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Abstract

A hypersubstitution of a fixed type τ maps n-ary operation symbols
of the type to n-ary terms of the type. Such a mapping induces a
unique mapping defined on the set of all terms of type τ . The kernel
of this induced mapping is called the kernel of the hypersubstitution,
and it is a fully invariant congruence relation on the (absolutely free)
term algebra Fτ (X) of the considered type ([2]). If V is a variety
of type τ, we consider the composition of the natural homomorphism
with the mapping induced by a hypersubstitution. The kernel of this
mapping is called the semantical kernel of the hypersubstitution with
respect to the given variety. If the pair (s, t) of terms belongs to the
semantical kernel of a hypersubstitution, then this hypersubstitution
equalizes s and t with respect to the variety. Generalizing the concept
of a unifier, we define a semantical hyperunifier for a pair of terms with
respect to a variety. The problem of finding a semantical hyperunifier
with respect to a given variety for any two terms is then called the
semantical hyperunification problem.

We prove that the semantical kernel of a hypersubstitution is a
fully invariant congruence relation on the absolutely free algebra of
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the given type. Using this kernel, we define three relations between
sets of hypersubstitutions and sets of varieties and introduce the
Galois correspondences induced by these relations. Then we apply
these general concepts to varieties of semigroups.

Keywords: hypersubstitution, fully invariant congruence relation,
hyperunification problem.
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1. Introduction

Let {fi | i ∈ I} be an indexed set of operation symbols of type τ = (ni)i∈I ,
where fi is ni-ary for ni ∈ IN\{0}, and let Wτ (X) be the set of all terms built
up from elements of the alphabet X = {x1, x2, . . .} and operation symbols
from {fi | i ∈ I}. An arbitrary mapping

σ : {fi|i ∈ I} −→ Wτ (X)

which preserves the arity, that is, which maps every ni-ary operation symbol
of type τ to an ni-ary term of the same type, is called a hypersubstitution of
type τ . Any hypersubstitution σ induces a mapping

σ̂ : Wτ (X) → Wτ (X)

in the following inductive way:

(i) σ̂[xi] := xi ∈ X,

(ii) σ̂[fi(t1, . . . , tni)] := σ(fi)(σ̂[t1], . . . , σ̂[tni ]).

The right hand side of (ii) is the superposition of the term σ(fi) with the
terms σ̂[t1], . . . , σ̂[tni ]. This extension is uniquely determined and allows us
to define a multiplication, denoted by ◦h, on the set Hyp(τ) of all hyper-
substitutions of type τ , by

σ1 ◦h σ2 = σ̂1 ◦ σ2,

where ◦ is the usual composition of functions. This multiplication is associa-
tive, and if we denote by σid the identity hypersubstitution which maps each
ni-ary operation symbol fi to the term fi(x1, . . . , xni), we obtain a monoid
(Hyp(τ); ◦h, σid).

Hypersubstitutions can be used to define the concept of a hyperidentity
in a variety V of algebras of type τ. An equation s ≈ t consisting of terms
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of type τ forms a hyperidentity in V if for all σ ∈ Hyp(τ) the equations
σ̂[s] ≈ σ̂[t] are satisfied as identities in V . The identity s ≈ t is called an
S-hyperidentity of V , for some subset S⊆Hyp(τ), if σ̂[s] ≈ σ̂[t] are identities
of V for all σ ∈ S. A variety V is called S-solid if every identity in V is an
S-hyperidentity of V. In the special case that S = Hyp(τ), we speak of a
hyperidentity of the variety V and of a solid variety. For more information
on hyperidentities and solidity, we refer the reader to [4].

If σ is a hypersubstitution of type τ , it is very natural to ask for its
kernel,

ker σ := {(t, t′)|t, t′ ∈ Wτ (X) and σ̂[t] = σ̂[t′]}.
By definition, the kernel of a hypersubstitution is an equivalence relation
on the set Wτ (X). In fact this kernel turns out to be a fully invariant
congruence.

Proposition 1.1 ([4]). The kernel of a hypersubstitution σ of type τ is a
fully invariant congruence relation on the absolutely free algebra Fτ (X) =
(Wτ (X); (f i)i∈I) (where the operations f i are defined by

f i : Wτ (X)ni −→ Wτ (X) with f i(t1, . . . , tni) := fi(t1, . . . , tni)).

Let V be an arbitrary variety of algebras of type τ and let IdV be the set
of all identities satisfied in V . Then we generalize the concept of a kernel of
a hypersubstitution of type τ in the following way:

Definition 1.2. The set

kerV σ := {(t, t′) | t, t′ ∈ Wτ (X) and σ̂[t] ≈ σ̂[t′] ∈ IdV }
will be called the kernel of σ with respect to V or the semantical kernel of
σ. The kernel kerσ of a hypersubstitution σ will be called the syntactical
kernel.

It is well known that the variety Alg(τ) of all algebras of type τ has the
property that an identity s ≈ t holds in it iff s = t. This means that the
syntactical kernel is in fact the semantical kernel with respect to the variety
Alg(τ).

For the solution of the word problem in a variety V , the concept of
a unifier is important. A substitution is any mapping s : X −→ Wτ (X),
and any such substitution has a unique extension s̄ : Wτ (X) −→ Wτ (X).
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A substitution s for which s(t) ≈ s(t′) is an identity in V is called a unifier
for t and t′ with respect to the variety V . If V is the variety of all algebras
of type τ, this happens only if s(t) = s(t′), and in this case we call s a
syntactical unifier for t and t′. To solve the unification problem (see [6])
means to decide whether for two given terms there exists a unifier or not.
The concept of a unifier can be generalized to the concept of a hyperunifier
and the unification problem to the hyperunification problem, by considering
hypersubstitutions instead of substitutions.

Definition 1.3. Let V be a variety of type τ . A hypersubstitution σ ∈
Hyp(τ) is called a hyperunifier with respect to V for the terms t, t′ ∈ Wτ (X)
if σ̂[t] ≈ σ̂[t′] ∈ IdV , that is if (t, t′) ∈ kerV σ. When such a hyperunifier
exists, the terms t and t′ are called hyperunifiable in the variety V . If V is
the variety Alg(τ) of all algebras of type τ , the unifier is called a syntactical
hyperunifier, otherwise it is called a semantical hyperunifier.

The semantical hyperunification problem for a variety V is then the problem
of deciding, for any two distinct terms, whether the terms are hyperunifiable
in V or not. Since by definition our kerV σ is the set of all pairs of terms for
which σ is a semantical hyperunifier with respect to the variety V , we can
use such kernels in solving the semantical hyperunification problem.

When a hyperunifier exists for two terms, we want to compare all such
hyperunifiers. In order to do this, we use the product ◦h to define a binary
relation on Hyp(τ):

Definition 1.4. Let σ1 and σ2 be hypersubstitutions of type τ . Then σ1 ¹
σ2 if there is a hypersubstitution λ of type τ such that σ1 = λ ◦h σ2.

Clearly, the relation ¹ is reflexive (using the identity hypersubstitution σid)
and transitive (since the product of two hypersubstitutions of type τ is again
a hypersubstitution of type τ). The intersection of a reflexive and transitive
relation (that is, a quasiorder) with its inverse relation gives an equivalence
relation on Hyp(τ), defined by

σ1 ' σ2 :⇐⇒ σ1 ¹ σ2 and σ2 ¹ σ1.

This relation is the well-known Green’s relation L, which is a right congru-
ence on the monoid Hyp(τ) (see [3]).

Now we can define a relation ≤ on the quotient set Hyp(τ)/ ' by setting

[σ1]' ≤ [σ2]' :⇐⇒ σ1 ¹ σ2.
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It is well-known and easy to check that this definition gives an order relation
on Hyp(τ)/ '.

