Discussiones Mathematicae General Algebra and Applications 21 (2001) 165–174

SOME MODIFICATIONS OF CONGRUENCE PERMUTABILITY AND DUALLY CONGRUENCE REGULAR VARIETIES *

Ivan Chajda

Department of Algebra and Geometry Palacký University of Olomouc Tomkova 40, CZ-77900 Olomouc, Czech Republic **e-mail:** chajda@risc.upol.cz

AND

Günther Eigenthaler

Institut für Algebra und Computermathematik Technische Universität Wien Wiedner Hauptstraße 8–10, A–1040 Wien, Austria e-mail: g.eigenthaler@tuwien.ac.at

Abstract

It is well known that every congruence regular variety is *n*-permutable (in the sense of [9]) for some $n \ge 2$. For the explicit proof see e.g. [2]. The connections between this *n* and Mal'cev type characterizations of congruence regularity were studied by G.D. Barbour and J.G. Raftery [1]. The concept of local congruence regularity was introduced in [3]. A common generalization of congruence regularity and local congruence regularity was given in [6] under the name "dual congruence regularity with respect to a unary term g". The natural problem arises what modification of *n*-permutability is satisfied by dually congruence regular varieties. The aim of this paper is to find out such a modification, to characterize varieties satisfying it by a Mal'cev type condition and to show connections with normally presented varieties (see e.g. [5], [8], [11]). The latter concept was introduced already

^{*}This paper is a result of the collaboration of the authors within the framework of the "Aktion Österreich-Tschechische Republik" (grant No. 26p2 "Local and global congruence properties").

by J. Płonka under a different term; the names "normal identity" and "normal variety" were firstly used by E. Graczyńska in [8].

Keywords: congruence regularity, local congruence regularity, dual congruence regularity, local *n*-permutability.

2000 Mathematics Subject Classification: Primary 08A30, Secondary 08B05.

1. Preliminaries

At first we recall some basic concepts.

An algebra $\mathfrak{A} = (A, F)$ is *congruence regular* if for every two congruences $\Theta, \Phi \in Con(\mathfrak{A}),$

$$[a]\Theta = [a]\Phi$$
 for some $a \in A$ implies $\Theta = \Phi$.

Suppose that 0 is a constant term of \mathfrak{A} . We say that \mathfrak{A} is *locally congruence* regular (at 0) if for each $\Theta, \Phi \in Con(\mathfrak{A})$,

$$[a]\Theta = [a]\Phi$$
 for some $a \in A$ implies $[0]\Theta = [0]\Phi$.

A variety \mathcal{V} is congruence regular or locally congruence regular if each $\mathfrak{A} \in \mathcal{V}$ has this property. For examples of congruence regular or locally congruence regular algebras see e.g. [3].

The afore mentioned concepts were generalized in [6] as follows:

Let g(x) be a unary term function of an algebra \mathfrak{A} . We say that \mathfrak{A} is dually congruence regular with respect to g if for every $\Theta, \Phi \in Con(\mathfrak{A})$,

$$[b]\Theta = [b]\Phi$$
 for some $b \in A$ implies $[g(a)]\Theta = [g(a)]\Phi$ for every $a \in A$.

A variety \mathcal{V} is dually congruence regular with respect to a term g(x) of \mathcal{V} if each $\mathfrak{A} \in \mathcal{V}$ has this property.

