ON THE STRUCTURE OF
HALFDIAGONAL-HALFTERMINAL-SYMMETRIC
CATEGORIES WITH DIAGONAL INVERSIONS

HANS-JÜRGEN VOGEL

University of Potsdam Institute of Mathematics
PF 60 15 53 D-14415 Potsdam, Germany
E-mail: vogel@rz.uni-potsdam.de

Dedicated to Hans-Jürgen Hoehnke on the occasion of his 75th birthday.

Abstract

The category of all binary relations between arbitrary sets turns out to be a certain symmetric monoidal category Rel with an additional structure characterized by a family $d = \{d_A : A \to A \otimes A \mid A \in |\text{Rel}|\}$ of diagonal morphisms, a family $t = \{t_A : A \to I \mid A \in |\text{Rel}|\}$ of terminal morphisms, and a family $\nabla = \{\nabla_A : A \otimes A \to A \mid A \in |\text{Rel}|\}$ of diagonal inversions having certain properties. Using this properties in [11] was given a system of axioms which characterizes the abstract concept of a halfdiagonal-halfterminal-symmetric monoidal category with diagonal inversions ($\text{hdht}\nabla$-category). Besides of certain identities this system of axioms contains two identical implications. In this paper is shown that there is an equivalent characterizing system of axioms for $\text{hdht}\nabla$-categories consisting of identities only. Therefore, the class of all small $\text{hdht}\nabla$-symmetric categories (interpreted as heterogeneous algebras of a certain type) forms a variety and hence there are free theories for relational structures.

Keywords: halfdiagonal-halfterminal-symmetric category, diagonal inversion, partial order relation, subidentity, equation.

2000 AMS Subject Classification: 18D10, 18B10, 18D20, 08A05, 08A02.
1. Defining conditions

Let K^\bullet be any symmetric monoidal category in the sense of Eilenberg-Kelly ([2]) with the object class $|K|$, the morphism class K, the distinguished object I, the bifunctor $\otimes : K \times K \to K$, and the families a, r, l, s of isomorphisms of K such that the following axioms are valid for all objects and all morphisms of K. By $K[A, B]$ we denote the set of all morphisms $\rho \in K$ with the domain (source) $\text{dom} \rho = A$ and the codomain (target) $\text{codom} \rho = B$.

Bifunctor properties:

(F1) $\text{dom}(\rho \otimes \rho') = \text{dom} \rho \otimes \text{dom} \rho'$,

(F2) $\text{codom}(\rho \otimes \rho') = \text{codom} \rho \otimes \text{codom} \rho'$,

(F3) $1_{A \otimes B} = 1_A \otimes 1_B$,

(F4) $(\rho \otimes \rho')(\sigma \otimes \sigma') = \rho \sigma \otimes \rho' \sigma'$.

Conditions of monoidality:

(M1) $a_{A,B,C,D}a_{A \otimes B,C,D} = (1_A \otimes a_{A,B,C})a_{A,B \otimes C,D}(a_{A,B,C} \otimes 1_D)$,

(M2) $a_{A,B}(r_A \otimes 1_B) = 1_A \otimes l_B$,

(M3) $a_{A,B,C}a_{A \otimes B,C}a_{C,A,B} = (1_A \otimes s_{B,C})a_{A,C,B}(s_{A,C} \otimes 1_B)$,

(M4) $s_{A,B}s_{B,A} = 1_{A \otimes B}$,

(M5) $s_{A,I}l_A = r_A$,

(M6) $a_{A,B,C}((\rho \otimes \sigma) \otimes \tau) = (\rho \otimes (\sigma \otimes \tau))a_{A',B',C'}$,

(M7) $r_A \rho = (\rho \otimes 1_I)r_{A'}$,

(M8) $s_{A,B}(\sigma \otimes \rho) = (\rho \otimes \sigma)s_{A',B'}$.

Remark that the validity of an equation containing morphism compositions includes that they are defined on both sides.