Using the quasiorder ¹ on the set Hyp(τ) one can also generalize the
concept of a most general unifier of the terms t and t′ to the concept of a
most general hyperunifier of t and t′:

Definition 1.5. Let t and t′ be two terms of type τ and let σ1 and σ2 be
two hyperunifiers of t and t′. Then σ1 is more general than σ2 if σ1 ¹ σ2. A
hyperunifier σ of t and t′ is called a most general (or minimal) hyperunifier
of t and t′ if σ ¹ σ′ for all hyperunifiers σ′ of t and t′.

2. The semantical kernel of a hypersubstitution

The syntactical kernel is the (semantical) kernel with respect to the variety
Alg(τ) of all algebras of type τ . The semantical and syntactical kernels
are closely related to each other. Let Fτ (X) be the absolutely free algebra
of type τ and let FV (X) be the relatively free algebra with respect to the
variety V of type τ . We denote by natIdV the natural homomorphism

natIdV : Fτ (X) −→ FV (X)

which maps each term t of type τ to the class [t]IdV . Then we have:

Proposition 2.1. Let V be a variety and σ a hypersubstitution, both of type
τ . Then

kerV σ = ker(natIdV ◦ σ̂).

Proof. For any terms t and t′, we have

(t, t′) ∈ ker(natIdV ◦ σ̂) ⇐⇒ (natIdV ◦ σ̂)(t) = (natIdV ◦ σ̂)(t′)

⇐⇒ natIdV (σ̂[t]) = natIdV (σ̂[t′]) ⇐⇒ [σ̂[t]]IdV = [σ̂[t′]]IdV

⇐⇒ σ̂[t] ≈ σ̂[t′] ∈ IdV ⇐⇒ (t, t′) ∈ kerV σ.

Proposition 2.2. For any type τ , the semantical kernel of the hypersubsti-
tution σ with respect to the variety V is a congruence relation on Fτ (X).
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Proof. Clearly, kerV σ is an equivalence relation on Fτ (X). Assume that
fi is an ni-ary operation symbol of type τ and that (tj , t′j) ∈ kerV σ for
j = 1, . . . , ni. Then σ̂[tj ] ≈ σ̂[t′j ] ∈ IdV for j = 1, . . . , ni. It follows
from this (by induction on the complexity of terms) that t(σ̂[t1], . . . , σ̂[tni ])
≈ t(σ̂[t′1], . . . , σ̂[t′ni

]) ∈ IdV for any ni-ary term t, and in particular that
σ(fi)(σ̂[t1], . . . , σ̂[tni ]) ≈ σ(fi)(σ̂[t′1], . . . , σ̂[t′ni

]) ∈ IdV . This means that
σ̂[fi(t1, . . . , tni)] ≈ σ̂[fi(t′1, . . . , t

′
ni

)] ∈ IdV , and (fi(t1, . . . , tni), fi(t′1, . . . t
′
ni

))
∈ kerV σ.

Since the composition natIdV ◦ σ̂ is not a homomorphism from Fτ (X)
to FV (X), we could not use for the proof the fact that the kernel of a
homomorphism is a congruence relation.

Moreover, the kernels of semantical hypersubstitutions are fully invari-
ant congruence relations. To prove this, we will use the fact that any sub-
stitution s : X −→ Wτ (X) can be uniquely extended to an endomorphism
s̄ : Fτ (X) −→ Fτ (X), defined by

s̄(fi(t1, . . . , tni)) = fi(s̄(t1), . . . , s̄(tni)).

Using induction on the complexity of the term t = f(r1, . . . rn), it can be
shown that this last equation is valid for arbitrary terms as well as for the
operation symbol fi, so that

s̄(t(t1, . . . , tni)) = t(s̄(t1), . . . , s̄(tni))

for every term t. Here t(t1, . . . , tni) means the composition (superposition)
of terms.

Theorem 2.3. Let σ be a hypersubstitution of type τ = (ni)i∈I , with ni ≥ 1
for all i ∈ I. Then kerV σ is a fully invariant congruence relation on the
absolutely free algebra Fτ (X).

Proof. By Proposition 2.2 we only have to show that kerV σ is fully in-
variant. Let s : X −→ Wτ (X) be a substitution and let s̄ be its extension.
Consider a mapping s∗ : X −→ Wτ (X) defined by s∗(x) := σ̂[s(x)] for every
x ∈ X. Since s∗ is also a substitution, it can be uniquely extended to an
endomorphism s̄∗ : Fτ (X) −→ Fτ (X).

We show by induction on the complexity of a term t that

(∗) s̄∗(σ̂[t]) = σ̂[s̄(t)]
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for every t ∈ Wτ (X). First, if t = x ∈ X is a variable then s̄∗(σ̂[x]) = s̄∗(x) =
s∗(x) = σ̂[s(x)] = σ̂[s̄(x)] by the definition of s∗. Now let t = fi(t1, . . . , tni)
and suppose that s̄∗(σ̂[tj ]) = σ̂[s̄(tj)] for j = 1, . . . , ni. Then

s̄∗(σ̂[t]) = s̄∗(σ(fi)(σ̂[t1], . . . , σ̂[tni ])) = σ(fi)(s̄∗(σ̂[t1]), . . . , s̄∗(σ̂[tni ]))

= σ(fi)(σ̂[s̄(t1)], . . . , σ̂[s̄(tni)]) = σ̂[s̄(fi(t1, . . . , tni))] = σ̂[s̄(t)].

Now let (t, t′) ∈ kerV σ, and let s be any substitution. Then σ̂[t] ≈ σ̂[t′] ∈
IdV . Since IdV is a fully invariant congruence relation on Fτ (X), we have

s̄∗(σ̂[t]) ≈ s̄∗(σ̂[t′]) ∈ IdV,

and by (∗)
σ̂[s̄(t)] ≈ σ̂[s̄(t′)] ∈ IdV.

This means that (s̄(t), s̄(t′)) ∈ kerV σ, and hence kerV σ is fully invariant.

Since kerV σ is fully invariant, it is an equational theory and therefore there is
a variety V ′ of type τ for which kerV σ = IdV ′. It is natural then to compare
the varieties V and V ′, or dually the sets of identities IdV and kerV σ. We
will consider the possibilities that kerV σ = IdV , that kerV σ ⊆ IdV and
that kerV σ ⊇ IdV . These possibilities define three relations and three
Galois correspondences which we will study in the next section.

3. Three Galois correspondences

Let W be a given variety of type τ . We will denote by L(W ) the subvariety
lattice of W . In this section we define and study three relations KER,
R and R′ between Hyp(τ) and L(W ), based on the relationship between
kerV σ and IdV . We also study the three Galois correspondences, between
sets of hypersubstitutions and collections of varieties, induced by these three
relations. Note that in order to compare kernels and sets of identities of the
form IdV , we shall regard IdV as a set consisting of pairs of terms of type
τ , by identifying the identity p ≈ q with the pair (p, q) ∈ Wτ (X)2.

Definition 3.1. Let KER ⊆ Hyp(τ)× L(W ) be the relation defined by

(σ, V ) ∈ KER : ⇔ kerV σ = IdV.
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In [1] the binary relation R ⊆ Hyp(τ)× L(W ) defined by

(σ, V ) ∈ R : ⇔ σ[V ] ⊆ V

was considered. The set σ[V ] is defined as the set of all algebras which
are derived from algebras from V , using the hypersubstitution σ. If A =
(A; (fi)i∈I) is an algebra, then the algebra σ(A) = (A; σ(fi)i∈I) of the same
type and having the same universe A is called a derived algebra of A. Hy-
persubstitutions satisfying σ[V ] ⊆ V are called V -proper hypersubstitutions.
For more background see [4].