Let us note that if g(x) = x then dual congruence regularity with respect to g is congruence regularity; if g(x) = 0 then it turns out to be local congruence regularity. Hence, this concept is a common generalization of congruence regularity as well as local congruence regularity. The following characterization was given in [6]:

Proposition 1. Let g(x) be a unary term of a variety \mathcal{V} . The following are equivalent:

166

- (1) \mathcal{V} is dually congruence regular with respect to g;
- (2) there exist for some k ternary terms t_1, \ldots, t_k and 5-ary terms p_1, \ldots, p_k such that $t_i(x, g(x), z) = z, i = 1, \ldots, k$, and

$$g(x) = p_1(t_1(x, y, z), z, x, y, z),$$

$$p_j(z, t_j(x, y, z), x, y, z) = p_{j+1}(t_{j+1}(x, y, z), z, x, y, z)$$
 for $j = 1, \dots, k-1$,

$$y = p_k(z, t_k(x, y, z), x, y, z);$$

(3) there exist – for some k – ternary terms t_1, \ldots, t_k such that

 $t_1(x, y, z) = \cdots = t_k(x, y, z) = z$ if and only if y = g(x).

2. Locally *n*-permutable varieties

We introduce the following concept: Let $\mathfrak{A} = (A, F)$ be an algebra and g(x)a unary term function of \mathfrak{A} . We say that \mathfrak{A} is *locally n-permutable at* g if for each $\Theta, \Phi \in Con(\mathfrak{A})$ the following holds:

 $(g(a), g(b)) \in \Theta \cdot \Phi \cdot \Theta \cdots$ if and only if $(g(a), g(b)) \in \Phi \cdot \Theta \cdot \Phi \cdots$

for each $a, b \in A$, where the relational products have n factors on both sides. A variety \mathcal{V} with a unary term g(x) is *locally n-permutable at* g if each $\mathfrak{A} \in \mathcal{V}$ has this property. If n = 2, we will call \mathfrak{A} to be *locally permutable at* g.

To illuminate these concepts, denote by g(A) the set $\{g(a); a \in A\}$. Then the algebra $\mathfrak{A} = (A, F)$ is locally *n*-permutable at *g* if

$$g(A)^2 \cap \Theta \cdot \Phi \cdot \Theta \cdots = g(A)^2 \cap \Phi \cdot \Theta \cdot \Phi \cdots$$

(with n factors on both sides) and \mathfrak{A} is locally permutable at g if

$$g(A)^2 \cap \Theta \cdot \Phi = g(A)^2 \cap \Phi \cdot \Theta.$$

Lemma 1. Let g(x) be a unary term of a variety \mathcal{V} . If there exist ternary terms h_1, \ldots, h_{n-1} such that

$$g(x) = h_1(g(x), y, y),$$

 $h_i(x, x, y) = h_{i+1}(x, y, y) \text{ for } i = 1, \dots, n-2,$
 $g(y) = h_{n-1}(x, x, g(y)),$

then \mathcal{V} is locally n-permutable at g.

Proof. Suppose $(g(a), g(b)) \in \Theta \cdot \Phi \cdot \Theta \cdots (n \text{ factors})$. Then there exist c_1, \ldots, c_{n-1} with

$$g(a)\Theta c_1\Phi c_2\Theta c_3\cdots c_{n-1}\Lambda g(b),$$

where $\Lambda = \Theta$ for *n* odd and $\Lambda = \Phi$ for *n* even. Then

$$g(a) = h_1(g(a), c_1, c_1) \Phi h_1(g(a), c_1, c_2) \Theta h_1(c_1, c_1, c_2)$$

= $h_2(c_1, c_2, c_2) \Theta h_2(c_1, c_2, c_3) \Phi h_2(c_2, c_2, c_3)$
= $h_3(c_2, c_3, c_3) \Phi \cdots$
:
:
= $h_{n-1}(c_{n-2}, c_{n-1}, c_{n-1}) \Lambda h_{n-1}(c_{n-2}, c_{n-1}, g(b)) \Lambda^*$
 $h_{n-1}(c_{n-1}, c_{n-1}, g(b)) = g(b),$

where $\Lambda^* = \Theta$ if $\Lambda = \Phi$ and conversely. Hence, $(g(a), g(b)) \in \Phi \cdot \Theta \cdot \Phi \cdots$ (*n* factors). The converse inclusion can be shown similarly.