An immediate consequence of the conditions above is the validity of

(M9) $\forall A, B \in |K| \ (a_{I,A,B}(l_A \otimes 1_B) = l_{A \otimes B})$,

(M10) $\forall A, B \in |K| \ (a_{A,B,I}r_{A \otimes B} = 1_A \otimes r_B)$,

(M11) $r_I = l_I$,

(M12) $s_{I,I} = 1_{I \otimes I}$.
(M13) \(\forall A \in |K| \) \((s_I,Ar_A = l_A)\),
(M14) \(\forall A \in |K| \) \((l_A \rho = (1_I \otimes \rho)l_{A'})\).

Using the denotation
\[
b_{A,B,C,D} := a_{A\otimes B,C,D}(a_{A,B,C}^{-1}(1_A \otimes s_{B,C})a_{A,C,B} \otimes 1_D)a_{A\otimes C,B,D}^{-1}
\]
one obtains the following properties for all objects \(A, A', B, B', C, C', D, D'\) of \(K\) and all morphisms \(\rho \in K[A, A'], \sigma \in K[B, B'], \lambda \in K[C, C'], \mu \in K[D, D']\):

(M15) \(b_{A,B,C,D}((\rho \otimes \sigma) \otimes (\lambda \otimes \mu)) = ((\rho \otimes \lambda) \otimes (\sigma \otimes \mu))b_{A',B',C',D'}\),

(M16) \(b_{A,I,I,B} = 1_{A\otimes I} \otimes 1_{I\otimes B}\),

(M17) \(b_{A,B,C,D}b_{A,C,B,D} = 1_{A\otimes B} \otimes 1_{C\otimes D}\),

(M18) \(b_{A,B,C,D}(s_{A,C} \otimes s_{B,D}) = s_{A\otimes B,C\otimes D}b_{C,D,A,B}\).

Obviously, all morphisms \(b_{A,B,C,D}\) are isomorphisms in the category \(K^\bullet\).

Definition 1.1 ([1]). A diagonal-terminal-symmetric category (shortly dts-category) \(K = (K^\bullet, d, t)\) is defined as a symmetric monoidal category endowed with morphism families

\[
d = (d_A : A \rightarrow A \otimes A \mid A \in |K|) \quad \text{and} \quad t = (t_A : A \rightarrow I \mid A \in |K|)
\]
satisfying the following conditions for all objects \(A, B, A' \in |K|\) and all morphisms \(\rho \in K[A, A']\).

Diagonality:

(D1) \(d_A(d_A \otimes 1_A) = d_A(1_A \otimes d_A)a_{A,A,A}\),
(D2) \(d_A s_{A,A} = d_A\),
(D3) \(d_A \otimes B = (d_A \otimes d_B)b_{A,A,B,B}\),
(D4) \(d_A(\rho \otimes \rho) = \rho d_{A'}\).

Terminality:

(T1) \(d_A(1_A \otimes t_A)r_A = 1_A\),
(T2) \(t_I = 1_I\),
(T3) \(\rho t_{A'} = t_A\).
Let A, A', B be arbitrary objects in K and let $\rho \in K[A, A']$ be any morphism in K. Then the properties

\[(D5) \quad d_A(d_A \otimes d_A) = d_A d_{A \otimes A},\]
\[(D6) \quad d_A(d_A \otimes d_A) = d_A(d_A \otimes d_A)b_{A, A, A, A},\]
\[(D7) \quad t_A d_I = d_A(t_A \otimes t_A),\]
\[(D9) \quad \rho d_A d_{A' \otimes A'} = d_A(\rho d_A \otimes d_A(\rho \otimes \rho)),\]
\[(T4) \quad d_A(t_A \otimes 1_A)l_A = 1_A,\]
\[(T5) \quad d_{A \otimes B}((1_A \otimes t_B)r_A \otimes (t_A \otimes 1_B)l_B) = 1_{A \otimes B},\]
\[(T6) \quad t_{A \otimes B} = (t_A \otimes t_B)t_{I \otimes I},\]
\[(T7) \quad r_I = t_{I \otimes I},\]
\[(T8) \quad d_A t_{A \otimes A} = t_A,\]
\[(T9) \quad \rho t_A d_I = d_A(\rho t_{A'} \otimes t_A)\]

are consequences of the conditions above ([1]).