When σ[V ] ⊆ V, then Idσ[V ] ⊇ IdV , which means that if s ≈ t ∈
IdV , then s ≈ t ∈ Id σ[V ] and σ̂[s] ≈ σ̂[t] ∈ IdV , using the so-called
“conjugate property” (see [4]). But this means IdV ⊆ kerV σ. Conversely,
from IdV ⊆ kerV σ, we get σ[V ] ⊆ V . Altogether we see that the relation
R ⊆ Hyp(τ)× L(W ) can also be defined by

(σ, V ) ∈ R : ⇔ IdV ⊆ kerV σ.

We define a third relation by

Definition 3.2. Let R′ ⊆ Hyp(τ)× L(W ) be the relation defined by

(σ, V ) ∈ R′ : ⇔ kerV σ ⊆ IdV.

This means that (σ, V ) ∈ R′ if and only if whenever σ̂[s] ≈ σ̂[t] ∈ IdV , it
must be that s ≈ t ∈ IdV .

Directly from the definitions, we obtain

KER = R ∩R′.

Each of these three relations defines a Galois correspondence between the
sets Hyp(τ) and L(W ). Let S be a subset of Hyp(τ) and let L be a subset
of L(W ). In [1], the Galois correspondence induced by the relation R was
defined as the pair (η, θ) with

η : P(Hyp(τ)) −→ P(L(W )), θ : P(L(W )) −→ P(Hyp(τ)),

defined by

η(S) := {V ∈ L(W ) | ∀σ ∈ S((σ, V ) ∈ R)} and

θ(L) := {σ ∈ Hyp(τ) | ∀V ∈ L((σ, V ) ∈ R)}.
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Now we define two more Galois correspondences (α, β) and (γ, δ), for the
other two relations. We have

α : P(Hyp(τ)) −→ P(L(W )), β : P(L(W )) −→ P(Hyp(τ)), with

α(S) := {V ∈ L(W ) | ∀σ ∈ S((σ, V ) ∈ R′)} and

β(L) := {σ ∈ Hyp(τ) | ∀V ∈ L((σ, V ) ∈ R′)};
and

γ : P(Hyp(τ)) −→ P(L(W )), δ : P(L(W )) −→ P(Hyp(τ)), with

γ(S) := {V ∈ L(W ) | ∀σ ∈ S((σ, V ) ∈ KER)} and

δ(L) := {σ ∈ Hyp(τ) | ∀V ∈ L((σ, V ) ∈ KER)}.
The following result was proved in [1].

Proposition 3.3 ([1]). For any subset L of L(W ) and for any subset S of
Hyp(τ), the image θ(L) is a submonoid of Hyp(τ) and the image η(S) is a
sublattice of L(W ).

It is easy to see that the lattice η(S) is in fact a complete sublattice of L(W ).
We want to check now whether images under β and δ are also submonoids
of Hyp(τ), and whether images under α and γ are also sublattices of L(W ).
The following consequence of the fact that KER = R ∩R′ will be useful.

Proposition 3.4. For every subset S ⊆ Hyp(τ) and every subset L ⊆
L(W ), the operators γ, η, α, δ, θ and β satisfy

γ(S) = η(S) ∩ α(S) and δ(L) = θ(L) ∩ β(L).

For a singleton set {V } consisting of one variety, the monoid θ({V }) is
just the monoid of V -proper hypersubstitutions, usually denoted by P (V )
(see [5]). PÃlonka also defined another monoid P0(V ) associated with V , the
monoid of all inner hypersubstitutions. We will show that for single varieties
our other two images, δ({V }) and β({V }), are also monoids, and in analogy
with P (V ) we will call them P1(V ) and P2(V ), respectively.

Proposition 3.5. Let W be a variety of type τ and let V ∈ L(W ). Then
β({V }) and δ({V }) are submonoids of Hyp(τ).
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Proof. From Proposition 3.4, we get P1(V ) = P (V ) ∩ P2(V ). Since P (V )
is a submonoid of Hyp(τ) by Proposition 3.3, we only have to show that
P2(V ) is a submonoid of Hyp(τ). Let σ1 and σ2 be in P2(V ), so that
(σ1, V ), (σ2, V ) ∈ R′. Then kerV σ1 ⊆ IdV and kerV σ2 ⊆ IdV . Therefore
for every pair (s, t) of terms of type τ we have:

σ̂1[s] ≈ σ̂1[t] ∈ IdV =⇒ s ≈ t ∈ IdV and σ̂2[s] ≈ σ̂2[t] ∈ IdV =⇒ s ≈ t ∈ IdV.

Then

σ̂1[σ̂2[s]] ≈ σ̂1[σ̂2[t]] ∈ IdV =⇒ σ̂2[s] ≈ σ̂2[t] ∈ IdV =⇒ s ≈ t ∈ IdV

and thus σ1 ◦h σ2 ∈ P2(V ). It is clear that σid ∈ P2(V ).

Now our claim holds for arbitrary subsets L of L(W ), since β(L) is the
intersection of β({V }) for all V ∈ L, and similarly for δ. This shows that
for all three maps, any images under the maps are submonoids of Hyp(τ).
Now we turn to the dual maps α and γ, to see if their images are always
sublattices. The following lemma will help us to answer this question.

Lemma 3.6. Let σ be a hypersubstitution of type τ and let V1, V2 be
varieties of type τ . Then

ker(V1∨V2)σ = kerV1σ ∩ kerV2σ.

Proof. Using the definition and the fact that Id(V1 ∨ V2) = IdV1 ∩ IdV2,
we see that
ker(V1∨V2)σ = {(s, t) | σ̂[s] ≈ σ̂[t] ∈ Id(V1 ∨ V2)}

= {(s, t) | σ̂[s] ≈ σ̂[t] ∈ IdV1} ∩ {(s, t) | σ̂[s] ≈ σ̂[t] ∈ IdV2}
= kerV1σ ∩ kerV2σ.

Let ConinvFτ (X) be the lattice of all fully invariant congruence relations
on the absolutely free algebra Fτ (X) of type τ . Since the kernels of hyper-
substitutions are elements of the lattice ConinvFτ (X), we may consider a
mapping

ϕ : L(Alg(τ))×Hyp(τ) −→ ConinvFτ (X),

which associates to each hypersubstitution σ and to each variety V of the
type τ the kernel kerV σ. If we fix the hypersubstitution σ, the resulting
mapping on L(Alg(τ)) is anti-isotone.
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Corollary 3.7. If V1 ⊆ V2 are varieties of type τ and if σ is a hypersubsti-
tution of the same type, then kerV2σ ⊆ kerV1σ.

Proof. V1 ⊆ V2 gives V1 ∨ V2 = V2, so by the previous Lemma we get
kerV2σ = ker(V1∨V2)σ = kerV1σ ∩ kerV2σ, and then kerV2σ ⊆ kerV1σ.

Let TR be the trivial variety of type τ . It is easy to see that for any
hypersubstitution σ, we have kerTRσ equal to the set Wτ (X)2 of all identities
of type τ , and equal to IdTR. Since TR ⊆ V ⊆ Alg(τ) for any variety V of
type τ , we have kerAlg(τ)σ = kerσ ⊆ kerV σ ⊆ kerTRσ. This means that the
syntactical kernel of a hypersubstitution is always a subset of any semantical
kernel of that hypersubstitution.

The mapping ϕ defined above is also surjective: for any fully invariant
congruence relation Σ of Fτ (X), there is a variety V such that Σ = IdV
and a hypersubstitution, namely σid, for which IdV = kerV σid.

