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Abstract

Brouwerian semilattices are meet-semilattices with 1 in which ev-
ery element a has a relative pseudocomplement with respect to every
element b, i. e. a greatest element c with a∧c ≤ b. Properties of classes
of reflexive and compatible binary relations, especially of congruences
of such algebras are described and an abstract characterization of con-
gruence classes via ideals is obtained.
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1. Introduction

Definition 1.1. Let (S,∧) be a meet-semilattice and a, b, c ∈ S and let
≤ denote its induced partial ordering relation. The element c is called a
relative pseudocomplement of a with respect to b if c is the greatest element
x of S satisfying a∧x ≤ b. An algebra (S,∧, ∗, 1) of type (2, 2, 0) is called a
Brouwerian semilattice if (S,∧) is a meet-semilattice with greatest element
1 and, for every a, b ∈ S, a ∗ b is the relative pseudocomplement of a with
respect to b.

Remark 1.1. Without loss of generality the greatest element 1 of (S,≤)
can be included in the similarity type of a Brouwerian semilattice since it is
an algebraic (i. e. an equationally definable) constant, namely a ∗ a = 1 for
each a ∈ S (see Lemma 1.1).

Notational convention. Throughout the paper let S = (S,∧, ∗, 1) denote
an arbitrary but fixed Brouwerian semilattice.

Remark 1.2. It is well-known that the class of all Brouwerian semilattices
forms a variety.

Lemma 1.1. For a, b, c ∈ S (i)–(xii) hold:
(i) a ∗ 1 = 1;

(ii) 1 ∗ a = a;

(iii) a ∗ a = 1;

(iv) (a ∗ a) ∗ a = a;

(v) a ≤ b ∗ a;

(vi) a ∧ (a ∗ b) = a ∧ b;

(vii) a ≤ b if and only if a ∗ b = 1;

(viii) if b ≤ c, then c ∗ a ≤ b ∗ a;

(ix) b ≤ (b ∗ a) ∗ a;

(x) ((b ∗ a) ∗ a) ∗ a = b ∗ a;

(xi) ((b ∧ c) ∗ a) ∗ a = ((b ∗ a) ∗ a) ∧ ((c ∗ a) ∗ a);

(xii) (b ∧ c) ∗ a = (b ∧ ((c ∗ a) ∗ a)) ∗ a = (((b ∗ a) ∗ a) ∧ c) ∗ a =

= (((b ∗ a) ∗ a) ∧ ((c ∗ a) ∗ a)) ∗ a.
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Remark 1.3. Though the listed properties of Brouwerian semilattices are
mostly known (cf. e. g. [3]), for the convenience of the reader we provide a
proof.

Proof of Lemma 1.1. (i)–(iii) are trivial.

(iv) follows from (iii) and (ii).

(v) follows from b ∧ a ≤ a.

(vi): Since a∧ (a ∗ b) ≤ b, it holds a∧ (a ∗ b) ≤ a∧ b. On the other hand
(v) implies a ∧ b ≤ a ∧ (a ∗ b).

(vii): If a ≤ b, then a ∗ b = 1. If, conversely, a ∗ b = 1, then
a = a ∧ 1 = a ∧ (a ∗ b) = a ∧ b ≤ b according to (vi).

(viii): b ∧ (c ∗ a) ≤ c ∧ (c ∗ a) ≤ a and, hence, c ∗ a ≤ b ∗ a.

(ix): (b ∗ a) ∧ b = b ∧ (b ∗ a) ≤ a and, hence, b ≤ (b ∗ a) ∗ a.

(x): ((b ∗ a) ∗ a) ∗ a ≤ b ∗ a according to (ix) and (viii). On the other
hand b ∗ a ≤ ((b ∗ a) ∗ a) ∗ a according to (ix).

