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Abstract

Tree transducers are systems which transform trees into trees just
as automata transform strings into strings. They produce transforma-
tions, i.e. sets consisting of pairs of trees where the first components are
trees belonging to a first language and the second components belong
to a second language. In this paper we consider hypersubstitutions, i.e.
mappings which map operation symbols of the first language into terms
of the second one and tree transformations defined by such hypersub-
stitutions. We prove that the set of all tree transformations which are
defined by hypersubstitutions of a given type forms a monoid with re-
spect to the composition of binary relations which is isomorphic to the
monoid of all hypersubstitutions of this type. We characterize transi-
tivity, reflexivity and symmetry of tree transformations by properties
of the corresponding hypersubstitutions. The results will be applied to
languages built up by individual variables and one operation symbol
of arity n ≥ 2.
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1. Introduction

Let Σ := {fi | i ∈ I} be a set of operation symbols of type τ1 = (ni)i∈I ,
where fi is ni-ary, ni ∈ IN and let Ω = {gj | j ∈ J} be a set of operation
symbols of type τ2 = (nj)j∈J where gj is nj-ary. We denote by Wτ1(X) and
by Wτ2(X) the sets of all terms of type τ1 and of type τ2, respectively. Then
we define

Definition 1.1. A (τ1 − τ2)-hypersubstitution is a mapping

σ : {fi | i ∈ I} → Wτ2(X),

which maps operation symbols of type τ1 to terms of type τ2 and preserves
the arities.

Clearly, every (τ1 − τ2)-hypersubstitution σ can be extended to a
mapping

σ̂ : Wτ1(X) → Wτ2(X)

in the following inductive way:

(i) σ̂[x] := x,

(ii) σ̂[fi(ti, . . . , tni)] := σ(fi)(σ̂[ti], . . . , σ̂[tni ]).

Remark that the right hand side of (ii) means that one has to substitute the
term σ̂[ti] for the variables xi, for 1 ≤ i ≤ ni, in the term σ(fi).

Definition 1.2. Let σ be a (τ1 − τ2)-hypersubstitution. Then

Tσ := {(t, σ̂[t]) | t ∈ Wτ1(X)}

is called tree transformation defined by σ.

We remark that terms also are called trees.
Instead of the two different types τ1 and τ2 one can consider the join

Σ∪Ω of the operation symbols of type τ1 and of type τ2 to obtain a type τ .
Then a hypersubstitution of type τ is a mapping

σ : {hl | l ∈ L} → Wτ (X),

where L = I ∪ J , which preserves the arities. Let Hyp(τ) be the set of all
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such hypersubstitutions. On Hyp(τ) a binary operation ◦h can be defined
by

σ1 ◦h σ2 := σ̂1 ◦ σ2,

where ◦ is the usual composition of functions.
Clearly, the hypersubstitution σid which maps each operation symbol

hl to the so-called fundamental term hl(x1, . . . , xnl
) is an identity element

with respect to ◦h and (Hyp(τ); ◦h, σid) is a monoid. Regarding the type τ
as the union of the types τ1 and τ2, every (τ1− τ2)-hypersubstitution can be
considered as a hypersubstitution of type τ, where the operation symbols gj

of the type τ2 are mapped to the fundamental terms gj(x1, . . . , xnj ). Since
the composition of two hypersubstitutions, which fix the operation symbols
from Ω, is again a hypersubstitution which fixes the operation symbols from
Ω, the set of all (τ1− τ2)-hypersubstitutions regarded as hypersubstitutions
of the type τ forms a submonoid of the monoid Hyp(τ). This allows us
to consider tree transformations Tσ where σ ∈ Hyp(τ), t ∈ Wτ (X) and
σ̂[t] ∈ Wτ (X).

Hypersubstitutions were introduced in [2] to make the concept of a
hyperidentity more precise. Let V be a variety of type τ , i.e. an equationally
defined class of algebras of the same type τ . Then an equation s ≈ t of terms
of type τ is said to be satisfied as a hyperidentity in V if for all σ ∈ Hyp(τ)
the equations σ̂[s] ≈ σ̂[t] are identities in the variety V . A variety V is
called solid if each of its identities is satisfied as a hyperidentity in V . All
solid varieties of a given type τ form a complete sublattice of the lattice of
all varieties of type τ . For more background see [4].

