,\cdot,'\}$, we denote by $B_{\widetilde{F}}$ the variety of type τ_b satisfying all regular identities $\varphi \approx \psi$ from Id(B) with $F(\varphi) \cup F(\psi) \subseteq \widetilde{F}$ and satisfying all identities of type τ_b such that $F(\varphi) \cap (\{+,\cdot,'\} \setminus \widetilde{F}) \neq \emptyset \neq F(\psi) \cap (\{+,\cdot,'\} \setminus \widetilde{F})$. It was proved in [12], Theorem 9, that

$$(1.1) B_b = B_r \otimes B_{\{+,\cdot\}} \otimes B_{\{+,\prime\}} \otimes B_{\{\cdot,\prime\}} \otimes B_{\{+\}} \otimes B_{\{\cdot\}} \otimes B_{\{\prime\}} \otimes$$

Consequently to find all subdirectly irreducible algebras from B_b it is enough to find all s.i. algebras from the varieties of the right side of (1.1).

It was proved in [6] that \mathfrak{A} is s.i. and $\mathfrak{A} \in B_r$ iff \mathfrak{A} is isomorphic to one of the algebras $\mathfrak{A}_1, \mathfrak{A}_7$ or \mathfrak{A}_8 . It was proved in [13] that \mathfrak{A} is s.i. and belongs to $B_{\{+\}}$ iff \mathfrak{A} is isomorphic to \mathfrak{A}_2 ; \mathfrak{A} is s.i. and $\mathfrak{A} \in B_{\{\cdot\}}$ iff $\mathfrak{A} \simeq \mathfrak{A}_3$; \mathfrak{A} is s.i. and $\mathfrak{A} \in B_{\varnothing}$ iff $\mathfrak{A} \simeq \mathfrak{A}_4$ (cf. also [2]); \mathfrak{A} is s.i. and $\mathfrak{A} \in B_{\{\prime\}}$ iff $\mathfrak{A} \simeq \mathfrak{A}_3$; \mathfrak{A} is or $\mathfrak{A} \simeq \mathfrak{A}_6$. It was proved in [19] (see Section 3, Examples 3.3–3.5) that \mathfrak{A} is s.i. and $\mathfrak{A} \in B_{\{+,\cdot\}}$ iff $\mathfrak{A} \simeq \mathfrak{A}_9$ or $\mathfrak{A} \simeq \mathfrak{A}_{10}$ and $\mathfrak{A} \in B_{\{+,\prime\}}$ iff $\mathfrak{A} \simeq \mathfrak{A}_{11}$ or $\mathfrak{A} \simeq \mathfrak{A}_{12}$; \mathfrak{A} is s.i. and $\mathfrak{A} \in B_{\{\cdot,\prime\}}$ iff $\mathfrak{A} \simeq \mathfrak{A}_{13}$ or $\mathfrak{A} \simeq \mathfrak{A}_{14}$.

2. The lattice of subvarieties of B_b

Denote $Ir(B_b) = \{\mathfrak{A}_1, \ldots, \mathfrak{A}_{14}\}$. For a variety $V \subseteq B_b$ we denote $Ir(V) = \{\mathfrak{A}_k \in Ir(B_b) : \mathfrak{A}_k \in V\}$. Consequently, to describe the lattice $\mathcal{L}(B_b)$ we have to find all subsets T of $Ir(B_b)$ being of the form Ir(V) for some $V \subseteq B_b$. Apriory we have 2^{14} possibilities. However due to the lemmas below we can essentially reduce this amount.

Lemma 2.1. $\mathfrak{A}_1 \in HSP(\mathfrak{A}_8)$.

Proof. Observe that the subalgebra $(\{a_8, c_8\}; \{+, \cdot, '\}|_{\{a_8, c_8\}})$ of \mathfrak{A}_8 is isomorphic to \mathfrak{A}_1 .

Lemma 2.2. $\mathfrak{A}_{2n-1} \in HSP(\mathfrak{A}_{2n})$ for $3 \leq n \leq 7$.