We say that the unary term g(x) of the variety \mathcal{V} is *idempotent* if g(g(x)) = g(x) is an identity of \mathcal{V} .

We are ready to state the following variant of n-permutability which will be involved in dually congruence regular varieties:

Theorem 1. Let \mathcal{V} be a variety and g(x) an idempotent unary term of \mathcal{V} . If \mathcal{V} is dually congruence regular with respect to g, then \mathcal{V} is locally (k+1)-permutable at g, where k is the number of terms in (2) of Proposition 1.

Proof. For the terms p_i, t_i of (2) in Proposition 1, let us set

$$h_i(x, y, z) = p_i(t_i(x, g(y), z), t_i(y, g(z), z), x, g(z), z)$$
 for $i = 1, \dots, k$.

One can easily verify

$$\begin{aligned} h_1(g(x), y, y) &= p_1(t_1(g(x), g(y), y), t_1(y, g(y), y), g(x), g(y), y) \\ &= p_1(t_1(g(x), g(y), y), y, g(x), g(y), y) \\ &= g(g(x)) = g(x), \end{aligned}$$

168

$$\begin{aligned} h_i(x, x, y) &= p_i(t_i(x, g(x), y), t_i(x, g(y), y), x, g(y), y) \\ &= p_i(y, t_i(x, g(y), y), x, g(y), y) \\ &= p_{i+1}(t_{i+1}(x, g(y), y), y, x, g(y), y) \\ &= h_{i+1}(x, y, y) \text{ for } i = 1, \dots, k-1, \quad \text{and} \\ h_k(x, x, g(y)) &= p_k(t_k(x, g(x), g(y)), t_k(x, g(g(y)), g(y)), x, g(g(y)), y) \\ &= p_k(g(y), t_k(x, g(y), g(y)), x, g(y), g(y)) \\ &= g(y). \end{aligned}$$

By Lemma 1, \mathcal{V} is locally (k+1)-permutable at g.

Unfortunately, we are not able to convert the assertion of Lemma 1. On the other hand, we can give a Mal'cev type condition characterizing locally n-permutable varieties:

Theorem 2. Let g(x) be a unary term of a variety \mathcal{V} . The following are equivalent:

- (1) \mathcal{V} is locally *n*-permutable at *g*;
- (2) there exist (n + 1)-ary terms q_1, \ldots, q_{n-1} such that: for n odd

$$g(x_0) = q_1(x_0, x_2, x_2, x_4, x_4, \dots, x_{n-1}, x_{n-1}, x_n),$$

$$q_i(x_0, g(x_0), x_3, x_3, \dots, x_{n-2}, x_{n-2}, g(x_n), x_n) =$$

$$q_{i+1}(x_0, g(x_0), x_3, x_3, \dots, x_{n-2}, x_{n-2}, g(x_n), x_n) \text{ for } i \text{ odd},$$

$$q_i(x_0, x_2, x_2, \dots, x_{n-1}, x_{n-1}, x_n) =$$

$$q_{i+1}(x_0, x_2, x_2, \dots, x_{n-1}, x_{n-1}, x_n) \text{ for } i \text{ even},$$

$$g(x_n) = q_{n-1}(x_0, x_2, x_2, \dots, x_{n-1}, x_{n-1}, x_n);$$

for n even

$$g(x_0) = q_1(x_0, x_2, x_2, \dots, x_{n-2}, x_{n-2}, g(x_n), x_n),$$

$$q_i(x_0, g(x_0), x_3, x_3, \dots, x_{n-1}, x_{n-1}, x_n) =$$

$$q_{i+1}(x_0, g(x_0), x_3, x_3, \dots, x_{n-1}, x_{n-1}, x_n) \text{ for } i \text{ odd},$$

$$q_i(x_0, x_2, x_2, \dots, x_{n-2}, x_{n-2}, g(x_n), x_n) =$$

$$q_{i+1}(x_0, x_2, x_2, \dots, x_{n-2}, x_{n-2}, g(x_n), x_n) \text{ for } i \text{ even},$$