The category Set of all total functions between arbitrary sets is a model of a dts-category by

$I := \{\emptyset\}, \quad A \otimes B := \{(a, b) \mid a \in A \land b \in B\},$
\[\rho \in \text{Set}[A, B] :\Leftrightarrow \rho = \{(a, b) \mid a \in A \land b = \rho(a) \in B\},\]
\[\forall a \in A \exists! b \in B (b = \rho(a)),\]
\[\rho \in \text{Set}[A, B], \quad \sigma \in \text{Set}[B, C] \Rightarrow \rho \circ \sigma = \{(a, c) \mid a \in A \land c = \sigma(\rho(a))\},\]
\[(a, c) \in \rho \circ \sigma \Leftrightarrow \exists b \in B ((a, b) \in \rho \land (b, c) \in \sigma),\]
\[\rho \in \text{Set}[A, B], \quad \rho' \in \text{Set}[A', B'] \Rightarrow \rho \otimes \rho' = \{((a, a'), \langle \rho(a), \rho'(a') \rangle) \mid a \in A, a' \in A'\},\]
\[a_{A, B, C} := \{(\langle a, b, c \rangle), \langle a, b, c \rangle) \mid a \in A, b \in B, c \in C\},\]
\[s_{A, B} := \{(\langle a, b, a \rangle) \mid a \in A, b \in B\},\]
\[r_A := \{(a, \emptyset, a) \mid a \in A\},\]
\[l_A := \{(\emptyset, a, a) \mid a \in A\},\]
\[d_A := \{(a, \langle a, a \rangle) \mid a \in A\},\]
\[t_A := \{(a, \emptyset) \mid a \in A\}.\]
Remark that I is a terminal object in any dts-category K and $(A \otimes B; p_{1}^{A,B}, p_{2}^{A,B})$ forms a categorical product of the objects A, B in the category K, where $p_{1}^{A,B} := (1_{A} \otimes t_{B})r_{A}$ and $p_{2}^{A,B} := (t_{A} \otimes 1_{B})l_{B}$.

Moreover, $d_{A}(\rho \otimes \sigma) = \rho d_{B}$ is equivalent to $\rho = \sigma$ for all $A, B \in |K|$ and all $\rho, \sigma \in K[A, B]$ because of

\[\sigma = \sigma d_{B}p_{2}^{B,B} = d_{A}(\sigma t_{B} \otimes \sigma)l_{B} = d_{A}(t_{A} \otimes \sigma)l_{B} = d_{A}(\rho t_{B} \otimes \sigma)l_{B} = \rho d_{B}p_{2}^{B,B} = \rho. \]

The morphisms $p_{1}^{A,B}$ and $p_{2}^{A,B}$ are called canonical projections in the category K.

Conditions (D9) and (T9) are equivalent to
\[\rho d_{A'} = d_{A}(\rho d_{A'} \otimes d_{A}(\rho \otimes \rho))p_{2}^{A',A'} \quad \text{and} \quad \rho t_{A'} = d_{A}(\rho t_{A'} \otimes t_{A})p_{2}^{I,I}, \]
respectively.

Definition 1.2. Let $K^{•}$ be again a symmetric monoidal category endowed with morphism families d and t as above. Then $K = (K^{•}, d, t)$ is called halfdiagonal-terminal-symmetric category (shortly hdts-category), if the conditions (D1), (D2), (D3), (D5), (D7), (T1), (T2), (T3) hold identically.

As above, the identities (T4), (T5), (T6), (T7), (T8), (T9) follow from the defining conditions in an hdts-category.

