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Abstract

This paper concerns two notions of rank of fuzzy matrices: maximal
column rank and column rank. We investigate the difference of them.
We also characterize the linear operators which preserve the maximal
column rank of fuzzy matrices. That is, a linear operator T preserves
maximal column rank if and only if it has the form T (X) = UXV with
some invertible fuzzy matrices U and V .
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1. Introduction

There are many papers on the study of linear operators that preserve semir-
ing rank and column rank of matrices over several semirings ([2]–[6]). Beasley
and Pullman [2] obtained characterizations of linear operators that preserve
semiring rank of fuzzy matrices. Song characterized the column rank case
in [5]. Hwang, Kim and Song [4] defined maximal column rank of a matrix
over a semiring and compared it with column rank. And they obtained char-
acterizations of the linear operators that preserve maximal column rank of
binary Boolean matrices. For the case of nonbinary Boolean matrices, the
linear operators were characterized in [6].
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Engineering Foundation
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In this paper, we study the extent to which known properties of linear
operators preserving the column rank of matrices over ’chain semiring’ (see
Section 2) carry over to operators preserving maximal column rank. We
obtain some characterizations of the linear operators that preserve maximal
column rank of matrices over fuzzy semiring and chain semirings which are
more general classes than the binary Boolean algebra.

2. Column rank versus maximal column
rank of matrices over chain semiring

A semiring is a binary system (S, +, × ) such that (S, +) is an Abelian
monoid (identity 0), (S, ×) is a monoid (identity 1), × distributes over +,
0 × s = s × 0 = 0 for all s in S and 1 6= 0. Usually S denotes both the
semiring and the set and × is denoted by juxtaposition.

Let Mm,n(S) denote the set of m×n matrices with entries in a semiring
S. The zero matrix 0m,n and the identity matrix In are defined as if S were
a field. Addition, multiplication by scalars, and the product of matrices are
also defined as if S were a field. Thus Mm,n(S) is a semiring under matrix
addition and multiplication. If V is a nonempty subset of Sk ≡Mk,1(S) that
is closed under addition and multiplication by scalars, then V is called a
vector space over S. The notions of subspace and of generating set are the
same as if S were a field. A set G of vectors over S is linearly dependent if
for some g ∈ G , g is in the subspace generated by G\{g}. Otherwise, G
is linearly independent. The maximal column rank, mc(A) = mcS(A), of an
m×n matrix A over S is the maximal number of the columns of A which are
linearly independent over S. As with fields, a basis for a vector space V is a
generating subset of the least cardinality. That cardinality is the dimension
, dim(V), of V. The column space of an m×n matrix A over S is the vector
space generated by its columns. The column rank, c(A) = cS(A), of an m×n
matrix A over S is the dimension of the column space. The semiring rank,
r(A) = rS(A), of a nonzero matrix A in Mm,n(S) is the least integer k such
that A = BC for some m × k and k × n matrices B and C over S. The
semiring rank, column rank and maximal column rank of the zero matrix
are 0.

It follows directly from the definitions that for all m × n matrices
A over S:

(2.1) 0 ≤ rS(A) ≤ cS(A) ≤ mcS(A) ≤ n.

The maximal column rank of a matrix may actually exceed its column rank
over some semirings. For example, see the matrix A in Example 2.1.
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Let S be any set of two or more elements. If S is totally odered by <, that
is, S is a chain under < (i.e. x < y or y < x for all distinct x, y in S),
then define x + y as max(x, y) and xy as min(x, y) for all x, y in S. If S
has a universal lower bound and a universal upper bound, then S becomes
a semiring: a chain semiring.

Let H be any nonempty family of sets nested by inclusion, 0 =
⋂

x∈H x,
and 1 =

⋃
x∈H x. Then S = H ∪ {0, 1} is a chain semiring. Let a, b be real

numbers with a < b. Define S = {r : a ≤ r ≤ b}. Then S is a chain
semiring with a = 0 and b = 1. It is isomorphic to the chain semiring in the
previous example with H = {[a, r] : a ≤ r ≤ b}. If in particular we choose
the real numbers 0 and 1 as a and b in H, then F = {r : 0 ≤ r ≤ 1, r is
real} is a fuzzy semiring and each m× n matrix over F is a fuzzy matrix.

Hereafter, otherwise specified, K will denote a chain semiring which is
not the binary Boolean algebra B, and all matrices will denote the m × n
matrices over K.

Since 1 is the only invertible member of the multiplicative monoid of
K, the permutation matrices (obtained by permuting the columns of In) are
the only invertible members of Mn,n(K).