$$g(x_n) = q_{n-1}(x_0, g(x_0), x_3, x_3, \dots, x_{n-1}, x_{n-1}, x_n).$$

Proof. (1) \Rightarrow (2): Take $\mathfrak{A} = F_{\mathcal{V}}(x_0, x_1, \ldots, x_n)$, the free algebra of \mathcal{V} generated by x_0, x_1, \ldots, x_n . For *n* even, we set

$$\Theta = \Theta((g(x_0), x_1), (x_2, x_3), \dots, (x_{n-2}, x_{n-1})),$$

$$\Phi = \Theta((x_1, x_2), (x_3, x_4), \dots, (x_{n-1}, g(x_n))),$$

the congruences on \mathfrak{A} generated by the pairs in brackets. Evidently,

$$g(x_0)\Theta x_1\Phi x_2\Theta x_3\cdots x_{n-2}\Theta x_{n-1}\Phi g(x_n).$$

By (1) then also

$$g(x_0)\Phi q_1\Theta q_2\Phi q_3\cdots q_{n-2}\Phi q_{n-1}\Theta g(x_n)$$

for some $q_1, \ldots, q_{n-1} \in \mathfrak{A}$. Every q_i is an (n+1)-ary term, i.e. $q_i = q_i(x_0, x_1, \ldots, x_n)$. We consider the algebras \mathfrak{A}/Θ and \mathfrak{A}/Φ of \mathcal{V} and by a standard method similar to that of [9], we easily obtain the identities of (2) for n even. A similar argument works for n odd.

(2) \Rightarrow (1): Let $\mathfrak{A} \in \mathcal{V}$ and $\Theta, \Phi \in Con(\mathfrak{A})$. Suppose that n is even and that

$$g(a)\Theta c_1\Phi c_2\Theta c_3\cdots c_{n-1}\Phi g(b)$$

for some c_1, \ldots, c_{n-1} of \mathfrak{A} . Applying the terms q_1, \ldots, q_{n-1} and the identities of (2), we obtain:

$$g(a) = q_1(a, c_2, c_2, \dots, g(b), b) \Phi q_1(a, c_1, c_2, \dots, c_{n-1}, b) \Theta q_1(a, g(a), c_3, c_3, \dots, b)$$

= $q_2(a, g(a), c_3, c_3, \dots, b) \Theta q_2(a, c_1, c_2, \dots, c_{n-1}, b) \Phi q_2(a, c_2, c_2, \dots, g(b), b)$
= $q_3(a, c_2, c_2, \dots, g(b), b) \Phi q_3(a, c_1, c_2, \dots, c_{n-1}, b) \Theta \cdots$
 $\cdots g(b).$

Hence $(g(a), g(b)) \in \Theta \cdot \Phi \cdot \Theta \cdots$ implies $(g(a), g(b)) \in \Phi \cdot \Theta \cdot \Phi \cdots$ (with *n* factors). In this way we obtain (1). For *n* odd (1) can be shown analogously.

Corollary 1. Let g(x) be an idempotent unary term of a variety \mathcal{V} . Then \mathcal{V} is locally permutable at g if and only if there exists a ternary term t(x, y, z) such that the identities

$$g(x) = t(x, z, z)$$
 and $g(z) = t(x, x, z)$

hold in \mathcal{V} .

Proof. Consider the terms of Theorem 2. For n = 2 we have $g(x) = q_1(x, g(z), z)$ and $g(z) = q_1(x, g(x), z)$. We can set $t(x, y, z) = q_1(x, g(y), z)$ to obtain the assertion. Conversely, put $q_1(x, y, z) = t(g(x), y, g(z))$, then we obtain $q_1(x, g(z), z) = t(g(x), g(z), g(z)) = g(g(x)) = g(x)$ and $q_1(x, g(x), z) = t(g(x), g(z)) = g(g(z)) = g(z)$.