Now we can prove the following.

Theorem 3.8. Let W be a variety of type τ . Then for any subset S of
Hyp(τ), the images α(S) and γ(S) are complete join-subsemilattices of
L(W ).

Proof. Let V1, V2 ∈ α(S). Then for all σ ∈ S we have kerV1σ ⊆ IdV1 and
kerV2σ ⊆ IdV2, so that kerV1σ ∩ kerV2σ ⊆ IdV1 ∩ IdV2 = Id(V1 ∨ V2). The
same argument extends to any family of varieties in L(W ), showing that
α(S) is closed under arbitrary joins of varieties in L(W ). The same proof,
but with set inclusion replaced by equality, holds for γ(S). (But the result
for γ(S) is also a consequence of the result for α and Proposition 3.4.)

We now present a counterexample showing that γ(S) (and hence by Propo-
sition 3.4 also α(S)) is not in general a sublattice of L(W ). We consider
the type τ = (2), the two-element alphabet X2 = {x1, x2} and the hy-
persubstitution σ which maps the binary operation symbol f to the term
f(x1, f(x1, x2)). Instead of f(x1, x2) we will write x1x2. We denote by 〈σ〉
the submonoid of Hyp(2) generated by σ. If Σ is a set of equations of type
(2), we set χ〈σ〉[Σ] to be the set {σ̂′[s] ≈ σ̂′[t] | s ≈ t ∈ Σ and σ′ ∈ 〈σ〉}.
Clearly, classes of the form Modχ〈σ〉[Σ] are 〈σ〉-solid varieties.
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We define two varieties U1 and U2 of type (2), by

U1 := Modχ〈σ〉[{x1(x1x2) ≈ ((x1x1)x1)x2}],

U2 := Modχ〈σ〉[{x1(x1(x1(x1x2))) ≈ ((x1x1)x1)x2}].
We need the following preliminary Lemma.

Lemma 3.9. With σ, U1 and U2 as defined above,

kerU1σ = IdU1 and kerU2σ = IdU2.

Proof. Since U1 and U2 are 〈σ〉-solid, we have only to show that kerUiσ ⊆
IdUi for i = 1, 2. We will do this only for U1, since the proof for U2 is
similar. We make the following observations regarding identities of U1:

1 Every nontrivial identity σ̂[s] ≈ σ̂[t] in U1 can be derived from
the set χ〈σ〉\{σid}[{x1(x1x2) ≈ ((x1x1)x1)x2}], since no subterm of σ̂[s] or
of σ̂[t] has the form ((x1x1)x1)x2. We set U ′ := Modχ〈σ〉\{σid}[{x1(x1x2)
≈ ((x1x1)x1)x2}].

2 Let W(X) denote the set of all terms of type (2), then let σ[W (X)]
be the set of all σ̂[w] with w ∈ W (X). We show by induction on the
complexity of the term w that for all ψ : X −→ W (X) and all w ∈ W (X),
and all x1 ∈ X,

(ψ̄(x1) 6∈ σ[W (X)] =⇒ ψ̄(σ̂[w]) 6∈ σ[W (X)]).

Here ψ̄ is the unique extension of ψ to the set W (X). First, if w = x1 ∈ X,
then ψ̄(σ̂[w]) = ψ̄(x1) 6∈ σ[W (X)].

Inductively, assume that w = f(w1, w2) and that w1, w2 satisfy the
implication. Then ψ̄(σ̂[f(w1, w2)]) = ψ̄(f(σ̂[w1], f(σ̂[w1], σ̂[w2]))) =
f(ψ̄(σ̂[w1]), f(ψ̄(σ̂[w1]), ψ̄(σ̂[w2]))), where ψ̄(σ̂[w1]) 6∈ σ[W (X)] or
ψ̄(σ̂[w2]) 6∈ σ[W (X)]. This shows that ψ̄(σ̂[f(w1, w2)]) 6∈ σ[W (X)].

3 Because of 2, we can modify the substitution rule in our case to

s ≈ t ∈ IdU1 and ψ : X −→ σ[W (X)] =⇒ ψ̄(s) ≈ ψ̄(t) ∈ IdU1.

This means we do not have to consider substitutions which map variables
to terms outside of σ[W (X)].
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4 Since each identity σ̂[s] ≈ σ̂[t] in U1 has the form f(s1, f(s1, s2)) ≈
f(t1, f(t1, t2)) with s1, s2, t1, t2 ∈ σ[W (X)], the compatibility rule can be
modified as follows:

s1 ≈ t1 ∈ IdU1 and s2 ≈ t2 ∈ IdU1 =⇒
f(s1, f(s1, s2)) ≈ f(t1, f(t1, t2)) ∈ IdU1.

5 By 1, we know that σ̂[s] ≈ σ̂[t] ∈ IdU ′ implies σ̂[s] ≈ σ̂[t] ∈ IdU1.
Now we show by induction on the length of a derivation that the following
propositions are satisfied:

IdU ′ ⊆ {s ≈ t | s, t ∈ σ[W (X)]}

and
σ̂[s] ≈ σ̂[t] ∈ IdU ′ =⇒ s ≈ t ∈ IdU1.

Clearly, χ〈σ〉\{σid}[{x1(x1x2) ≈ ((x1x1)x1)x2}] ⊆ {s ≈ t | s, t ∈ σ[W (X)]}
and if σ̂[s] ≈ σ̂[t] ∈ χ〈σ〉\{σid}[{x1(x1x2) ≈ ((x1x1)x1)x2}], then s ≈ t ∈ IdU1

by definition.
We check each of the five derivation rules in turn.

Reflexivity: We have σ̂[s] ≈ σ̂[s] ∈ IdU ′, where s ≈ s ∈ IdU1 for all
s ∈ W (X).

Symmetry: If σ̂[s] ≈ σ̂[t] ∈ IdU ′ with s ≈ t ∈ IdU1, then σ̂[t] ≈ σ̂[s] ∈
IdU ′, where t ≈ s ∈ IdU1 follows from s ≈ t ∈ IdU1.

Transitivity: If σ̂[r] ≈ σ̂[s] ∈ IdU ′ and σ̂[s] ≈ σ̂[t] ∈ IdU ′ with r ≈ s ∈
IdU1 and s ≈ t ∈ IdU1, then σ̂[r] ≈ σ̂[t] ∈ IdU ′, where r ≈ s ∈ IdU1 and
s ≈ t ∈ IdU1 implies r ≈ t ∈ IdU1.

Substitution rule: Here we use 2. Assume that σ̂[s] ≈ σ̂[t] ∈ IdU ′

with s ≈ t ∈ IdU1 and consider two substitutions ϕ : X −→ σ[W (X)]
and ϕ∗ : X −→ W (X) with ϕ(x1) = σ̂[ϕ∗(x1)], for x1 ∈ X. We show by
induction on the complexity of the term w ∈ W (X) that

ϕ̄(σ̂[w]) = σ̂[ϕ̄∗(w)].