(xi): From b∧c ≤ b, c, it follows by applying (viii) twice ((b∧c)∗a)∗a ≤
(b ∗ a) ∗ a, (c ∗ a) ∗ a and, hence, ((b∧ c) ∗ a) ∗ a ≤ ((b ∗ a) ∗ a) ∧ ((c ∗ a) ∗ a).
On the other hand the following are equivalent:

b ∧ c ∧ ((b ∧ c) ∗ a) ≤ a,

c ∧ ((b ∧ c) ∗ a) ≤ b ∗ a,

c ∧ ((b ∧ c) ∗ a) ≤ ((b ∗ a) ∗ a) ∗ a,

c ∧ ((b ∧ c) ∗ a) ∧ ((b ∗ a) ∗ a) ≤ a,

((b ∧ c) ∗ a) ∧ ((b ∗ a) ∗ a) ≤ c ∗ a,

((b ∧ c) ∗ a) ∧ ((b ∗ a) ∗ a) ≤ ((c ∗ a) ∗ a) ∗ a,

((b ∧ c) ∗ a) ∧ ((b ∗ a) ∗ a) ∧ ((c ∗ a) ∗ a) ≤ a and

((b ∗ a) ∗ a) ∧ ((c ∗ a) ∗ a) ≤ ((b ∧ c) ∗ a) ∗ a.
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(xii): According to (x) and (xi) one obtains

(b ∧ c) ∗ a = (((b ∧ c) ∗ a) ∗ a) ∗ a = (((b ∗ a) ∗ a) ∧ ((c ∗ a) ∗ a)) ∗ a,

(b ∧ ((c ∗ a) ∗ a)) ∗ a = (((b ∧ ((c ∗ a) ∗ a)) ∗ a) ∗ a) ∗ a =

= (((b ∗ a) ∗ a) ∧ ((((c ∗ a) ∗ a) ∗ a) ∗ a)) ∗ a =

= (((b ∗ a) ∗ a) ∧ ((c ∗ a) ∗ a)) ∗ a

and

(((b ∗ a) ∗ a) ∧ c) ∗ a = (((((b ∗ a) ∗ a) ∧ c) ∗ a) ∗ a) ∗ a =

= (((((b ∗ a) ∗ a) ∗ a) ∗ a) ∧ ((c ∗ a) ∗ a)) ∗ a =

= (((b ∗ a) ∗ a) ∧ ((c ∗ a) ∗ a)) ∗ a.

Remark 1.4. In the following we often make use of Lemma 1.1 without
explicitly mentioning it.

2. Reflexive and compatible binary relations in Brouwerian
semilattices

Let R be a binary relation on S, a ∈ R and n a positive integer. Then
[a]R := {x ∈ S |xR a}, Rn := R ◦R ◦ · · · ◦R with n factors and R is called
compatible with respect to S if it has the substitution property with respect
to both operations ∧ as well as ∗.

In this section R,R1, R2 denote some arbitrary but fixed reflexive binary
relations on S which are compatible with respect to S.

Theorem 2.1. If a ∈ S is the least element of [a]R1, then [a](R2 ◦R1)n ⊆
[a](R1◦R2)n and [a](R1◦(R2◦R1)n) ⊆ [a](R2◦(R1◦R2)n) for every positive
integer n.

Proof. Let n be a positive integer. If b ∈ [a](R2 ◦ R1)n, then there exist
a1, . . . , a2n ∈ S with bR2 a1 R1 . . . R1 a2n = a and hence

b = b ∧ 1 = b ∧ (a1 ∗ a1) R1 b ∧ (a1 ∗ a) R2 a1 ∧ (a1 ∗ a) = a1 ∧ a = a

for n = 1 and
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b = b ∧ 1 = b ∧ (a1 ∗ a1) R1 b ∧ (a1 ∗ a2) R2 a1 ∧ (a1 ∗ a3) = a1 ∧ a3 R1 . . .

. . . R1 a2n−2 ∧ a2n R2 a2n−1 ∧ a = a

for n > 1, and therefore b ∈ [a](R1 ◦ R2)n. If b ∈ [a](R1 ◦ (R2 ◦ R1)n), then
there exist a1, . . . , a2n+1 ∈ S with bR1 a1 R2 . . . R2 a2n R1 a2n+1 = a and
hence

b = b ∧ 1 = b ∧ (a1 ∗ a1) R2 b ∧ (a1 ∗ a2) R1 a1 ∧ (a1 ∗ a3) = a1 ∧ a3 R2 . . .

. . . R2 a2n−2 ∧ a2n R1 a2n−1 ∧ aR2 a2n ∧ a = a,

and therefore b ∈ [a](R2 ◦ (R1 ◦R2)n).