3. Examples

Example 1. Let \mathcal{P} be the variety of all pseudocomplemented \wedge -semilattices. Denote by x^* the pseudocomplement of x and put

$$a + b = ((a^* \wedge b)^* \wedge (a \wedge b^*)^*)^*.$$

As it was shown in [7], the term + is associative, commutative and satisfies the identities x + x = 0 and $x + 0 = x^{**}$. Therefore, \mathcal{P} is locally permutable at $g(x) = x^{**}$ and the ternary term t(x, y, z) of Corollary 1 can be chosen as: t(x, y, z) = x + y + z.

Remark 1. Applying Theorem 2, a variety \mathcal{V} is locally 3-permutable at g if there exist 4-ary terms q_1, q_2 satisfying the following identities:

$$g(x) = q_1(x, y, y, z),$$

$$q_1(x, g(x), g(z), z) = q_2(x, g(x), g(z), z),$$

$$g(z) = q_2(x, y, y, z).$$

Example 2. A grupoid (G, \cdot) is called a *semi-implication algebra* (see [4]), whenever it satisfies the identities

$$\begin{aligned} z \cdot ((x \cdot y) \cdot x) &= z \cdot x, \qquad ((x \cdot y) \cdot x) \cdot z &= x \cdot z, \\ (x \cdot y) \cdot y &= (y \cdot x) \cdot x, \qquad x \cdot (y \cdot z) &= y \cdot (x \cdot z). \end{aligned}$$

As it was proved in Theorem 4 of [4], it also satisfies $x \cdot x = y \cdot y$. Thus the term $x \cdot x$ has a constant value denoted by 1. Moreover, it also satisfies $1 \cdot (1 \cdot x) = 1 \cdot x, x \cdot 1 = 1$ and $(1 \cdot x) \cdot y = x \cdot (1 \cdot y) = x \cdot y$. Applying Theorem 2 (and the foregoing Remark 1), we can easily show that the variety of all semi-implication algebras is locally 3-permutable at $g(x) = 1 \cdot x$. For this, take $q_1(x, y, z, v) = (z \cdot y) \cdot x$ and $q_2(x, y, z, v) = (y \cdot z) \cdot v$. Then

()

$$\begin{aligned} q_1(x, y, y, z) &= (y \cdot y) \cdot x = 1 \cdot x = g(x), \\ q_1(x, g(x), g(z), z) &= (g(z) \cdot g(x)) \cdot x = ((1 \cdot z) \cdot (1 \cdot x)) \cdot x = (z \cdot x) \cdot x \\ &= (x \cdot z) \cdot z = ((1 \cdot x) \cdot (1 \cdot z)) \cdot z = (g(x) \cdot g(z)) \cdot z \\ &= q_2(x, g(x), g(z), z), \quad \text{and} \\ q_2(x, y, y, z) &= (y \cdot y) \cdot z = 1 \cdot z = g(z). \end{aligned}$$

Let us note that this variety is not *n*-permutable for every $n \ge 1$.

Normal varieties 4.

One can be interested in the question how frequent dually congruence regular or locally *n*-permutable varieties are among those which are often treated. The following construction will show that they are relatively common among the so-called normal varieties. For this, we firstly recall some concepts of [5], [8] and [11].

An *n*-ary $(n \ge 1)$ term of a variety \mathcal{V} is called *proper* if it is not a single variable. An identity $p(x_1, \ldots, x_n) = q(x_1, \ldots, x_n)$ is called *normal* if either both p, q are proper terms or both are equal to the same variable. For a variety \mathcal{V} , denote by $Id\mathcal{V}$ or $Id_N\mathcal{V}$ the set of all or of all normal identities of \mathcal{V} , respectively. A variety \mathcal{V} is called *normal* if $Id\mathcal{V} = Id_N\mathcal{V}$. The class of all models of $Id_N \mathcal{V}$ is denoted by $N(\mathcal{V})$ and in [11] it is called a *nilpotent* shift of \mathcal{V} . One can easily see that \mathcal{V} is normal if and only if $\mathcal{V} = N(\mathcal{V})$ since $Id_N \mathcal{V}$ is a closed set of identities (see [8]).