Proof. Put $h(a_{2n}) = h(c_{2n}) = a_{2n-1}$, $h(b_{2n}) = b_{2n-1}$. Thus h is a homomorphism.

Lemma 2.3. $\mathfrak{A}_{2n} \in HSP(\{\mathfrak{A}_1, \mathfrak{A}_{2n-1}\})$ for $3 \leq n \leq 7$.

Proof. In the direct product $\mathfrak{A}_1 \times \mathfrak{A}_{2n-1}$ put $h(\langle a_1, a_{2n-1} \rangle) = a_{2n}$, $h(\langle b_1, a_{2n-1} \rangle) = c_{2n}$, $h(\langle a_1, b_{2n-1} \rangle) = h(\langle b_1, b_{2n-1} \rangle) = b_{2n}$.

Lemma 2.4. $\mathfrak{A}_2 \in HSP(\{\mathfrak{A}_9, \mathfrak{A}_{11}\}).$

Proof. In the direct product $\mathfrak{A}_9 \times \mathfrak{A}_{11}$ put $h(\langle a_9, a_{11} \rangle) = a_2, h(\langle a_9, b_{11} \rangle) = h(\langle b_9, a_{11} \rangle) = b_2$.

Lemma 2.5. $\mathfrak{A}_3 \in HSP({\mathfrak{A}_9, \mathfrak{A}_{13}}).$

Proof. The proof is analogous to that of Lemma 2.4.

Lemma 2.6. $\mathfrak{A}_5 \in HSP(\{\mathfrak{A}_{11}, \mathfrak{A}_{13}\}).$

Proof. The proof is analogous to that of Lemma 2.4.

Lemma 2.7. $\mathfrak{A}_6 \in HSP({\mathfrak{A}_5, \mathfrak{A}_{12}}).$

Proof. In the direct product $\mathfrak{A}_5 \times \mathfrak{A}_{12}$ put $h(\langle a_5, a_{12} \rangle) = a_6, h(\langle a_5, c_{12} \rangle) = c_6, h(\langle x, y \rangle) = b_6$ otherwise.

Lemma 2.8. $\mathfrak{A}_6 \in HSP(\{\mathfrak{A}_5, \mathfrak{A}_{14}\}).$

Proof. The proof is analogous to that of Lemma 2.7.

Lemma 2.9. $\mathfrak{A}_6 \in HSP({\mathfrak{A}_{11}, \mathfrak{A}_{14}}).$

Proof. In the direct product $\mathfrak{A}_{11} \times \mathfrak{A}_{14}$ put $h(\langle a_{11}, a_{14} \rangle) = a_6, h(\langle a_{11}, c_{14} \rangle) = c_6$ and $h(\langle x, y \rangle) = b_6$ otherwise.

Lemma 2.10. $\mathfrak{A}_6 \in HSP({\mathfrak{A}_{12}, \mathfrak{A}_{13}}).$

Proof. The proof is analogous to that of Lemma 2.9.

Lemma 2.11. \mathfrak{A}_4 belongs to each of the sets HSP($\{\mathfrak{A}_2, \mathfrak{A}_3\}$), HSP($\{\mathfrak{A}_2, \mathfrak{A}_5\}$), HSP($\{\mathfrak{A}_2, \mathfrak{A}_{13}\}$), HSP($\{\mathfrak{A}_3, \mathfrak{A}_{11}\}$), HSP($\{\mathfrak{A}_5, \mathfrak{A}_9\}$).

Proof. The proof is easy and it is left to the reader.