First, if w = x1, then ϕ̄(σ̂[x1]) = ϕ(x1) = σ̂[ϕ̄∗(x1)]. Here ϕ̄ and ϕ̄∗ are the
unique extensions of ϕ and ϕ∗, resp., to the set W (X).
Inductively, suppose that w = f(w1, w2) and that ϕ̄(σ̂[wi]) = σ̂[ϕ̄∗(wi)], for
i = 1, 2. Then
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ϕ̄(σ̂[w]) = ϕ̄(σ(f)(σ̂[w1], σ̂[w2])) = ϕ̄(f(σ̂[w1], f(σ̂[w1], σ̂[w2])))

= f(ϕ̄(σ̂[w1]), ϕ̄(f(σ̂[w1]), σ̂[w2])))= f(ϕ̄(σ̂[w1]), f(ϕ̄(σ̂[w1]), ϕ̄(σ̂[w2])))

= f(σ̂[ϕ̄∗(w1)], f(σ̂[ϕ̄∗(w1)], σ̂[ϕ̄∗(w2)]))) = σ̂[f(ϕ̄∗(w1), ϕ̄∗(w2))]

= σ̂[ϕ̄∗(f(w1, w2))] = σ̂[ϕ̄∗(w)].

Now we have ϕ̄(σ̂[s]) ≈ ϕ̄(σ̂[t]) ∈ IdU ′ with ϕ̄(σ̂[s]) = σ̂[ϕ̄∗(s)] and
ϕ̄(σ̂[t]) = σ̂[ϕ̄∗(t)], where ϕ̄∗(s) ≈ ϕ̄∗(t)∈IdU1 because of s≈ t∈IdU1.

Compatibility: We apply 4. If σ̂[s1] ≈ σ̂[t1] ∈ IdU ′ and

σ̂[s2] ≈ σ̂[t2] ∈ IdU ′ with s1 ≈ t1 ∈ IdU1 and s2 ≈ t2 ∈ IdU1, then

f(σ̂[s1], f(σ̂[s1], σ̂[s2])) ≈ f(σ̂[t1], f(σ̂[t1], σ̂[t2])) ∈ IdU ′ with

f(σ̂[s1], f(σ̂[s1], σ̂[s2])) = σ̂[f(s1, s2)] and f(σ̂[t1], f(σ̂[t1], σ̂[t2])) =

σ̂[f(t1, t2)], where f(s1, s2) ≈ f(t1, t2) ∈ IdU1 since s1 ≈ t1 ∈ IdU1

and s2 ≈ t2 ∈ IdU1.

Altogether we have the following result: If s ≈ t ∈ kerU1σ, then σ̂[s] ≈
σ̂[t] ∈ IdU1. By 1, we have σ̂[s] ≈ σ̂[t] ∈ IdU ′. Because of 3 and 4, we have
σ̂[s] ≈ σ̂[t] ∈ IdU1 ∩ {s ≈ t | s, t ∈ σ[W (X)]} by the derivation rules which
are considered in 5. Consequently 5 shows that s ≈ t ∈ IdU1. Altogether
we have kerU1σ ⊆ IdU1.

Lemma 3.10. For the hypersubstitution σ of the example above, and type
(2), the set γ({σ}) does not form a lattice.

Proof. The previous lemma shows that kerUiσ = IdUi for i = 1, 2. We
consider the variety U1 ∧ U2 = Mod(IdU1 ∪ IdU2). We denote by `(s) the
length of a term s, i.e. the number of occurrences of variables in s. It is
easy to check that for any nontrivial identity s ≈ t ∈ IdU1 ∪ IdU2 we get
`(s) ≥ 3 and `(t) ≥ 3. Then for each identity s ≈ t ∈ IdMod(IdU1 ∪ IdU2)
we have also `(s) ≥ 3 and `(t) ≥ 3. This shows that x1x2 ≈ x1(x1x2) 6∈
Id(U1∧U2). From x1(x1x2) ≈ ((x1x1)x1)x2 ∈ IdU1 and x1(x1(x1(x1x2))) ≈
((x1x1)x1)x2 ∈ IdU2 it follows that x1(x1x2) ≈ x1(x1(x1(x1x2))) ∈
Id(U1 ∧ U2). Also σ̂[x1x2] = x1(x1x2) and σ̂[x1(x1x2)] = x1(x1(x1(x1x2))).
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This shows that σ̂[x1x2] ≈ σ̂[x1(x1x2)] ∈ Id(U1 ∧ U2), so that x1x2 ≈
x1(x1x2) ∈ ker(U1∧U2)σ. Altogether we have ker(U1∧U2)σ 6= Id(U1∧U2), and
U1 ∧ U2 6∈ γ({σ}).

Now we want to calculate the images α(S), η(S), and γ(S) when S is the
largest or smallest possible monoid of hypersubstitutions. We will take W
to be the largest variety Alg(τ). It is easy to see that for every variety V of
type τ we have kerV σid = IdV . This means that the image of the smallest
submonoid S = {σid} under all three maps α, η and γ is all of Alg(τ). The
next two lemmas investigate the images of the largest monoid S = Hyp(τ).

Lemma 3.11. Let τ = (ni)i∈I be a type with ni ≥ 2 for some i ∈ I. Then
α(Hyp(τ)) = {TR}. (Here TR is the trivial variety of type τ .)

Proof. Since the trivial variety TR satisfies all possible identities of type
τ , we have kerTRσ = IdTR for all hypersubstitutions σ in Hyp(τ). This
gives TR ∈ α(Hyp(τ)), i.e. {TR} ⊆ α(Hyp(τ)).

Conversely, let V be a variety of type τ with kerV σ ⊆ IdV for all
σ ∈ Hyp(τ). Let fj be an operation symbol of type τ with arity nj ≥ 2.
We consider the hypersubstitutions σ1 and σ2 ∈ Hyp(τ) with σ1(fj) = x1

and σ2(fj) = x2. Then we have (fj(x1, x2, x1, . . . , x1), x1) ∈ kerV σ1 and
(fj(x1, x2, x1, . . . , x1), x2) ∈ kerV σ2. But by assumption, we have kerV σ1

and kerV σ2 both subsets of IdV , so now we have x1 ≈ fj(x1, x2, x1, . . . , x1) ≈
x2 holding in V . This forces V = TR, and we have α(Hyp(τ)) ⊆ {TR}.
Altogether α(Hyp(τ)) = {TR}.

Next we consider the remaining case, where our type contains only unary
operation symbols.

Lemma 3.12. Let τ = (ni)i∈I with ni = 1 for all i ∈ I. Then α(Hyp(τ)) =
{TR,B}, where B = Mod{fi(x1) ≈ x1 | i ∈ I}.

Proof. As before, we have TR ∈ α(Hyp(τ)), but now we show that also
B ∈ α(Hyp(τ)). It is easy to see that any term over B contains exactly one
variable, and for two terms s and t we have s ≈ t ∈ IdB iff the variable
in s is the same as the variable in t. It follows from this that for any
hypersubstitution σ, σ̂[s] ≈ σ̂[t] is in IdB iff s ≈ t is in IdB. This makes
kerBσ = IdB for all σ, so B is in α(Hyp(τ)).
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We now have {TR, B} ⊆ α(Hyp(τ)). For the opposite inclusion, we let
V be a variety of type τ for which kerV σ ⊆ IdV for all σ ∈ Hyp(τ). Let σ be
a hypersubstitution with σ(fi) = x1 for all i ∈ I. Then fi(x1) ≈ x1 ∈ kerV σ
for all i ∈ I, so by our assumption on V we have fi(x1) ≈ x1 ∈ IdV
for all i ∈ I. This shows that V ⊆ B. It is well-known that B has
no subvarieties other than B and TR, so we have V ∈ {TR, B}. Thus
α(Hyp(τ)) ⊆ {TR,B}, and altogether we have α(Hyp(τ)) = {TR,B}.

V ∈ η(Hyp(τ)) means that IdV ⊆ kerV σ for all σ ∈ Hyp(τ), that
is, that for any hypersubstitution σ and any s ≈ t ∈ IdV , the identity
σ̂[s] ≈ σ̂[t] also holds in V . This says precisely that V is solid, so that the
image under η of the monoid Hyp(τ) is the lattice S(τ) of all solid varieties
of type τ .