Definition 1.3. A diagonal-halfterminal-symmetric category (shortly dhts-category) ([3], [7], [10]) is defined as a sequence $K := (K^{•}; d, t, O, o)$ such that $K^{•}$ is again a symmetric monoidal category, d and t are families as above, O is a distinguished zero-object of $K^{•}, o : I \to O$ is a distinguished morphism of $K^{•}$, and the following equations are fulfilled for all objects $A, B, A', B' \in |K|$ and all morphisms $\rho \in K[A, A'], \ sigma \in K[B, B'], \ lambda \in K[A, O], \ k \in K[O, A]$

(D4), (T1), (T4), (T5), (T6), and

\[(o1) \quad t_{A}o = \lambda, \]
\[(o2) \quad (1_{A} \otimes t_{O})r_{A} = \kappa, \]
\[(O1) \quad A \otimes O = O \otimes A = O. \]
Remark that the conditions (D1), (D2), (D3), (D5), (D6), (D7), (D9), (T2), (T7), (T8), (T9), and (B1) are consequences of the other conditions ([3], [7], [10]).

Formulas (o1), (o2), and (O1) explain that the morphism sets \(K[A, O] \) and \(K[O, A] \) both consist of exactly one element \(o_{A,O} \) and \(o_{O,A} \), respectively, and \(O \) is a zero object in \(K \). In any dhts-category there is a so-called zero-morphism \(o_{A,B} \) to each pair of objects \(A, B \in |K| \) with the properties

\[
\begin{align*}
(\text{o3}) \quad & \forall \rho \in K[A, A'], \sigma \in K[B, B'] \ (\rho o_{A,B} = o_{A',B'} \land o_{A,B} \sigma = o_{A,B'}), \\
(\text{o4}) \quad & \forall \xi, \eta \in K \ (o_{A,B} \otimes \xi = o_{A,B} = \eta \otimes o_{A,B}), \\
(\text{o5}) \quad & o_{O,A} = (1_A \otimes o_{O}) r_A = (o_{O} \otimes 1_A) l_A.
\end{align*}
\]

The category Par of all partial functions between arbitrary sets is a model of a dhts-category by the same fixations as above and \(O = \emptyset \) (the empty set) and \(o : I \to O, o_{A,O} : A \to O, o_{O,A} : O \to A, o_{A,B} : A \to B \) as the empty functions. The morphisms are given by

\[
\rho \in K[A, B] \iff \rho = \{(a, \rho(a)) \mid a \in D(\rho) \land \rho(a) \in B\}, \\
\forall a \in D(\rho) \subseteq A \exists! b \in B \ (b = \rho(a)).
\]

The following fact is of importance for the consideration of dhts-categories.

Lemma 1.4. Let \(K \) be a symmetric monoidal category endowed with morphism families \(d \) and \(t \) as above which fulfil conditions (D4), (T1) and (T6). Then conditions (T4) and (T5) are consequences of the validity of (D2) and (D3) in \(K \).

Proof: Using (T1) and (D2) one obtains (T4) as follows:

\[
1_A = d_A(1_A \otimes t_A)r_A = d_A s_{A,A}(1_A \otimes t_A)r_A = d_A(t_A \otimes 1_A)s_{I,A}r_A = d_A(t_A \otimes 1_A)l_A.
\]
The calculation
\[d_{A \otimes B}((1_A \otimes t_B)r_A \otimes (t_A \otimes 1_B)l_B) \]
\[= (d_A \otimes d_B)b_{A,A,B,B}((1_A \otimes t_B)r_A \otimes (t_A \otimes 1_B)l_B) \quad ((D3)) \]
\[= (d_A(1_A \otimes t_A) \otimes d_B(t_B \otimes 1_B)b_{A,I,B,I}(r_A \otimes l_B) \quad ((M15)) \]
\[= (d_A(1_A \otimes t_A) \otimes d_B(t_B \otimes 1_B))(1_{A \otimes I} \otimes 1_{I \otimes B})(r_A \otimes l_B) \quad ((M16)) \]
\[= (d_A(1_A \otimes t_A)r_A \otimes d_B(t_B \otimes 1_B)l_B) \quad ((F3)) \]
\[= 1_A \otimes 1_B \quad ((T1),(T4)) \]
shows the validity of (T5).