A set $T \subseteq Ir(B_b)$ will be called B_b -closed or briefly closed if it satisfies the following conditions $(c_1)-(c_{11})$:

- (c₁) if $\mathfrak{A}_8 \in T$, then $\mathfrak{A}_1 \in T$;
- (c₂) if $3 \le n \le 7$ and $\mathfrak{A}_{2n} \in T$, then $\mathfrak{A}_{2n-1} \in T$;
- (c₃) if $3 \le n \le 7$ and $\{\mathfrak{A}_1, \mathfrak{A}_{2n-1}\} \subseteq T$, then $\mathfrak{A}_{2n} \in T$;
- (c₄) if $\{\mathfrak{A}_9, \mathfrak{A}_{11}\} \subseteq T$, then $\mathfrak{A}_2 \in T$;
- (c₅) if $\{\mathfrak{A}_9, \mathfrak{A}_{13}\} \subseteq T$, then $\mathfrak{A}_3 \in T$;
- (c₆) if $\{\mathfrak{A}_{11}, \mathfrak{A}_{13}\} \subseteq T$, then $\mathfrak{A}_5 \in T$;
- (c₇) if $\{\mathfrak{A}_5, \mathfrak{A}_{12}\} \subseteq T$, then $\mathfrak{A}_6 \in T$;
- (c₈) if $\{\mathfrak{A}_5, \mathfrak{A}_{14}\} \subseteq T$, then $\mathfrak{A}_6 \in T$;
- (c₉) if $\{\mathfrak{A}_{11}, \mathfrak{A}_{14}\} \subseteq T$, then $\mathfrak{A}_6 \in T$;
- (c₁₀) if $\{\mathfrak{A}_{12},\mathfrak{A}_{13}\} \subseteq T$, then $\mathfrak{A}_6 \in T$;

 $(c_{10}) \text{ if } \{\mathfrak{A}_{12}, \mathfrak{A}_{13}\} \subseteq T, \text{ then } \mathfrak{A}_{6} \in T;$ $(c_{11}) \begin{cases} \text{if } \{\mathfrak{A}_{2}, \mathfrak{A}_{3}\} \subseteq T, \text{ then } \mathfrak{A}_{4} \in T; & \text{if } \{\mathfrak{A}_{2}, \mathfrak{A}_{5}\} \subseteq T, \text{ then } \mathfrak{A}_{4} \in T; \\ \text{if } \{\mathfrak{A}_{3}, \mathfrak{A}_{5}\} \subseteq T, \text{ then } \mathfrak{A}_{4} \in T; & \text{if } \{\mathfrak{A}_{2}, \mathfrak{A}_{13}\} \subseteq T, \text{ then } \mathfrak{A}_{4} \in T; \\ \text{if } \{\mathfrak{A}_{3}, \mathfrak{A}_{11}\} \subseteq T, \text{ then } \mathfrak{A}_{4} \in T; & \text{if } \{\mathfrak{A}_{5}, \mathfrak{A}_{9}\} \subseteq T, \text{ then } \mathfrak{A}_{4} \in T. \end{cases}$

Lemma 2.12. If $T \subseteq Ir(B_b)$, T is B_b -closed and $\mathfrak{A}_k \notin T$ for some $k \in$ $\{1, \ldots, 14\}, \text{ then } \mathfrak{A}_k \notin HSP(T).$

Proof. Let k = 1. Then $T \subseteq \{\mathfrak{A}_2, \ldots, \mathfrak{A}_{14}\}$. By $(c_1) \mathfrak{A}_8 \notin T$. Thus $T \subseteq \{\mathfrak{A}_2, \ldots, \mathfrak{A}_{14}\} \setminus \{\mathfrak{A}_8\}$. Take the identity

(2.1)
$$(((x+y)\cdot(x+y))')' \approx (((x\cdot y)+(x\cdot y))')'.$$

Then we check that (2.1) is satisfied in every algebra \mathfrak{A}_i for $i \in \{2, \ldots, 14\}$ \setminus {8}, so (2.1) is satisfied in HSP(T) but (2.1) is not satisfied in \mathfrak{A}_1 . Consequently $\mathfrak{A}_1 \notin HSP(T)$.