If $\mathcal{V} \neq N(\mathcal{V})$, then there exists a proper unary term g(x) such that the identity g(x) = x holds in \mathcal{V} . If \mathcal{V} satisfies also w(x) = x for a unary term w, then \mathcal{V} satisfies w(x) = g(x). Thus g(x) is unique "up to identity". Hence,

172

1

in [5] g(x) is called an *assigned term* of \mathcal{V} . Clearly, g(x) is idempotent in $N(\mathcal{V})$. It was shown in [11] that if $\mathcal{V} \neq N(\mathcal{V})$ and g(x) is an assigned term of \mathcal{V} , then $Id\mathcal{V}$ is generated by $Id_N\mathcal{V} \cup \{g(x) = x\}$.

Remark 2. Let \mathcal{V} be a normal variety. Then \mathcal{V} does not have any property which can be characterized by an idempotent Mal'cev condition. Hence, no normal variety can be congruence regular or *n*-permutable or congruence modular since for each of those properties there exists an idempotent Mal'cev condition.

On the other hand, we can prove

Theorem 3. Let \mathcal{V} be a variety which is permutable or n-permutable or congruence regular. Let g(x) be an assigned term of \mathcal{V} . Then the variety $N(\mathcal{V})$ is locally permutable at g or locally n-permutable at g or dually congruence regular with respect to g, respectively.

Proof. By [10], \mathcal{V} is permutable if and only if there exists a ternary term t satisfying the identities x = t(x, z, z) and z = t(x, x, z). Of course, g(x) = t(x, x, x) is an assigned term of \mathcal{V} . Hence, g(x) = t(x, z, z) and g(z) = t(x, x, z) are also identities of \mathcal{V} , however they are normal and thus satisfied by $N(\mathcal{V})$. By Corollary 1, $N(\mathcal{V})$ is locally permutable at g.

Analogously, comparing the identities for n-permutability of [9] with those of Theorem 2 we conclude the second assertion.

For the third assertion one only needs to compare the identities of [2] or [1] with those of Proposition 1.

References

- G.D. Barbour and J.G. Raftery, On the degrees of permutability of subregular varieties, Czechoslovak Math. J. 47 (1997), 317–325.
- [2] R. Bělohlávek and I. Chajda, Congruence classes in regular varieties, Acta Math. Univ. Com. (Bratislava) 68 (1999), 71–76.
- [3] I. Chajda, Locally regular varieties, Acta Sci. Math. (Szeged) 64 (1998), 431–435.
- [4] I. Chajda, Semi-implication algebras, Tatra Mt. Math. Publ. 5 (1995), 13-24.
- [5] I. Chajda, Normally presented varieties, Algebra Universalis 34 (1995), 327–335.

- [6] I. Chajda and G. Eigenthaler, *Dually regular varieties*, Contributions to General Algebra 12 (2000), 121–128.
- [7] I. Chajda and H. Länger, Ring-like operations in pseudocomplemented semilattices, Discuss. Math. Gen. Algebra Appl. 20 (2000), 87–95.
- [8] E. Graczyńska, On normal and regular identities, Algebra Universalis 27 (1990), 387–397.
- [9] J. Hagemann and A. Mitschke, On n-permutable congruences, Algebra Universalis 3 (1973), 8–12.
- [10] A.I. Mal'cev, On the general theory of algebraic systems (Russian), Mat. Sbornik 35 (1954), 8–20.
- [11] I.I. Melnik, Nilpotent shifts of varieties (Russian), Mat. Zametki 14 (1973), 703–712.

Received 18 December 2000 Revised 6 June 2001