2. Tree transformations and tree transducers

The most important tree transformations are those which can be given in
an effective way. Next we define a general system, called a tree transducer,
which induces tree transformations.

The concept of a tree transducer which will be used in this paper is due
to Thatcher ([6]).

Definition 2.1. A (τ1−τ2)-tree transducer is a sequenceA=(Σ,X,A,Ω,P,A′),
where Σ = {fi | i ∈ I} is a finite set of operation symbols of type τ1, X is a
finite set of variables, Ω = {gj | j ∈ J} is a finite set of operation symbols
of type τ2, A = {a1, . . . , am} is a finite set of unary operation symbols,
A′ ⊆ A, and P is a finite set of productions (rules of derivation) of the forms
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(i) x 7→ at for x ∈ X, a ∈ A, t ∈ Wτ2(X),

(ii) fi(a1ξ1, . . . , aniξni) 7→ at(ξ1, . . . , ξni), for fi ∈ Σ, a1, . . . , ani ∈ A,
a ∈ A, ξ1, . . . , ξni ∈ χni , where χni = {ξ1, . . . , ξni} is an auxiliary
alphabet, and t(ξ1, . . . , ξni) ∈ WΩ(X ∪ χni).

Further we define for trees s, t: s directly derives t in A, if t can be
obtained from s by one of the following steps:

(1) replacing an occurrence of a variable x ∈ X in s by the right hand side
of a production of the form (i)

or

(2) replacing an occurrence of a subtree fi(a1q1, . . . , aniqni), where
a1, . . . , ani ∈ A, q1, . . . , qni ∈ Wτ2(X ∪ χni), in s by at(q1, . . . , qni) if
fi(aiξ1, . . . , aniξni) 7→ at(ξ1, . . . , ξni) is a production.

If s directly derives t in A, we write s →A t.
s derives t in A, if there is a sequence s →A s1 →A s2 →A . . . →A

sn = t of direct derivations of t from s or if s = t. In this case we write
s ⇒∗

A t. If we regard →A and ⇒∗
A as binary relations, then ⇒∗

A is the
reflexive and transitive closure of →A.

Tree transformations induced by tree transducers can be defined in the
following way:

Definition 2.2. If A is a (τ1 − τ2)-tree transducer, then

TA := {(s, t) | s ∈ Wτ1(X), t ∈ Wτ2(X) and (∃a0 ∈ A′)[s ⇒∗
A a0t]}

is called tree transformation induced by A.

(That means, tree transformations of the form TA can be described in an
effective (algorithmic) way ).

It turns out that tree transformations Tσ for a hypersubstitution σ have
this property, i.e. we have

Proposition 2.3. If σ is a (τ1 − τ2)-hypersubstitution then one can define
a tree transducer A = (Σ, X, A,Ω, P,A′) with A = A′ = {a} and P =
{x →A ax | x ∈ X}∪{fi(aξ1, . . . , aξni) →A aσ(fi)(ξ1, . . . , ξni) | i ∈ I}, such
that TA = Tσ.
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Proof. Because of the definition of TA and Tσ for abitrary terms t ∈
Wτ1(X), t′ ∈ Wτ2(X), we have to prove

σ̂[t] = t′ ⇔ t ⇒∗
A a0t

′.

We proceed by induction on the complexity of the term t. For the base case,
let t = x be an element of X. Then σ̂[x] = x, i.e. t′ = x and x ⇒∗

A ax, since
x →A ax is a rule and conversely.

Assume now that t = fi(t1, . . . , tni) and assume that

σ̂[tj ] = t′j ⇔ tj ⇒∗
A at′j for all j = 1, . . . , ni.

Then σ̂[t] = σ(fi)(σ̂[t1], . . . , σ̂[tni ]) = t′ and we have to find a derivation of
t′ from t. In fact, we have

t = fi(t1, . . . , tni) ⇒∗
A fi(aσ̂[t1], . . . , aσ̂[tni ]) by hypothesis of the

induction,

→A aσ(fi)(σ̂[t1], . . . , σ̂[tni ]) = aσ̂[t] by the second

rule.