Let k = 2. Then none of the sets $\{\mathfrak{A}_9, \mathfrak{A}_{11}\}, \{\mathfrak{A}_9, \mathfrak{A}_{12}\}, \{\mathfrak{A}_{10}, \mathfrak{A}_{11}\}, \mathfrak{A}_{11}\}, \{\mathfrak{A}_{10}, \mathfrak{A}_{11}\}, \mathfrak{A}_{11}\}, \{\mathfrak{A}_{10}, \mathfrak{A}_{11}\}, \mathfrak{A}_{11}\}, \{\mathfrak{A}_{10}, \mathfrak{A}_{11}\}, \mathfrak{A}_{11}\},$ $\{\mathfrak{A}_{10},\mathfrak{A}_{12}\}$ is included in T. In fact, by (c₂), if one of the sets is included in T, then $\{\mathfrak{A}_9,\mathfrak{A}_{11}\}\subseteq T$ and by (c_4) $\mathfrak{A}_2\in T$, a contradiction. So, it must be $(2.2) T \cap \{\mathfrak{A}_{11}, \mathfrak{A}_{12}\} = \emptyset$

or

(2.3)
$$T \cap \{\mathfrak{A}_9, \mathfrak{A}_{10}\} = \emptyset.$$

If (2.2) holds, then take the identity

$$x + x \approx (x + x) \cdot (x + x).$$

Then every algebra from T satisfies this identity, so it is satisfied in HSP(T) but \mathfrak{A}_2 does not satisfy it. In case (2.3) we take the identity

$$x + x \approx ((x + x)')'.$$

Let k = 3. Then by (c₅) and (c₂) none of the sets $\{\mathfrak{A}_9, \mathfrak{A}_{13}\}, \{\mathfrak{A}_9, \mathfrak{A}_{14}\}, \{\mathfrak{A}_{10}, \mathfrak{A}_{13}\}, \{\mathfrak{A}_{10}, \mathfrak{A}_{14}\}$ can be included in T. If $T \cap \{\mathfrak{A}_{13}, \mathfrak{A}_{14}\} = \emptyset$, we take the identity

$$x \cdot x \approx (x \cdot x) + (x \cdot x).$$

If $T \cap \{\mathfrak{A}_9, \mathfrak{A}_{10}\} = \emptyset$, we take the identity

$$((x \cdot x)')' \approx x \cdot x.$$

Let k = 4. By (c₂) and (c₁₁) T must be included in one of the sets:

 $\{ \mathfrak{A}_1, \mathfrak{A}_2, \mathfrak{A}_7, \mathfrak{A}_8, \mathfrak{A}_9, \mathfrak{A}_{10}, \mathfrak{A}_{11}, \mathfrak{A}_{12} \}, \quad \{ \mathfrak{A}_1, \mathfrak{A}_3, \mathfrak{A}_7, \mathfrak{A}_8, \mathfrak{A}_9, \mathfrak{A}_{10}, \mathfrak{A}_{13}, \mathfrak{A}_{14} \}, \\ \{ \mathfrak{A}_1, \mathfrak{A}_5, \mathfrak{A}_6, \mathfrak{A}_7, \mathfrak{A}_8, \mathfrak{A}_{11}, \mathfrak{A}_{12}, \mathfrak{A}_{13}, \mathfrak{A}_{14} \}.$

We take the identities $x + x \approx x$, $x \cdot x \approx x$, $(x')' \approx x$, respectively.

Let k = 5. By (c₂), $\mathfrak{A}_6 \notin T$ and, by (c₆) and (c₂), none of the sets $\{\mathfrak{A}_{11}, \mathfrak{A}_{13}\}, \{\mathfrak{A}_{11}, \mathfrak{A}_{14}\}, \{\mathfrak{A}_{12}, \mathfrak{A}_{13}\}, \{\mathfrak{A}_{12}, \mathfrak{A}_{14}\}$ is included in T. If $T \cap \{\mathfrak{A}_{13}, \mathfrak{A}_{14}\} = \emptyset$, we take

$$(x')' \approx (x')' + (x')'.$$

If $T \cap {\mathfrak{A}_{11}, \mathfrak{A}_{12}} = \emptyset$, we take the identity

$$(x')' \approx (x')' \cdot (x')'.$$

Let k = 6. If $\mathfrak{A}_5 \in T$, then $T \cap {\mathfrak{A}_8, \mathfrak{A}_1, \mathfrak{A}_{12}, \mathfrak{A}_{14}} = \emptyset$ by (c₃), (c₁), (c₇), (c₈). We take the identity $(x')' \approx x'$. Let $\mathfrak{A}_5 \notin T$. If $\mathfrak{A}_1 \in T$, then, by (c₂), (c₃), (c₉), (c₁₀), it must be