Let \(K \) be an arbitrary dhts-category. Then all morphisms \(\rho \in K[A,A'] \), \(A, A' \in \mathcal{K} \), fulfilling \(pt_A' = t_A \), form a subcategory \(M^K \) of \(K \) which is even a dts-category. Denoting by \(M^K \) the smallest dts-subcategory of \(M^K \) containing all morphisms of the families \(a, r, l, s, d, t \) one has
\[M^K \subseteq \text{Iso}(K) \subseteq \text{Cor}(K) \subseteq M^K, \]
where \(\text{Iso}(K) \) (\(\text{Cor}(K) \)) is a dts-subcategory of \(M^K \) generated by all isomorphisms (coretractions) of \(K \) together with all terminal morphisms of \(K \), since all coretractions and all terminal morphisms fulfil the condition (T3) (see [7], [10]).

The object \(I \in \mathcal{K} \) is a terminal object in the subcategories \(M^K \), \(\text{Iso}(K) \), \(\text{Cor}(K) \), and \(M^K \) but not in the whole category \(K \). Morphisms of the kind \(p^1_A = (1_A \otimes l_B)r_A \) and \(p^2_A = (t_A \otimes 1_B)l_B \) are called canonical projections again and \((A \otimes B; p^1_{A,B}, p^2_{A,B}) \) is a categorical product of \(A \) and \(B \) in \(M^K \), but in general not in the whole category.

Schreckenberger had proved ([7]) that
\[\rho \leq \sigma : \Leftrightarrow d_A(\rho \otimes \sigma) = \rho d_{A'} \quad (\rho, \sigma \in K[A,A']) \]
defines a partial order relation which is stable under composition and \(\otimes \)-operation. Moreover, the following are equivalent:
(i) \(d_A(\rho \otimes \sigma) = \rho d_{A'} \).

(ii) \(d_A(\rho \otimes \sigma)p_{A',A'}^2 = \rho \).

(iii) \(d_A(\sigma \otimes \rho)p_{A',A'}^1 = \rho \).

Hoehnke had shown ([3]) the validity of the identical implication

\[\rho = d_A(\rho \otimes \sigma)p_{A',A'}^2 \Rightarrow \rho = d_A(\rho \otimes \sigma)p_{A',A'}^1. \]

The relation \(\leq \) in the dhts-category \(\text{Par} \) describes exactly the usual inclusion \(\subseteq \).

Morphisms \(e_A \in K[A,A] \) of any dhts-category \(K \) fulfilling \(e_A \leq 1_A \) for any \(A \in |K| \) are called subidentities ([7]). Especially, for each \(\rho \in K[A,B] \), the morphism

\[\alpha(\rho) := d_A(\rho \otimes 1_A)p_{B,A}^2 = d_A(1_A \otimes \rho)p_{A,B}^1 \]

is a subidentity of \(A \in |K| \), since

\[
d_A(d_A(\rho \otimes 1_A)p_{B,A}^2 \otimes 1_A)p_{B,A}^{A,A} = d_A(\rho \otimes d_A(1_A \otimes 1_A))a_{B,A,A}(p_{B,A}^{B,A} \otimes 1_A)p_{B,A}^2
\]

\[
= d_A(\rho \otimes d_A(1_B \otimes p_{B,A}^{A,A}))p_{B,A}^2
\]

\[
= d_A(\rho \otimes d_A)p_{B,A}^2 = d_A(\rho \otimes 1_A)p_{B,A}^2.
\]

Important properties of subidentities are described in [7], [13], [15].