It is already known that:

(2.2) The semiring rank of a nonzero matrix A is the minimum number of
semiring rank 1 matrices which sum to A ([2]).

(2.3) The column rank of a matrix over a chain semiring is unchanged by
pre- or post-multiplication by an invertible matrix. Furthermore, the
column rank of a 2× 2 matrix is unchanged by transposition ([5]).

If we take H in the above to be a singleton, say {a}, and denote the empty
subset by 0 and {a} by 1, the resulting chain semiring is merely the binary
Boolean algebra, and denoted by B.

Let α(S,m, n) be the largest integer k such that for all m× n matrices
A over S, c(A) = mc(A) if c(A) ≤ k.

In [1] Beasley and Pullman compared semiring rank with column rank
over several semirings. Similarly, we compare column rank with maximal
column rank over chain semiring and investigate the value α.
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Theorem 2.1 ([1]). Let µ(S,m, n) be the largest integer k such that for all
m× n matrices A over S, r(A) = c(A) if r(A) ≤ k. Then we have

(i) for any chain semiring K, we have

µ(K,m, n) =
{

2 if m ≥ 2 and n = 2,
1 otherwise.

(ii) for the binary Boolean algebra B,

µ(B,m, n) =





1 whenever min(m,n) = 1,
3 for all m ≥ 3 and n = 3,
2 otherwise.

We give the following example for Theorem 2.2.

Example 2.1. Let p be a nonzero nonunit element of K. Consider,

A =
(

1 0 p 1
0 1 0 p

)
.

Then mc(A) = 3, since the last three columns of A are linearly independent.
But c(A) = 2, since the first two columns generate the column space of A.

Lemma 2.1 ([4]). Over any semiring S, if mc(A) > c(A) for some p × q
matrix A, then for all m ≥ p and n ≥ q, α(S,m, n) < c(A).

Lemma 2.2. If the columns of A ∈Mm,n(K) are linearly independent, then
c(A) = n and mc(A) = n.

Proof. Let A = [a1, . . . ,an]. Then the column space of A is

V = {k1a1 + . . . + knan : ki ∈ K}.

Let G be any subset of V generating V. If a1 6∈ G, then a1 = k2a2+. . .+knan

for some ki ∈ K. Then the columns of A are not linearly independent, which
is a contradiction. Hence a1 is in G. Similarly, all the columns ai of A are
in G. Thus c(A) = n.
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Corollary 2.1 ([1]). If the columns of A ∈ Mm,n(B) are linearly indepen-
dent, then c(A) = n and mc(A) = n.

Theorem 2.2. Let K be a chain semiring. Then we have

α(K,m, n) =





3 if m = 2 and n = 3,
2 if m = n = 2,
1 otherwise.

Proof. Consider the matrix A in Example 2.1. Then by Lemma 2.1, we
may conclude that

α(K,m, n) ≤ 1 if m ≥ 2 and n ≥ 4.

Clearly we have that c(B) = 1 if and only if mc(B) = 1, for any matrix
B ∈Mm,n(K). Thus ,

α(K,m, n) = 1 if m ≥ 2 and n ≥ 4.

Suppose m = 2 and n = 3. If c(B) = 3, then mc(B) ≥ 3 by (2.1). Thus
mc(B) = 3. Conversely, if mc(B) = 3, then all the columns of B are linearly
independent. Thus c(B) = 3 by Lemma 2.2. If c(B) = 2, then mc(B) ≥ 2.
But mc(B) 6= 3 by above case. Thus mc(B) = 2. Conversely, if mc(B) = 2,
then c(B) ≤ 2. But c(B) 6= 1. Hence c(B) = 2. Therefore

α(K, 2, 3) = 3.

Suppose m = 2 and n = 2. Then we have that c(B) = 2 if and only if
mc(B) = 2. Hence

α(K, 2, 2) = 2.

It is trivial that α(K, 1, n) = 1 for all n ≥ 1 and α(K,m, 1) = 1 for all m ≥ 1.

Lemma 2.3. The maximal column rank of a matrix is unchanged by pre-
or post-multiplication by an invertible matrix. Furthermore, the maximal
column rank of a 2× 2 matrix is unchanged by transposition.

Proof. The results follow from Theorem 2.2 using (2.3).

Let jk denote the column vector of length k all of whose entries are 1, and
Jmn the m × n matrix all of whose entries are 1. When the orders are
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understood, we may drop the subscript on jk and Jmn. Let Eij be the m×n
matrix all of whose entries are 0 except the (i, j)th, which is 1.