J. Płonka

$$(2.4) T \cap \{\mathfrak{A}_{13}, \mathfrak{A}_{14}\} = \emptyset$$

or

$$(2.5) T \cap \{\mathfrak{A}_{11}, \mathfrak{A}_{12}\} = \emptyset.$$

If (2.4) holds, we take the identity

$$(x')' \approx ((x+x)')'.$$

If (2.5) holds, we take the identity

$$(x')' \approx \left((x \cdot x)' \right)'.$$

If $\mathfrak{A}_5 \notin T$ and $\mathfrak{A}_1 \notin T$, then $\mathfrak{A}_8 \notin T$ by (c₁). Then, by (c₉), (c₁₀) and (c₆) we have two possibilities: (2.4), (2.5). We take the identities $(x')' \approx ((x+x)')'$, $(x')' \approx ((x \cdot x)')'$, respectively.

Let k = 7. Then by (c₂) $\mathfrak{A}_8 \notin T$. We take the identity

(2.6)
$$\left(\left(x+(x\cdot y)\right)'\right)'\approx\left(\left(x+(x\cdot z)\right)'\right)'.$$

Let k = 8. Then T does not contain both \mathfrak{A}_1 and \mathfrak{A}_7 by (c₃). If $\mathfrak{A}_7 \notin T$, we take the identity (2.6). If $\mathfrak{A}_1 \notin T$ we take the identity (2.1).

Let k = 9. Then $\mathfrak{A}_{10} \notin T$ by (c₂). We take

(2.7)
$$\left(\left((x+y)\cdot(x+y)\right)'\right)'\approx(x+y)\cdot(x+y).$$

Let k = 10. If $\mathfrak{A}_9 \notin T$, then we take the identity (2.7). If $\mathfrak{A}_9 \in T$, then $\{\mathfrak{A}_1, \mathfrak{A}_8\} \not\subseteq T$ by (c_3) and (c_1) . We take

$$(x \cdot y) + (x \cdot y) \approx (x + y) \cdot (x + y).$$

Let k = 11. Then $\mathfrak{A}_{12} \notin T$ by (c₂). We take

(2.8)
$$(((x+y)\cdot(x+y))')' \approx ((x+y)')'.$$

Let k = 12. If $\mathfrak{A}_{11} \notin T$, then we take the identity (2.8). If $\mathfrak{A}_{11} \in T$, then $\mathfrak{A}_1, \mathfrak{A}_8 \notin T$ by (c₃) and (c₁). Then we take

$$\left((x+y)'\right)' \approx (x+y)'.$$

Let k = 13. Then $\mathfrak{A}_{14} \notin T$ by (c₂). We take

(2.9)
$$\left(\left((x \cdot y) + (x \cdot y)\right)'\right)' \approx \left((x \cdot y)'\right)'.$$

Let k = 14. If $\mathfrak{A}_{13} \notin T$, we take the identity (2.9). If $\mathfrak{A}_{13} \in T$, then $\mathfrak{A}_1, \mathfrak{A}_8 \notin T$ by (c₃) and (c₁). We take

$$((x \cdot y)')' \approx (x \cdot y)'.$$

Lemma 2.13. If a variety V belongs to $\mathcal{L}(B_b)$ and $\mathfrak{A} \in V$, then \mathfrak{A} is isomorphic to a subdirect product of a family of subdirectly irreducible algebras belonging to $\operatorname{Ir}(V)$.