Definition 1.5. A diagonal-halfterminal-symmetric category with diagonal inversion \(\nabla \) (shortly dht\(\nabla \)-category, [10]) is, by definition, a sequence \(K := (K^*,d,t,\nabla,O,o) \) such that \((K^*,d,t,O,o) \) is a dhts-category endowed with a morphism family \(\nabla = (\nabla_A| A \in |K|) \) satisfying the following for all \(A \in |K| \):

\[
(\nabla 1) \quad \nabla_A = 1_A,
\]

\[
(\nabla 2) \quad \nabla_A d_A d_{A \otimes A} = d_{A \otimes A}(\nabla_A d_A \otimes 1_{A \otimes A}).
\]

The category \(\text{Par} \) is also a model of a dht\(\nabla \)-category, where

\[\nabla_A := \{(a,a)| a \in A\}, \quad A \in |\text{Par}|. \]
The properties

\((D8)\) \(\nabla d_A = d_{A \otimes A}(\nabla_A \otimes \nabla_A)\),

\((D9')\) \(\rho d_A' = d_A(\rho d_A' \otimes d_A(\rho \otimes \rho))\),

\((T9')\) \(\rho t_A' = d_A(\rho t_A' \otimes t_A)\),

\((\nabla 3)\) \(a_{A,A,A}(\nabla_A \otimes 1_A)\nabla_A = (1_A \otimes \nabla_A)\nabla_A\),

\((\nabla 4)\) \(s_{A,A} \nabla_A = \nabla_A\),

\((\nabla 5)\) \(\nabla_{A \otimes B} = b_{A,B,A,B}(\nabla_A \otimes \nabla_B)\),

\((\nabla 6)\) \(\nabla d_A = (d_A \otimes 1_A) a_{A,A,A}^{-1}(1_A \otimes \nabla_A)\),

\((\nabla 7)\) \(\nabla d_A = (1_A \otimes d_A) a_{A,A,A}(\nabla_A \otimes 1_A)\),

\((\nabla 8)\) \(\nabla d_A = (d_A \otimes d_A)\nabla_{A \otimes A}\),

\((\nabla 9)\) \(\nabla_A \rho d_A' = d_{A \otimes A}(\nabla_A \rho \otimes (\rho \otimes \rho))\),

\((\nabla 9')\) \(\nabla_A \rho = d_{A \otimes A}(\nabla_A \rho \otimes (\rho \otimes \rho))\),

\((\nabla 10)\) \(\nabla_{A \otimes A} \nabla_A = (\nabla_A \otimes \nabla_A)\nabla_A\),

\((D\nabla)\) \(\rho = d_A(\rho \otimes \rho)\nabla_A\)

follow from the axioms and the other properties of a dht\(\nabla\)-s-category for all \(A, A', B \in |K|\) and all \(\rho \in K[A,A']\) (see [13]).

By the definition of the partial order relation, \((T9)\) is equivalent to \(\rho t_A' \leq t_A\), \((\nabla 2)\) is equivalent to \(\nabla_A d_A \leq 1_{A^2}\), and \((\nabla 9)\) is equivalent to \(\nabla_A \rho \leq (\rho \otimes \rho)\nabla_A'\) for \(\rho \in K[A,A']\).

Moreover, one has the following important property in any dht\(\nabla\)-category \(K\) ([11]):

\((P\nabla)\) \(\forall A, A' \in |K| \forall \rho, \sigma \in K[A,A'] (d_A(\rho \otimes \sigma)p_{A,A}' = \rho \leftrightarrow d_A(\rho \otimes \sigma)\nabla_A' = \rho)\).

In any dht\(\nabla\)-category, conditions \((D9)\), \((T9)\), and \((\nabla 9)\) result in \((D9')\), \((T9')\), and \((\nabla 9')\), respectively.

2. hdht\(\nabla\)-categories

Definition 2.1 ([10]). A sequence \(K = (K^\bullet; d, t, \nabla, o)\) is called halfdiagonal-halfterminal-symmetric monoidal category with diagonal inversion \(\nabla\) (shortly hdht\(\nabla\)-category), iff \(K^\bullet\) is a symmetric monoidal category as above,
are families of morphisms of K, and $o : I \to O$ ($I \neq O \in |K|$) is a distinguished morphism of K such that for all objects and all morphisms of the underlying category K the conditions

(D1), (D2), (D3), (D5), (D7), (D8),

(T1), (T2), (T6), (T9'),

(ν1), (ν2), (ν3), (ν4), (ν5), (Dν),

(o1), (o2), (O1),

and

(*1) $d_A(\rho \otimes \rho')ν_Bd_B(\sigma \otimes \sigma')ν_C$

$= d_A(d_A(\rho \otimes \rho')ν_Bd_B(\sigma \otimes \sigma')ν_C \otimes d_A(\rhoσ \otimes \rho'σ')ν_C)ν_C$

are fulfilled.