Lemma 2.1. If a ∈ S is the least element of [a]R, then [a]R ⊆ [a]R−1.

Proof. If b ∈ [a]R, then one obtains

b = b ∧ 1 = b ∧ (a ∗ a) ∈ [b ∧ (b ∗ a)]R−1 = [b ∧ a]R−1 = [a]R−1.

Remark 2.1. From Lemma 2.1 it follows that if a ∈ S is the least element
of both [a]R and [a]R−1, then [a]R = [a]R−1.

Lemma 2.2. If a ∈ S is the least element of [a]R, then [a]Rn = [a]R for
every positive integer n.

Proof. We use induction on n. The case n = 1 is trivial. Now assume
n ≥ 1 and [a]Rn = [a]R. The inclusion [a]R ⊆ [a]Rn+1 is trivial. If b ∈
[a]Rn+1, then there exist c1, . . . , cn+1 ∈ S with bR c1 R . . . R cn R cn+1 = a
and therefore

b = b ∧ 1 = b ∧ (c1 ∗ c1)R c1 ∧ (c1 ∗ c2) = c1 ∧ c2 R . . . R cn ∧ a = a,

whence b ∈ [a]Rn which implies [a]Rn+1 ⊆ [a]Rn = [a]R.

Definition 2.1. For every subset M of S2 let Θ(M) denote the least con-
gruence on S including M . Θ(M) is usually called the congruence generated
by M .

Theorem 2.2. If a ∈ S is the least element of both [a]R and [a]R−1, then
[a]R = [a]Θ(R).
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Proof. Let b ∈ [a](R ◦ R−1). Then there exists an element c of S with
bRcR−1a. Since a is the least element of [a]R−1 it follows c ≥ a. This implies
b∧ aRc∧ a = a and since a is the least element of [a]R, it follows b∧ a ≥ a.
This shows b ≥ a. Therefore, a is the least element of [a](R ◦ R−1) and
it follows from Lemma 2.2 that [a](R ◦ R−1)n = [a](R ◦ R−1) for every
positive integer n. Because of Remark 2.1 and Lemma 2.2, [a]R = [a]R−1

and [a](R ◦R) = [a]R, and therefore, [a](R ◦R−1) = [a](R ◦R) = [a]R. Now

[a]Θ(R) = [a]

( ∞⋃

n=1

(R ◦R−1)n

)
=

∞⋃

n=1

[a](R ◦R−1)n =
∞⋃

n=1

[a]R = [a]R.

3. Congruences and congruence classes in Brouwerian
semilattices

Definition 3.1. An algebra A is called an algebra with 1 if 1 is a dis-
tinguished fixed element of the base set of A. Let A be an algebra with
1. A is called weakly regular if, for all Θ, Φ ∈ ConA, [1]Θ = [1]Φ im-
plies Θ = Φ. A is called permutable at 1 if, for any Θ,Φ ∈ ConA, it holds
[1](Θ◦Φ) = [1](Φ◦Θ). A is called distributive at 1 if, for all Θ,Φ, Ψ ∈ ConA,
it holds [1]((Θ∨Φ)∩Ψ) = [1]((Θ∩Ψ)∨ (Φ∩Ψ)). A is called arithmetic at
1 if it is both permutable at 1 and distributive at 1. A variety V is called a
variety with 1 if 1 is an equationally definable constant of V. A variety with
1 is called weakly regular, respectively arithmetic at 1, if each of its members
has the corresponding property.

Proposition 3.1. A variety V with 1 is weakly regular if and only if there
exist a positive integer n and binary terms t1, . . . , tn of V such that the
condition t1(x, y) = · · · = tn(x, y) = 1 is equivalent to x = y, and V is
arithmetic at 1 if and only if there exists a binary term t of V satisfying
t(x, x) = t(1, x) = 1 and t(x, 1) = x.

Proof. The first assertion was proved in [2] and the second one in [1].

Theorem 3.1. The variety of Brouwerian semilattices is weakly regular and
arithmetic at 1.

Proof. This follows from Proposition 3.1 by taking n := 2, t1(x, y) := x∗y
and t2(x, y) = t(x, y) := y ∗ x.
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Theorem 3.2. For a, b, c, d ∈ S and Θ ∈ ConS, (i)–(ix) hold:

(i) If b, c ∈ [a]Θ, then b ∧ c ∈ [a]Θ.