We define the norm of an arbitrary X ∈ Mm,n(K) by ‖X‖ = jtXj, the
sum of all entries in X. That is, ‖X‖ is the maximum entry in X. Note the
mapping X → ‖X‖ preserves matrix addition and scalar multiplication.

Lemma 2.4 ([5]). Suppose

A =
(

a b
c d

)
.

Then c(A) = 2 if and only if ad 6= bc.

Lemma 2.5. Suppose

A =
(

a b
c d

)
.

Then mc(A) = 2 if and only if ad 6= bc.

Proof. We have that mc(A) = 2 if and only if c(A) = 2, by Theorem 2.2.
Thus the result follows from Lemma 2.4.

Lemma 2.6. If H is a submatrix of A, then mc(H) ≤ mc(A).

Proof. It is clear from the definition of maximal column rank.

3. Linear operators that preserve maximal column rank

over Mm,n(K)

A function T mappingMm,n(S) intoMm,n(S) is called an operator onMm,n(S).
The operator T

(i) is linear if T (αA + βB) = αT (A) + βT (B) for all α, β ∈ S and all
A, B ∈Mm,n(S),

(ii) preserves semiring rank h if, for any A ∈ Mm,n(S) with r(A) = h,
r(T (A)) = r(A),

(iii) preserves column rank k if, for any A ∈ Mm,n(S) with c(A) = k,
c(T (A)) = c(A),
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(iv) preserves maximal column rank l if, for any A ∈Mm,n(S) with mc(A) =
l, mc(T (A)) = mc(A),

(v) is a congruence operator if there exist invertible matrices U and V in
Mm,m(S) and Mn,n(S), respectively, such that T (A) = UAV for all
A ∈Mm,n(S)

(vi) is a transposition operator if m = n and T (A) = At for all A ∈
Mm,n(S).

In this section, we characterize the linear operators that preserve maximal
column rank over Mm,n(K).

Lemma 3.1. Congruence operators on Mm,n(K) are linear, are bijective,
and preserve all maximal column ranks.

Proof. Linearity follows from the linearity of matrix multiplication. The
others follow from Lemma 2.3.

Hereafter, we shall adopt the convention m ≤ n, and the set of matrices of
maximal column rank 1 over a fixed chain semiring K is denoted by C1. Two
maximal column rank 1 matrices A, B are said to be separable if there is a
matrix X with mc(X) = 1 such that either 1 = mc(A+X) < mc(B +X) or
1 = mc(B + X) < mc(A + X). In this case, X is said to separate A from B.
Using Theorem 2.2 we can apply some results in [5] for column rank 1
matrices to those for maximal column rank 1 matrices. Thus we obtain the
following Theorem 3.1 by the analogue proof of that in [5].

Theorem 3.1. Distinct maximal column rank 1 matrices are separable if
and only if at least one of them is not a scalar multiple of J.

The symbol ≤ is read entrywise, i.e. X ≤ Y if and only if xij ≤ yij for all
(i, j). We recall that the norm of a matrix A, ‖A‖, is the maximum entry
in A.

Lemma 3.2 ([2]). If T is a linear operator onMm,n(K), m > 1, T preserves
norm, and A ≤ T (A), then T q(A) = Tmn−1(A) for all q ≥ mn.

Lemma 3.3. Let T be a linear operator on Mm,n(K) with m > 1. If T
preserves norm and maximal column rank 1 but is not injective on C1, then
T reduces the maximal column rank of some matrix from k(≥ 2) to 1.
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Proof. Since T is not injective on C1, T (A) = T (B) for some A, B in C1

with A 6= B. If A = αJ and B = βJ , then α = β because T preserves norm,
contradicting our assumption that A 6= B. Therefore by Theorem 3.1, some
matrix X of maximal column rank 1 separates A from B. Say, mc(X +A) =
1 and mc(X + B) = k ≥ 2. Since

T (X + B) = T (X) + T (B) = T (X) + T (A) = T (X + A),

T reduces the maximal column rank of X + B from k to 1.

We say that a linear operator T on Mm,n(K) strongly preserves maximal
column rank 1, provided that mc(X) = 1 if and only if mc(T (X)) = 1 for
X ∈Mm,n(K).

Lemma 3.4. If T is a linear operator on Mm,n(K) with m > 1, and T
strongly preserves maximal column rank 1, then T preserves norm.