Since γ is the intersection of η and α, we can also determine the image
γ(Hyp(τ)). Since the trivial variety TR and the variety B considered in
Lemma 3.12 are solid, we see that γ(Hyp(τ)) is either {TR}, if there is an
operation symbol fj with nj ≥ 2, or {TR, B} otherwise.

Now for arbitrary subsets S of Hyp(τ) we have either

{TR, B} = γ(Hyp(τ)) ⊆ γ(S) ⊆ γ({σid}) = Alg(τ)

or

{TR} = γ(Hyp(τ)) ⊆ γ(S) ⊆ γ({σid}) = Alg(τ),

depending on the type τ , as above; and similarly for α, either

{TR,B} = α(Hyp(τ)) ⊆ α(S) ⊆ α({σid}) = Alg(τ)

or

{TR} = α(Hyp(τ)) ⊆ α(S) ⊆ α({σid}) = Alg(τ).

For the operator η we have

S(τ) = η(Hyp(τ)) ⊆ η(S) ⊆ η({σid}) = Alg(τ).
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4. Relations on sets of hypersubstitutions

In this section we show that to calculate the images of the operators intro-
duced in the previous section we can restrict our efforts to certain “special”
hypersubstitutions. This is also the case if we want to test whether an iden-
tity s ≈ t is a hyperidentity in the variety V . Then we can restrict our
checking to a subset of the given set of hypersubstitutions. In [5] J. PÃlonka
introduced the following equivalence relation on Hyp(τ): Let V be a va-
riety of type τ . Two hypersubstitutions σ1 and σ2 of type τ are called
V -equivalent, and we write σ1 ∼V σ2, if for all operation symbols fi of the
type the identities σ1(fi) ≈ σ2(fi) are satisfied in V .

The following lemma shows how the relation ∼V can be used.

Lemma 4.1 ([5]). Let V be a variety of type τ , and let σ1, σ2 ∈ Hyp(τ).
Then the following two conditions (i) and (ii) are equivalent:

(i) σ1 ∼V σ2.

(ii) For all t ∈ Wτ (X) the equation σ̂1[t] ≈ σ̂2[t] is an identity in V .

Moreover,

(iii) For all s, t ∈ Wτ (X), and for all σ1, σ2 ∈ Hyp(τ), if σ1 ∼V σ2, then
σ̂1[s] ≈ σ̂1[t] ∈ IdV iff σ̂2[s] ≈ σ̂2[t] ∈ IdV .

From the last condition it follows that the monoid P (V ) of all proper
hypersubstitutions of the variety V is the union of equivalence classes with
respect to ∼V . This means that to test if a given identity s ≈ t is a hyperi-
dentity of V , we need only check the application of σ̂ for one representative
σ from each ∼V equivalence class.

It is easy to see that V -equivalent hypersubstitutions induce equal
kernels with respect to V .

Proposition 4.2. Let V be a variety of type τ and let σ1, σ2 ∈ Hyp(τ) with
σ1 ∼V σ2. Then

(i) kerV σ1 = kerV σ2, and

(ii) P (V ), P1(V ), and P2(V ) are unions of ∼V -classes.
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Proof. (i): By Lemma 4.1 (iii) we have (s, t) ∈ kerV σ1 iff (s, t) ∈ kerV σ2,
so the two kernels are equal.

(ii): For P (V ) this is clear (see for instance [4]). Let σ1 ∈ P2(V ) and
σ1 ∼V σ2. Then kerV σ1 ⊆ IdV and kerV σ1 = kerV σ2 imply that also
kerV σ2 ⊆ IdV , making σ2 ∈ P2(V ). The proof for P1(V ) is similar.

Although V -equivalent hypersubstitutions produce the same kernels with
respect to V , the converse is not always true: it is possible for kerV σ1 =
kerV σ2 when σ1 and σ2 are not V -equivalent. As an example we consider
the semigroup variety V = Mod{x1(x2x3) ≈ (x1x2)x3, x1x2x3 ≈ x1x3} and
the hypersubstitutions σx1 and σx2

1
which map the binary operation symbol

to the terms x1 and x2
1, respectively. Then σx1 6∼V σx2

1
since the idempotent

identity x2
1 ≈ x1 is not satisfied in V ; but

σ̂x1 [s] ≈ σ̂x1 [t] ∈ IdV ⇐⇒ σ̂x2
1
[s] ≈ σ̂x2

1
[t] ∈ IdV,

and kerV σx1 = kerV σx2
1
.

Therefore, it makes sense to define the following relation on Hyp(τ):

Definition 4.3. Let V be a variety of type τ . Let ∼kerV
be the relation on

Hyp(τ) defined by

σ1 ∼kerV
σ2 iff kerV σ1 = kerV σ2.

By Proposition 4.2, we see that ∼V⊆∼kerV
(although these relations

need not be equal), and that P (V ), P1(V ), P2(V ) are unions of equivalence
classes with respect to ∼kerV

. It is easy to see that neither ∼V nor ∼kerV
is

a congruence relation on Hyp(τ).
Another consequence of Proposition 4.2 is that if σ1 ∼V σ2 and σ1 is

a hyperunifier with respect to V of the terms t and t′, then σ2 is also a
hyperunifier with respect to V of t and t′. This leads us to compare the
relation ∼kerV

with the relation ' (the Green’s relation L) introduced in
Section 1.

Lemma 4.4. In the syntactical case, that is if V = Alg(τ), we have

kerσ ⊆ ker(ρ ◦h σ)

for all hypersubstitutions σ and ρ in Hyp(τ).
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Proof. For any (t, t′) ∈ kerσ, we have σ̂[t] = σ̂[t′] and hence ρ̂[σ̂[t]]=
ρ̂[σ̂[t′]]. This means that (ρ ◦h σ)ˆ[t] = (ρ ◦h σ)ˆ[t′], and, therefore, we have
(t, t′) ∈ ker(ρ ◦h σ).

As a consequence of this, we have:

Corollary 4.5. If σ1 ' σ2, then kerσ1 = kerσ2.

Proof. If σ1 ' σ2, then there are hypersubstitutions ρ1, ρ2 ∈ Hyp(τ) such
that σ1 = ρ1 ◦h σ2 and σ2 = ρ2 ◦h σ1. Then we have

kerσ1 = ker(ρ1 ◦h σ2) ⊇ kerσ2

and
kerσ2 = ker(ρ2 ◦h σ1) ⊇ kerσ1.

So, kerσ1 = kerσ2.

In the semantical case, when V ⊂ Alg(τ), Lemma 4.4 no longer holds
without an additional restriction on V . Lemma 4.4 is a special case of the
following.

Lemma 4.6. Let V be a variety of type τ and let σ ∈ Hyp(τ). Then

kerV σ ⊆ kerV (ρ ◦h σ)

for all hypersubstitutions ρ ∈ P (V ).

Proof. For any (t, t′) ∈ kerV σ we have σ̂[t] ≈ σ̂[t′] ∈ IdV . Since ρ is a
V -proper hypersubstitution, this implies that ρ̂[σ̂[t]] ≈ ρ̂[σ̂[t′]] ∈ IdV , and
so (t, t′) ∈ kerV (ρ ◦h σ).

If V is a solid variety, then the inclusion of Lemma 4.6 holds for all
hypersubstitutions, giving the following special case.

Corollary 4.7. When V is a solid variety of type τ , then
σ ' ρ =⇒ kerV ρ = kerV σ.