Proof. By Birkhoff's Subdirect Representation Theorem (see [1]), if $\mathfrak{A} \in V$, then it is isomorphic to an algebra \mathfrak{A}' being a subdirect product of a family $\{\mathfrak{A}_j\}_{j\in J}$ of subdirectly irreducible algebras from V. By Theorem 1.1, each \mathfrak{A}_j is isomorphic to an algebra \mathfrak{A}_j^* from $Ir(B_b)$. Thus \mathfrak{A}_j^* belongs to V and belongs to $Ir(B_b)$, hence \mathfrak{A}_j^* belongs to Ir(V). Consequently, \mathfrak{A}' is isomorphic to an algebra \mathfrak{A}^* being a subdirect product of the family $\{\mathfrak{A}_j^*\}_{j\in J}$ and \mathfrak{A} is isomorphic to \mathfrak{A}^* .

We denote by $T(B_b)$ the set of all B_b -closed sets.

Lemma 2.14. We have:

- (i) For every variety $V \in \mathcal{L}(B_b)$, the set Ir(V) is B_b -closed;
- (ii) For every variety $V \in \mathcal{L}(B_b)$, we have V = HSP(Ir(V));
- (iii) If $T \in \boldsymbol{T}(B_b)$, then T = Ir(HSP(T));
- (iv) If $V_1, V_2 \in \mathcal{L}(B_b)$, then $V_1 \subseteq V_2$ iff $Ir(V_1) \subseteq Ir(V_2)$.

Proof. (i): If $\mathfrak{A}_8 \in Ir(V)$, then, by Lemma 2.1, we have $\mathfrak{A}_1 \in HSP(\mathfrak{A}_8) \subseteq HSP(Ir(V)) \subseteq V$, but $\mathfrak{A}_1 \in Ir(B_b)$, so $\mathfrak{A}_1 \in V \cap Ir(B_b) = Ir(V)$. Consequently, the set Ir(V) satisfies (c₁). Similarly, using Lemmas 2.2–2.11, we show that Ir(V) satisfies (c₂)–(c₁₁).

(ii): Since $Ir(V) \subseteq V$, $HSP(Ir(V)) \subseteq V$. The converse inclusion follows at once from Lemma 2.13.

(iii): If an algebra \mathfrak{A} belongs to T, then $\mathfrak{A} \in HSP(T)$. But $\mathfrak{A} \in Ir(B_b)$ since $T \subseteq Ir(B_b)$, so $\mathfrak{A} \in Ir(HSP(T))$. If $\mathfrak{A} \notin T$, then $\mathfrak{A} \notin HSP(T)$ by Lemma 2.12, hence $\mathfrak{A} \notin Ir(HSP(T))$.

(iv): If $V_1 \subseteq V_2$, then $Ir(V_1) \subseteq Ir(V_2)$ by the definition of Ir(V). The converse implication follows at once from Lemma 2.13.

Theorem 2.15. The set $T \subseteq Ir(B_b)$ is equal to Ir(V) for some variety $V \in \mathcal{L}(B_b)$ iff T is B_b -closed. There are 490 B_b -closed sets.

Proof. The first statement follows from Lemma 2.14 (i) and (iii).

Using a computer and transforming our considerations to indices of algebras \mathfrak{A}_k from $Ir(B_b)$ one can find out $|\mathbf{T}(B_b)| = 490$.

Theorem 2.16. The lattice $(\mathcal{L}(B_b); \subseteq)$ as a poset is isomorphic to the poset $(\mathcal{T}(B_b); \subseteq)$. Therefore the lattice $(\mathcal{L}(B_b); \subseteq)$ is isomorphic to the lattice $(\mathcal{T}(B_b); \subseteq)$ and card $(\mathcal{L}(B_b)) = 490$.