Conversely, assume that there is a derivation of at′ from t, i.e. t ⇒∗
A at′.

Since t = fi(t1, . . . , tni) in the first step of the derivation only a rule of the
second kind is applicable and therefore tj = at′j for j = 1, . . . , ni and

t ⇒∗
A fi(at′1, . . . , at′ni

) ⇒∗
A aσ(fi)(t′1, . . . , t

′
ni

).

But tj = at′j means tj ⇒∗
A at′j , for j = 1, . . . , ni. By hypothesis of the

induction we have σ̂[tj ] = t′j and then

t ⇒∗
A aσ(fi)(σ̂[t1], . . . , σ̂[tni ]) = aσ̂[t] = at′.

Since this derivation is unique, we get t′ = σ̂[t].

Note that tree transducers considered in Proposition 2.3 are particular cases
of so-called HF-transducers introduced e.g. in [5] and that hypersubstitu-
tions are special cases of tree homomorphisms ([5]).

3. Operations defined on tree transformations

In the sequel we assume that we have only one type τ . By Tσ1 ◦ Tσ2 we
denote the composition of the tree transformations Tσ1 and Tσ2 . Since a
tree transformation Tσ is a relation, we can consider inverses, domains and
ranges of such transformations under the relational composition ◦. We define
THyp(τ) := {Tσ | σ ∈ Hyp(τ)} and prove
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Theorem 3.1. (THyp(τ); ◦, Tσid
) is a monoid which is isomorphic to the

monoid of all hypersubstitutions of type τ .

Proof. We define a mapping ϕ : Hyp(τ) →THyp(τ) by σ 7→ Tσ. Clearly, ϕ
is well-defined and surjective.

(i): We show that Tσ1 ◦ Tσ2 = Tσ1◦hσ2 , i.e. ϕ(σ1 ◦h σ2) = ϕ(σ1) ◦ ϕ(σ2).
Indeed, we have

(t, t”) ∈ Tσ1 ◦ Tσ2 ⇔ ∃t′((t, t′) ∈ Tσ2 and (t′, t”) ∈ Tσ1)

⇔ t′= σ̂2[t] and t”= σ̂1[t′] ⇔ t” = σ̂1[σ̂2[t]]

⇔ t” = (σ1 ◦h σ2)̂ [t] ⇔ (t, t”) ∈ Tσ1◦hσ2 .

This shows that THyp(τ) is closed under composition and that ϕ preserves
the operation.

(ii): We show that ϕ is one-to-one.
Assume that Tσ1 = Tσ2 . Then for all t ∈ Wτ (X) we have σ̂1[t] = σ̂2[t]. But
this means that for all operation symbols fi we also have

σ̂1[fi(xi, . . . , xni)] = σ1(fi) = σ2(fi) = σ̂2[fi(xi, . . . , xni)]

and, therefore, σ1 = σ2.
Since Tσ1 ◦ Tσ2 = Tσ1◦hσ2 , the tree transformation Tσid

is an identity
element with respect to the composition ◦.

Theorem 3.1 allows us to describe properties of the relation Tσ by prop-
erties of the hypersubstitution σ and conversely.

Theorem 3.2. Let σ ∈ Hyp(τ) be a hypersubstitution of type τ and let Tσ

be the corresponding tree transformation. Then

(i) Tσ is transitive iff σ is idempotent,

(ii) Tσ is reflexive iff σ = σid,

(iii) Tσ is symmetric iff σ ◦h σ = σid.

The proofs are straightforward and left to the reader.



Tree transformations defined by hypersubstitutions 225

Remark that these propositions are true for any function ϕ and the
corresponding relation Tϕ.

A tree transformation is called injective if σ is injective, i.e., if from
σ̂[t] = σ̂[t′] follows t = t′, and Tσ is called surjective if σ is surjective.