Altogether for solid varieties V the inclusion ' ⊆ ∼kerV
is satisfied, and

this means that if σ1 ' σ2 and σ1 is a hyperunifier with respect to V of the
terms t and t′, then σ2 is also a hyperunifier with respect to V of t and t′.
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5. Applications to varieties of semigroups

In this section we determine images under α and β of some varieties of
semigroups. We now set our variety W (see Definition 3.1) to be the va-
riety SEM of all semigroups, and consider α and β as mappings between
P(Hyp(2)) and P(L(SEM)). We begin with some notation for identities
and hypersubstitutions in this setting. As usual for semigroups, we write
identities with the binary operation symbol f replaced by juxtaposition,
and with brackets omitted. Any hypersubstitution σ is determined by the
binary term σ(f), and we denote by σt the hypersubstitution which maps f
to t. For a set S ⊆ Hyp(2) and a single hypersubstitution σ ∈ Hyp(2), we
denote by σ ◦h S the set of all products of the form σ ◦h ρ for ρ ∈ S. For
any term t of type (2), we use var(t) for the set of all variables occurring in
the term t. A hypersubstitution σ of type (2) is called regular if var(σ(f))
= var(f(x1, x2)); that is, if the binary term σ(f) uses both variables x1

and x2.

For convenience, we list here some sets of hypersubstitutions we shall
need:

Hyp := the set of all hypersubstitutions of type (2),

Reg := the set of all regular hypersubstitutions of type (2),

Left := {σ | σ ∈ Hyp and the first variable of σ(f) is x1}, the set of all
leftmost hypersubstitutions of type (2),

Right := {σ | σ ∈ Hyp and the last variable of σ(f) is x2}, the set of all
rightmost hypersubstitutions of type (2),

Out := {σ | σ ∈ Hyp and the first variable of σ(f) is x1 and the last variable
of σ(f) is x2}, the set of all outermost hypersubstitutions of type (2),

Pre := Hyp \ {σx1 , σx2}, the set of all pre-hypersubstitutions of type (2).

We shall also refer to the following varieties of semigroups:

SEM , the variety of all semigroups,

TR, the variety of trivial semigroups,

RZ = Mod{x1x2 ≈ x2}, the variety of all right-zero semigroups,

LZ = Mod{x1x2 ≈ x1}, the variety of all left-zero semigroups,

RN = Mod{x1(x2x3) ≈ (x1x2)x3, x1x2x3 ≈ x2x1x3, x2 ≈ x}, the variety
of all right-normal idempotent semigroups,
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LN = Mod{x1(x2x3) ≈ (x1x2)x3, x1x2x3 ≈ x1x3x2, x2 ≈ x}, the variety
of all left-normal idempotent semigroups,

Z = Mod{x1x2 ≈ x3x4}, the variety of all zero semigroups,

LZ ∨ Z = Mod{x1(x2x3) ≈ (x1x2)x3, x1x2 ≈ x1x3}, the join of LZ and Z,

RZ ∨Z = Mod{x1(x2x3) ≈ (x1x2)x3, x1x2 ≈ x3x2}, the join of RZ and Z,

SL = Mod{(x1x2)x3 ≈ x1(x2x3), x1x2 ≈ x2x1, x2
1 ≈ x1}, the variety of all

semilattices

B = Mod{(x1x2)x3 ≈ x1(x2x3), x2
1 ≈ x1}, the variety of all bands.

RB = Mod{(x1x2)x3 ≈ x1(x2x3) ≈ x1x3, x2
1 ≈ x1}, the variety of all

rectangular bands.

NB = Mod{(x1x2)x3 ≈ x1(x2x3), x1x2x3x4 ≈ x1x3x2x4, x2
1 ≈ x1}, the

variety of all normal bands.

RegB = Mod{(x1x2)x3 ≈ x1(x2x3), x1x2x1x3x1 ≈ x1x2x3x1, x2
1 ≈ x1},

the variety of all regular bands.
We begin by finding the image β({V }) for some of the varieties V listed

here. This means that for a given variety V , we want to find those hypersub-
stitutions σ for which kerV σ ⊆ IdV . Our work is simplified by the result of
Proposition 4.2: since hypersubstitutions which are equivalent modulo the
relation ∼V have the same kernels with respect to V , it is enough to consider
one representative hypersubstitution from each equivalence class modulo ∼V

in Hyp. The varieties appearing in our first Theorem have well-known finite
sets of representatives.

Theorem 5.1. (i) β({SL}) = Reg,

(ii) β({LZ}) = Left,

(iii) β({RZ}) = Right,

(iv) β({RB}) = Out ∪ σx2x1 ◦h Out,

(v) β({Z}) = Pre,

(vi) β({NB}) = β({RegB}) = Out ∪ σx2x1 ◦h Out,

(vii) β({LN}) = Left ∩Reg,

(viii) β({RN}) = Right ∩Reg.
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Proof. (i): Modulo the relation ∼SL on Hyp, any type (2) hypersubsti-
tution is equivalent to one of σx1 , σx2 and σx1x2 . The last of these is the
identity hypersubstitution, and any regular hypersubstitution of type (2)
is equivalent to it. This shows that any regular hypersubstitution σ has
kerSLσ = kerSLσid = IdSL, so that Reg ⊆ β({SL}).

For the opposite inclusion, we use the fact that any non-regular hyper-
substitution σ is equivalent, modulo ∼SL, to one of σx1 or σx2 . But we
have σ̂x1 [x1] ≈ σ̂x1 [x1x2] ∈ IdSL and σ̂x2 [x1] ≈ σ̂x2 [x2x1] ∈ IdSL, but
neither x1 ≈ x1x2 nor x1 ≈ x2x1 holds in SL. This gives the inclusion
β({SL}) ⊆ Reg and therefore equality.

(ii): We use the fact that IdLZ consists of all type (2) equations s ≈ t,
where the leftmost variables in s and in t are the same. It follows from this
that the set {σx1 , σx2} gives a system of representatives for Hyp modulo the
relation ∼LZ . Of these two representatives, the first is leftmost, while the
second is not. But also σ̂x1 [s] ≈ σ̂x1 [t] ∈ IdLZ implies s ≈ t ∈ IdLZ, and we
have Left ⊆ β({LZ}). For the opposite inclusion we see that σ̂x2 [x2x1] ≈
σ̂x2 [x1] ∈ IdLZ, but x2x1 ≈ x1 6∈ IdLZ.

(iii): This can be proved in a similar way.

(iv): It is well-known that IdRB consists exactly of all type (2) equations
s ≈ t, where the leftmost variable in s agrees with the leftmost variable in
t and the rightmost variable in s agrees with the rightmost variable in t,
and that the set {σx1 , σx2 , σx1x2 , σx2x1} gives a complete system of repre-
sentatives of Hyp modulo ∼RB. We will show that β({RB}) contains the
last two representatives from this set, but not the first two. We always have
σx1x2 in β({RB}). Also if σ̂x2x1 [s] ≈ σ̂x2x1 [t] ∈ IdRB then s ≈ t in IdRB,
so that σx2x1 is also in β({RB}). For the converse inclusion, we notice that
σ̂x1 [x1x2] ≈ σ̂x1 [x1] ∈ IdRB and σ̂x2 [x1x2] ≈ σ̂x2 [x2] ∈ IdRB but neither
x1x2 ≈ x1 nor x1x2 ≈ x2 are identities in RB.

(v): In this case a complete system of representatives for Hyp modulo ∼Z is
given by {σx1 , σx2 , σx1x2}. The identity hypersubstitution σx1x2 is of course
in β({Z}), while σ̂x1 [x

2
1] ≈ σ̂x1 [x1] ∈ IdZ and σ̂x2 [x

2
1] ≈ σ̂x2 [x1] ∈ IdZ but

x2
1 ≈ x1 6∈ IdZ shows that the other two representatives are not. Moreover,

the monoid Pre consists exactly of the equivalence class of σx1x2

modulo ∼Z .