(ii) If b ≥ a, then b ∈ [a]Θ if and only if (b ∗ a) ∗ a ∈ [a]Θ.

(iii) If b, c ∈ [a]Θ, then (b ∗ c) ∗ a ∈ [a]Θ.

(iv) If b, c ∈ [a]Θ, then ((b ∗ a) ∧ (c ∗ a)) ∗ a ∈ [a]Θ.

(v) If b Θ c, then (b ∗ a) ∧ ((c ∗ a) ∗ a) ∈ [a]Θ.

(vi) If b ≤ c, then b ∗ aΘ c ∗ a if and only if (b ∗ a) ∧ ((c ∗ a) ∗ a) ∈ [a]Θ.

(vii) If b ≤ c and (b ∗ a) ∧ ((c ∗ a) ∗ a) ∈ [a]Θ, then

((b ∧ d) ∗ a) ∧ (((c ∧ d) ∗ a) ∗ a) ∈ [a]Θ.

(viii) If b ≤ c and (b∗a)∧((c∗a)∗ a)∈ [a]Θ, then ((b∗a)∗a)∧(c∗a)∈ [a]Θ.

(ix) If b, c ∧ (b ∗ a) ∈ [a]Θ, then c ∈ [a]Θ.

Proof. (i): b ∧ c ∈ [a ∧ a]Θ = [a]Θ.

(ii): If b ∈ [a]Θ, then (b ∗ a) ∗ a ∈ [(a ∗ a) ∗ a]Θ = [a]Θ. If, conversely,
(b ∗ a) ∗ a ∈ [a]Θ, then b = b ∧ 1 = b ∧ (a ∗ a) ∈ [b ∧ (((b ∗ a) ∗ a) ∗ a)]Θ =
[b ∧ (b ∗ a)]Θ = [b ∧ a]Θ = [a]Θ.

(iii): (b ∗ c) ∗ a ∈ [(a ∗ a) ∗ a]Θ = [a]Θ.

(iv): ((b∗a)∧ (c∗a))∗a ∈ [((a∗a)∧ (a∗a))∗a]Θ = [(a∗a)∗a]Θ = [a]Θ.

(v): (b ∗a)∧ ((c ∗a) ∗a) ∈ [(b ∗a)∧ ((b ∗a) ∗a)]Θ = [(b ∗a)∧a]Θ = [a]Θ.

(vi): If b ∗ aΘ c ∗ a, then (b ∗ a)∧ ((c ∗ a) ∗ a) ∈ [(b ∗ a)∧ ((b ∗ a) ∗ a)]Θ =
[(b ∗ a)∧ a]Θ = [a]Θ. Assume, conversely, (b ∗ a)∧ ((c ∗ a) ∗ a) ∈ [a]Θ. Then
[(c ∗ a) ∗ a]Θ ∧ [b ∗ a]Θ = [a]Θ and, hence, [b ∗ a]Θ ≤ [(c ∗ a) ∗ a]Θ ∗ [a]Θ =
[((c ∗ a) ∗ a) ∗ a]Θ = [c ∗ a]Θ. On the other hand, b ≤ c implies c ∗ a ≤ b ∗ a
and, hence, [c ∗ a]Θ ≤ [b ∗ a]Θ. Together it follows [b ∗ a]Θ = [c ∗ a]Θ and
hence b ∗ aΘ c ∗ a.

(vii): According to (vi), b ∗ a Θ c ∗ a which implies (((b ∗ a) ∗ a) ∧ d) ∗
a Θ(((c∗a)∗a)∧d)∗a. On the other hand, b ≤ c implies (b∗a)∗a ≤ (c∗a)∗a
and, hence, ((b ∗ a) ∗ a)∧ d ≤ ((c ∗ a) ∗ a)∧ d. Applying (vi) once more, one
obtains

((b∧d)∗a)∧(((c∧d)∗a)∗a)=((((b∗a)∗a)∧d)∗a)∧(((((c∗a)∗a)∧d)∗a)∗a)∈ [a]Θ.
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(viii): According to (vi), b ∗ aΘ c ∗ a, whence by (v):

((b ∗ a) ∗ a) ∧ (c ∗ a) = ((b ∗ a) ∗ a) ∧ (((c ∗ a) ∗ a) ∗ a) ∈ [a]Θ.