Proof. Let A ∈ Mm,n(K), α = ‖A‖ and β = ‖T (A)‖; then A = αA and
β = ‖T (A)‖ = ‖T (αA)‖ = α‖T (A)‖ ≤ α. Suppose β < α. Then for some
(i, j), aij = α. Let Y be the matrix whose entries are all α except for
yij = 0. Then αJ = A + Y . So mc(A + Y ) = 1. Since mc(βA + Y ) ≥ 2
by Lemma 2.5 and Lemma 2.6, but mc(βA + Y ) ≤ 2 by construction, we
have mc(βA + Y ) = 2. By the linearity of T and the definition of β, we
have T (βA) = βT (A) = T (A). Hence T (βA + Y ) = T (βA) + T (Y ) =
T (A)+T (Y ) = T (A+Y ) = αT (J). So T reduces the maximal column rank
of βA + Y from 2 to 1, contrary to our hypothesis. Thus T preserves norm.

Lemma 3.5. Suppose T is a linear operator on Mm,n(K) with m > 1. If
T strongly preserves maximal column rank 1, then T permutes Γ, where
Γ = {Eij : 1 ≤ i ≤ m, 1 ≤ j ≤ n}

Proof. By Lemma 3.4, T preserves norm. Therefore by Lemma 3.3, T is
injective on C1. Suppose T (Epq) is not in Γ for some (p, q). Now T (Epq) =∑

τijEij , for some τij . But ‖T (Epq)‖ = 1, so τuv = 1 for some (u, v).
Without loss of generality, we may assume that (u, v) = (p, q), because if
P, Q are permutation matrices, then the linear operator X → PT (X)Q
preserves the maximal column rank that T preserves by Lemma 2.3 and
the linear operator permutes Γ if and only if T does. Let E = Epq. Then
E ≤ T (E), so E 6= T (E) ≤ T 2(E) ≤ · · · ≤ T k(E) = T k+h(E), where k is the
least integer for which equality holds and h ≥ 0 is arbitrary. By Lemma 3.2,
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we are assured that k exists and is less than mn. Let B = T k−1(E). Then
B 6= T (B) but T (B) = T (T (B)), despite the fact that B, T (B) are both in
C1 and T is injective on C1. This contradiction implies that T maps Γ into
Γ. By injectivity, T permutes Γ.

Let B be the two element subsemiring {0, 1} of K, and α be a fixed
member of K, other than 1. For each x in K define xα = 0 if x ≤ α, and
xα = 1 otherwise. Then the mapping x → xα is a homomorphism of K
onto B . Its entrywise extension to a mapping A → Aα of Mm,n(K) onto
Mm,n(B) preserves matrix sum and product and multiplication by scalars.
We call Aα the α-pattern of A.

Example 3.1. For a nonzero nonunit p ∈ K, consider

A =




1 1 0
1 p 1
p p p


 .

Then mc(A) = 3, because all the three columns of A are linearly indepen-
dent. But mc(At) = 2 since the second column of At generates the third
column of it. Consider B = A⊕ 0m−3,m−3 for all m ≥ 3. If T is a transposi-
tion operator over Mm,m(K), then T (B) = Bt has maximal column rank 2
while mc(B) = 3. Thus a transposition operator does not preserve maximal
column rank 3.

For our purpose, we write some known results as follows.

Lemma 3.6 (i) ([2]) . Suppose T is a linear operator on Mm,n(K) with
m ≥ 1. Then T is bijective and preserves semiring rank 1 if and only if
it is in the group of operators generated by congruence and transposition
operators.

(ii) ([4]) Suppose T is a linear operator on Mm,n(B) with m ≥ 4. Then
T preserves maximal column ranks 1, 2 and 3 if and only if it is a congruence
operator. Moreover the transposition operator onMm,m(B) does not preserve
maximal column rank 3 for m ≥ 4.

We say that an m × n matrix X is a column matrix if X = x(ei)t for
some x ∈ Sm and ei ∈ Sn, where ei is the vector with 1 in the ith position
and 0 elsewhere.
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Theorem 3.2. Suppose T is a linear operator on the m× n matrices over
a chain semiring K, where m ≥ 2 and n ≥ 3. If T strongly preserves
maximal column rank 1, and it preserves maximal column rank 3, then T is
a congruence operator.