Proof. For $V \in \mathcal{L}(B_b)$ put $\varphi(V) = Ir(V)$. Then φ is well defined by the definition of Ir(V) and, by Lemma 2.14 (i), φ maps $\mathcal{L}(B_b)$ into $T(B_b)$. If $Ir(V_1) = Ir(V_2)$, then, by Lemma 2.14 (ii), $V_1 = HSP(Ir(V_1)) =$ $HSP(Ir(V_2)) = V_2$. Thus φ is 1-1. By Lemma 2.14 (iii), φ is onto. If $V_1 \subseteq V_2$, then $Ir(V_1) \subseteq Ir(V_2)$ by the definition of Ir(V). The converse inclusion follows at once from Lemma 2.13.

Remark 2.17. Results of this paper were presented on the conference "9th Workshop in Mathematics", organized by Technical University of Zielona Góra at September 2001, in Gronów (Poland).

The statement $card(\mathcal{L}(B_b)) = 490$ was confirmed on this conference by Peter Burmeister (Darmstadt, Germany) using his *ConImp* computer program based on the Formal Concept Analysis. For the documentation of the program see P. Burmeister, *ConImp* – *Ein Programm zur Formalen Begriffsanalyse* in: G. Stumme and R. Wille (Eds.), *Begriffliche Wissensverarbeitung: Methoden und Anwendungen*, Springer-Verlag, Berlin 2000, pp. 25–56; extended English version – *Formal Concept Analysis with ConImp: Introduction to the basic features* – one can find on the WWW-server:

http://www.mathematik.[°]tu-darmstadt.de/ags/ag1/Software/software_de.html

References

- S. Burris and H.P. Sankappanavar, A Course in Universal Algebra, Springer-Verlag, New York-Heidelberg-Berlin 1981.
- [2] I. Chajda, Normally presented varieties, Algebra Universalis 34 (1995), 327–335.

- [3] I. Chajda and K. Głazek, A Basic Course on General Algebra, Technical University Press, Zielona Góra 2000.
- [4] G. Grätzer, Universal Algebra (2nd edition), Springer-Verlag, New York-Heidelberg-Berlin 1979.
- [5] B. Jónsson and E. Nelson, *Relatively free products in regular varieties*, Algebra Universalis 4 (1974), 14–19.
- [6] H. Lakser, R. Padmanabhan and C.R. Platt, Subdirect decomposition of Plonka sums, Duke Math. J. 39 (1972), 485–488.
- [7] R. McKenzie, G. McNulty and W. Taylor, *Algebras, Lattices, Varieties*, vol. 1, Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, California 1987.
- [8] J. Płonka, On a method of construction of abstract algebras, Fund. Math. 61 (1967), 183–189.
- J. Płonka, On equational classes of abstract algebras defined by regular equations, Fund. Math. 64 (1969), 241–247.
- [10] J. Płonka, Biregular and uniform identities of bisemilattices, Demonstratio Math. 20 (1987), 95–107.
- J. Płonka, On varieties of algebras defined by identities of some special forms, Houston J. Math. 14 (1988), 253–263.
- J. Płonka, Biregular and uniform identities of algebras, Czechoslovak Math. J. 40 (115) (1990), 367–387.
- [13] J. Płonka, Subdirect decompositions of algebras from 2-clone extension of varieties, Colloq. Math 77 (1998), 189–199.
- [14] J. Płonka, On n-clone extensions of algebras, Algebra Universalis 40 (1998), 1–17.
- [15] J. Płonka, Free algebras over biregularization of varieties, Acta Appl. Math. 52 (1998), 305–313.
- [16] J. Płonka, On sums of direct systems of Boolean algebras, Colloq. Math. 20 (1969), 209–214.
- [17] J. Płonka, Lattices of subvarieties of the clone extension of some varieties, Contributions to General Algebra 11 (1999), 161–171.

- [18] J. Płonka, Clone networks, clone extensions and biregularizations of varieties of algebras, Algebra Colloq. 8 (2001), 327–344.
- [19] J. Płonka. and Z. Szylicka, Subdirectly irreducible generalized sums of upper semilattice ordered systems of algebras, Algebra Universalis (in print).

Received 24 September 2001