In general, the range of a tree transformation σ, i.e. the set

σ̂(Wτ (X)) = {t′ | ∃t ∈ Wτ (X)(t′ = σ̂[t])},

is a subset of Wτ (X). Therefore, we consider Tσ as a relation between
Wτ (X) and σ̂(Wτ (X)), i.e. Tσ = Wτ (X) × σ̂(Wτ (X)), to get surjectiv-
ity. We notice that Tσ ◦ (Tσ)−1 = Tσid

= 4Wτ (X) and that (Tσ)−1 ◦ Tσ =
{(t, t′) | σ̂[t] = σ̂[t′]} = kerσ (the kernel of σ). Then we have:

Let σ ∈ Hyp(τ) be a hypersubstitution of type τ , consider a tree trans-
formation of the form Tσ = Wτ (X) × σ̂(Wτ (X)). Then Tσ is bijective iff
kerσ = 4Wτ (X) = Tσid

.
In [2] the authors characterized for the type τ = (n), n ≥ 2, all hyper-

substitutions for which kerσ is equal to 4Wτ (X).
It turns out that for n ≥ 2 this is the case iff varσ(f) = {x1, . . . , xn},

where varσ(f) is the set of all variables occurring in σ(f). Such hyper-
sustitutions are called regular. Let Reg(τ), τ = (n), where n ≥ 2, be the
set of all regular hypersubstitutions of type τ = (n). It is easy to see that
Reg(τ) forms a submonoid of Hyp(τ) and then, by Theorem 3.1, TReg(τ) is
a submonoid of THyp(τ) and we have

Corollary 3.3. Let σ be a hypersubstitution of type τ = (n), for n ≥ 2, and
let Tσ be the tree transformation defined by σ. Then Tσ is bijective iff σ is
regular, i.e. σ ∈ Reg(τ), and therefore Tσ ∈ TReg(τ).

For types different from τ = (n) there is no explicit description of all hyper-
substitutions with kerσ = ∆Wτ (X), but in [4] one can find an algorithmic
solution of this problem.

We remark that kerσ = (Tσ)−1◦Tσ is always a fully invariant congruence
relation on the absolutely free algebra Fτ (X) of type τ , i.e. an equational
theory.

4. Tree transformations of type τ = (2)

In this section, we want to consider tree transformations defined by hyper-
substitutions of type τ = (2). Let f be the binary operation symbol and let
X2 = {x1, x2} be a two-element alphabet of variables. Here σt for a term
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t ∈ W(2)(X) means that the hypersubstitution σ maps the binary opera-
tion symbol f to the term t. In [3] the semigroup properties of the monoid
Hyp(2) of all hypersubstitutions of type τ = (2) were studied.

Let W(2)({xi}) be the set of all terms built up by using only the variable
xi, i = 1, 2. Then we define the following sets of hypersubstitutions of type
τ = (2):

Ex1 := {σ | σ : f 7→ f(x1, u) and u ∈ W(2)({x1})},
Ex1 := {σ | σ : f 7→ f(v, x2) and u ∈ W(2)({x2})},
E = Ex2 ∪ Ex2 ,

M = {σx1 , σx2 , σid, σf(x2,x1), σf(x1,x1), σf(x2,x2)}.

A hypersubstitution σ has infinite order if for any n ≥ 1, σn 6= σn+1

Then in [3] the following was proved:

Proposition 4.1 ([3]). Let σ ∈ Hyp(2). Then

(i) σ is idempotent iff σ ∈ E ∪ {σx1 , σx2 , σid};

(ii) σ has infinite order iff σ ∈ Hyp(τ) \ (E ∪M).

As a consequence we have

Corollary 4.2. Let σ ∈ Hyp(2). Then

(i) Tσ is transitive iff σ ∈ E ∪ {σx1 , σx2 , σid};

(ii) Tσ is symmetric iff σ = σx2x1 ;

(iii) Tσ has infinite order iff σ ∈ Hyp(τ) \ (E ∪M).

Moreover, (i), (ii), (iii) describe all possible cases for Tσ if σ ∈ Hyp(2). If
σ 6= σid, then Tσ is either transitive or symmetric, or has infinite order.

We remark that in [3] some properties of the monoid Hyp(2) concern-
ing Green’s relations were proved which can also be applied to the monoid
THyp(2) of all tree transformations of type τ = (2).
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