Proof. Let M̄ =Mm,n(B). Lemma 3.5 and linearity imply that T maps M̄
into itself. Let T̄ denote the restriction of T to M̄. From the definition of
maximal column rank, the maximal column rank mcB(X) of a member X of
M̄ is at least mcK(X), its maximal column rank as a member of Mm,n(K),
because B ⊆ K. On the other hand, the mapping that takes a matrix A in
Mm,n(K) to its 0-pattern A0 in M̄ preserves matrix sums and multiplication
by scalars. Hence mcB(X) = mcK(X) for all X in M̄. Therefore T̄ strongly
preserves maximal column rank 1, and it preserves maximal column rank 3.

Case 1 (m ≥ 4). Since T̄ also permutes Γ by Lemma 3.5 and it strongly
preserves maximal column rank 1, T̄ must map a column matrix to either a
column matrix or transpose of a column matrix if m = n ≥ 4. For the latter
case, T̄ is a composition of a transposition operator and pre-multiplication
by a permutation matrix. Since transposition operator cannot preserve max-
imal column rank 3 by Lemma 3.6 (ii), T̄ must map a column matrix to a
column matrix. Thus the linearity of T̄ implies that mcB(T̄ (X)) ≤ mcB(X)
for all X in M̄. In particular, T̄ preserves maximal column rank 2. Hence T̄
is a congruence operator on M̄ by Lemma 3.6 (ii). Then T̄ (X) = UXV for
some invertible matrices U of order m and V of order n. Notice that the ma-
trices U , V are also invertible inMm,n(K); in fact, they are just permutation
matrices. Let A ∈Mm,n(K). Then T (A) =

∑
aijT (Eij) =

∑
aijT̄ (Eij), be-

cause each Eij is in M̄. Since T̄ (Eij) = UEijV for all i, j, by definition of
congruence operator, the result follows directly from the linearity of matrix
multiplication.

Case 2 (n = 3 and 2 ≤ m ≤ 3). Theorem 2.2 guarantees that T̄
strongly preserves column rank 1. Note that mcB(X) = 3 if and only if
cB(X) = 3 by Corollary 2.1 and (2.1). Hence it preserves column rank 3,
because if cB(X) = 3, then 3 = mcB(X) = mcB(T̄ (X)) = cB(T̄ (X)). Also,
T̄ strongly preserves semiring rank 1 and it preserves semiring rank 3, by
Theorem 2.1 (ii). If rB(X) = 2 for X ∈ M̄, then X can be factored as a sum
of two matrices X1 and X2 in M̄ whose semiring ranks are 1, by (2.2). Thus
T̄ (X) = T̄ (X1) + T̄ (X2) has semiring rank two or less. Since T̄ strongly
preserves semiring rank 1, rB(T̄ (X)) = 2. That is, T̄ preserves semiring
rank 2. Therefore T̄ is in the group of operators generated by congruence
(and if m = n = 3, also the transposition) operators by Lemma 3.6 (i). Let
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A ∈ Mm,3(K). Then T (A) =
∑

aijT (Eij) =
∑

aijT̄ (Eij), since each Eij

is in M̄. By similar argument as in case 1, there are permutation matrices
U of order m and V of order n such that in the case n = 3 and m = 2,
T (A) = UAV , while in the case m = n = 3, T (A) is either UAV or UAtV .
However, since transposition operator does not preserve maximal column
rank 3 by Example 3.1, we see that in fact, T must be a congruence operator.

Theorem 3.3. Suppose T is a linear operator on the m× n matrices over
a chain semiring with m ≥ 2 and n ≥ 3. Then the following statements are
equivalent:

(i) T preserves all maximal column ranks.
(ii) T strongly preserves maximal column rank 1 and it preserves maximal

column rank 3.
(iii) T is a congruence operator.
(iv) T is bijective and preserves maximal column ranks 1 and 3.

Proof. It is obvious that (i) implies (ii). Theorem 3.2 establishes that
(ii) implies (iii). According to Lemma 3.1, (iii) implies (i) and (iv). If T
satisfies (iv), then T is in the group of operators generated by congruence
and transposition operators by Lemma 3.6 (i) and Theorem 2.2. Since the
transposition operator does not preserve maximal column rank 3, T must
be a congruence operator. Therefore, (iv) implies (iii).

How necessary is it that m ≥ 2 and n ≥ 3 ? If m ≤ 2 and n ≤ 3, then
a linear operator that preserves all maximal column ranks is the same as
a linear operator that preserves all column ranks by Theorem 2.2. The
characterizations of the column rank preservers were obtained in [5]. Thus
we have characterizations of the linear operators that preserve the maximal
column rank of matrices over a chain semiring and in particular, of fuzzy
matrices.
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