(ix): c = c ∧ 1 = c ∧ (a ∗ a) ∈ [c ∧ (b ∗ a)]Θ = [a]Θ.

Remark 3.1. The assumption b ≥ a in (ii) cannot be omitted as can be
seen from the following example:
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If Θ denotes the equivalence relation having the classes {0, b}, {a, d} and
{c, 1}, then (b ∗ a) ∗ a = c ∗ a = d ∈ [a]Θ but b 6∈ [a]Θ. (Note that b 6≥ a.)

Corollary 3.1. From (vi), it follows that for a, b, c ∈ S with b ≤ c and, for
Θ, Φ ∈ ConS with [a]Θ = [a]Φ, b ∗ a Θ c ∗ a is equivalent to b ∗ a Φ c ∗ a.

Lemma 3.1. If a, b ∈ S and Θ ∈ ConS, then b ∈ [a]Θ if and only if
a ∗ b, b ∗ a ∈ [1]Θ.

Proof. If b ∈ [a]Θ, then a ∗ b, b ∗ a ∈ [a ∗ a]Θ = [1]Θ. If, conversely,
a ∗ b, b ∗ a ∈ [1]Θ, then b = b ∧ 1 ∈ [b ∧ (b ∗ a)]Θ = [b ∧ a]Θ = [a ∧ b]Θ =
[a ∧ (a ∗ b)]Θ = [a ∧ 1]Θ = [a]Θ.

Definition 3.2. A subset I of S is called an ideal of S if there exists a
congruence Θ on S with [1]Θ = I. Since the intersection of ideals of S
is again an ideal of S, there exists a smallest ideal of S including a given
subset M of S. This ideal is called the ideal of S generated by M and it is
denoted by I(M). For a ∈ S and M ⊆ S put a ∗M := {a ∗ x |x ∈ M} and
M ∗ a := {x ∗ a |x ∈ M}.
Lemma 3.2. For a, b ∈ S and Θ ∈ ConS the following are equivalent:

(i) b ∈ [a]Θ;

(ii) a ∗ b, b ∗ a ∈ (a ∗ ([a]Θ)) ∪ (([a]Θ) ∗ a);

(iii) a ∗ b, b ∗ a ∈ I((a ∗ ([a]Θ)) ∪ (([a]Θ) ∗ a));

(iv) a ∗ b, b ∗ a ∈ [1]Θ.
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Proof. The implications (i) ⇒ (ii) ⇒ (iii) are trivial.
(iii) ⇒ (iv): I((a∗ ([a]Θ))∪ (([a]Θ)∗a)) ⊆ [1]Θ follows from Lemma 3.1.
(iv) ⇒ (i): follows from Lemma 3.1.

Corollary 3.2. If a ∈ S, Θ, Φ ∈ ConS and

I((a ∗ ([a]Θ)) ∪ (([a]Θ) ∗ a)) = I((a ∗ ([a]Φ)) ∪ (([a]Φ) ∗ a)),

then [a]Θ = [a]Φ.

Theorem 3.3. A non-empty subset A of S is a class of some congruence
on S if and only if a ∈ A, b ∈ S and a ∗ b, b ∗a ∈ I((a ∗A)∪ (A ∗a)) together
imply b ∈ A.

Proof. Assume the condition of the theorem to hold. Let c ∈ A. Then
there exists a congruence Ψ on S with [1]Ψ = I((c ∗A) ∪ (A ∗ c)). If d ∈ A,
then c∗d, d∗ c ∈ I((c∗A)∪ (A∗ c)) = [1]Ψ and, hence, d ∈ [c]Ψ according to
Lemma 3.1. If, conversely, e ∈ [c]Ψ, then c∗e, e∗c ∈ [1]Ψ = I((c∗A)∪(A∗c)),
because of Lemma 3.1, and, hence e ∈ A according to the condition of the
theorem. This shows A = [c]Ψ and therefore A is a class of some congruence
on S. The rest of the proof follows from Lemma 3.2.
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