(vi): Let V be either of the varieties NB or RegB. Then the set {σx1 , σx2 ,
σx1x2 , σx2x1 , σx1x2x1 , σx2x1x2} is a complete set of representatives from Hyp
modulo ∼V . We shall show that of these six, only σx1x2 and σx2x1 are in
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β({V }) in this case. There is nothing to prove for σx1x2 . For σx2x1 , we note
that since the variety V is solid, we have

σ̂x2x1 [s] ≈ σ̂x2x1 [t] ∈ IdV =⇒ σ̂x2x1 [σ̂x2x1 [s]] ≈ σ̂x2x1 [σ̂x2x1 [t]] ∈ IdV

=⇒ s ≈ t ∈ IdV ,

showing that σx2x1 is in β({V }).
Next, we show that none of the four remaining hypersubstitution rep-

resentatives can be in β({V }). Consider first the identity x1x2 ≈ (x1x2)x1,
which does not hold in V . For σ equal to either of σx1 or σx1x2x1 , we do
have σ̂[x1x2] ≈ σ̂[(x1x2)x1] ∈ IdV , so that the identity x1x2 ≈ (x1x2)x1 is
in kerV σ. A similar argument, using the identity x1x2 ≈ (x2x1)x2, works
for the remaining two representative hypersubstitutions.

(vii): For V = LN we have the set {σx1 , σx2 , σx1x2 , σx2x1} of representatives.
The only representative which is both leftmost and regular is the identity
hypersubstitution, and it is in β({LN}). As in the previous cases, it is easy
to verify that the other three representatives are not in β({LN}).
(viii): This is the dual of the previous case.

Now we determine the images under the mapping α for some sets of hyper-
substitutions of type (2). For any term t of type (2) we denote by td the dual
term, which is inductively defined by xd := x and (f(t1, t2))d =: f(td2, t

d
1).

A variety V of semigroups is called dualizable if for every identity s ≈ t of
V , the dual identity sd ≈ td also holds in V .

Theorem 5.2. (i) α({σx2x1}) = {V | V ∈ L(SEM) and V is dualizable },

(ii) α({σxk
1
}) = {TR,LZ, Z, LZ ∨ Z}, for k ≥ 2,

(iii) α({σxk
2
}) = {TR,RZ, Z,RZ ∨ Z}, for k ≥ 2,

(iv) α({σx1}) = {TR,LZ},

(v) α({σx2}) = {TR,RZ}.

Proof. (i): The dual of an identity s ≈ t can be expressed as σ̂x2x1 [s] ≈
σ̂x2x1 [t], so V dualizable means that V ∈ α({σx2x1}). If V is not dualizable,
then there is an identity s ≈ t ∈ IdV such that σ̂x2x1 [s] = sd ≈ td =
σ̂x2x1 [t] 6∈ IdV , in which case V 6∈ α({σx2x1}).



198 K. Denecke, J. Koppitz and S.L. Wismath

(ii): If V ∈ α({σxk
1
}), then V is a semigroup variety with kerV σxk

1
⊆

IdV . Since σ̂xk
1
[x1x2] ≈ σ̂xk

1
[x1x3] ∈ IdV , this puts x1x2 ≈ x1x3 ∈ IdV ,

and hence V ⊆ LZ ∨ Z = Mod{(x1x2)x3 ≈ x1(x2x3), x1x2 ≈ x1x3}. But it
is well-known that the subvariety lattice of LZ ∨ Z consists exactly of the
varieties TR,Z, LZ, and LZ ∨ Z.

We know that TR satisfies kerTRσxk
1
⊆ IdTR. For LZ, we use the

fact that if σ̂x1 [s] ≈ σ̂x1 [t], then the first variable of s and of t agree and so
s ≈ t ∈ IdLZ. Because σx1 ∼LZ σxk

1
for all k ≥ 2, this gives LZ ∈ α({σxk

1
}).

It can be shown similarly that Z ∈ α({σxk
1
}) for k ≥ 2. Finally, by Lemma

3.6, we obtain LZ ∨ Z ∈ α({σxk
1
}).

(iii): This is the dual of (ii).
(iv): Let V be a variety of semigroups with kerV σx1 ⊆ IdV . Then

σ̂x1 [x1x2] ≈ σ̂x1 [x1] ∈ IdV , so x1x2 ≈ x1 ∈ IdV . This shows that either V =
TR or V = LZ, since LZ is a minimal variety of semigroups. Conversely, for
both TR and LZ we have that kerTRσx1 ⊆ IdTR and kerLZσx1 ⊆ IdLZ.

(v): This is the dual of (iv).

For any fixed variety V of semigroups, we can consider the subvariety lat-
tice L(V ) and the restriction of our mapping α to L(V ). We will de-
note this restriction by α∗. As in Theorem 5.1, we can use the relation
∼V to restrict our testing of hypersubstitutions. We will illustrate this
now for the variety B of all bands (idempotent semigroups), where the set
{σx1 , σx2 , σx1x2 , σx2x1 , σx1x2x1 , σx2x1x2} is a full system of representatives of
Hyp with respect to the relation ∼B.

Theorem 5.3. Let B be the variety of all bands. Then

(i) α∗({σx1}) = {TR, LZ},

(ii) α∗({σx2}) = {TR, RZ},

(iii) α∗({σx1x2}) = L(B),

(iv) α∗({σx2x1}) = {V | V ∈ L(V ) and V is dualizable},

(v) α∗({σx1x2x1}) = {TR, LZ, LN, SL},

(vi) α∗({σx2x1x2}) = {TR, RZ,RN, SL}.

Proof. (i), (ii) and (iv) follow from Theorem 5.2, and (iii) is clear.
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(v): Let V be a variety of bands with kerV σx1x2x1 ⊆ IdV . Then
from (σ̂x1x2x1 [x1x2], σ̂x1x2x1 [(x1x2)x1]) ∈ kerV σx1x2x1 , it follows that
x1x2 ≈ x1x2x1 ∈ IdV . This forces V ⊆ LN , so V must be one of
TR, LZ, LN or SL. Conversely, each of these four is in α∗({σx1x2x1}),
since σx1x2x1 ∼TR σx1 , σx1x2x1 ∼LZ σx1 , σx1x2x1 ∼LN σx1x2 and
σx1x2x1 ∼SL σx1x2 .

(vi): Can be proved in a similar way.

In Theorem 5.1 we described the image β({V }) for each of the seven non-
trivial subvarieties of the variety NB of normal bands. We can now extend
this result to a complete description of β({V }) for the remaining varieties of
bands as well. Our previous Theorems give us a complete characterization
of when a given representative hypersubstitution σ is in β({V }), for V a
variety of bands:

(i) σx1x2 is always in β({V }),
(ii) σx2x1 is in β({V }) iff V is dualizable (see Theorem 5.3 (iv)),

(iii) σx1 is in β({V }) iff V is equal to TR or LZ (see Theorem 5.3 (i)),

(iv) σx2 is in β({V }) iff V is equal to TR or RZ (see Theorem 5.3 (ii)),

(v) σx1x2x1 is in β({V }) iff V is a subvariety of LN (see Theorem 5.3 (v)),

(vi) σx2x1x2 is in β({V }) iff V is a subvariety of RN (see Theorem 5.3
(vi)).

It follows from this that if V is a variety of bands which is not a subvariety of
NB, then β({V }) is either Out, if V is not dualizable, or Out∪σx2x1 ◦h Out,
if V is dualizable.
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