The system of axioms given in this definition is free of contradictions, because the category Rel of all binary relations between sets is a model of it, i.e. Rel fulfils all the axioms of an $\text{hdht}ν$-category, where $|\text{Rel}|$ is the class of all sets, the morphisms are characterized by

$\rho \in \text{Rel}[A, A'] :⇔ \rho = \{(a, a') \mid a \in D(\rho) \subseteq A \land a' \in W(\rho) \subseteq A' \land H(a, a')\}$,

where $H(x, y)$ is a sentence form in two variables, the distinguished objects are $I = \{\emptyset\}$ and $O = \emptyset$, the operation \otimes for objects is given as in Set, the composition and the \otimes-operation of morphisms are described by

$\rho \in \text{Rel}[A, B], \sigma \in \text{Rel}[B, C] \Rightarrow \rho \circ \sigma = \{(a, c) \mid \exists b \in B (\{(a, b) \in \rho \land (b, c) \in \sigma\}\}$,

$\rho \in \text{Rel}[A, B], \rho' \in \text{Rel}[A', B'] \Rightarrow \rho \otimes \rho' = \{((a, a'), (b, b')) \mid (a, b) \in \rho \land (a', b') \in \rho'\}$,

and the morphisms of the families $a, r, l, s, b, d, t, ν, (0_{A,B} \mid A, B \in |\text{Rel}|)$ are as in Par.

Lemma 2.2. The relation \leq defined by

$\rho \leq \sigma :⇔ d_A(\rho \otimes \sigma)ν_B = \rho$

is a partial order relation in any $\text{hdht}ν$-symmetric category which is compatible with composition and \otimes-operation for morphisms. Moreover, the greatest
lower bound of two morphisms $\lambda, \mu \in K[A, B]$ with respect to the canonical order relation \leq is given by

$$d_A(\lambda \otimes \mu) \nabla_B = \inf \{\lambda, \mu\}.$$

Proof. Condition $(D\nabla)$ shows the reflexivity of \leq. The relation is antisymmetric because of

$$\rho \leq \sigma \land \sigma \leq \rho \Rightarrow \sigma = d_A(\sigma \otimes \rho) \nabla_B$$

$$= d_A s_A A(\sigma \otimes \rho) \nabla_B \quad ((D2))$$

$$= d_A(\rho \otimes \sigma) s_B B \nabla_B \quad ((M8))$$

$$= d_A(\rho \otimes \sigma) \nabla_B \quad ((\nabla4))$$

$$= \rho.$$

The implication

$$\rho \leq \sigma \land \sigma \leq \tau \Rightarrow \rho = d_A(\rho \otimes \sigma) \nabla_B$$

$$= d_A(\rho \otimes d_A(\sigma \otimes \tau) \nabla_B) \nabla_B$$

$$= d_A(1_A \otimes d_A)(\rho \otimes (\sigma \otimes \tau))(1_B \otimes \nabla_B) \nabla_B$$

$$= d_A(d_A \otimes 1_A)((\rho \otimes \sigma) \otimes \tau)a_{B,B,B}^{-1}(1_B \otimes \nabla_B) \nabla_B \quad ((M6), (D1))$$

$$= d_A(d_A(\rho \otimes \sigma) \otimes \tau)(\nabla_B \otimes 1_B) \nabla_B \quad ((\nabla3))$$

$$= d_A(d_A(\rho \otimes \sigma) \nabla_B \otimes \tau) \nabla_B$$

$$= d_A(\rho \otimes \tau) \nabla_B$$

$$\Rightarrow \rho \leq \tau$$

yields the transitivity of the relation \leq.

Now suppose $\rho \leq \sigma, \lambda \leq \mu$, and $\text{cod} \rho = \text{dom} \lambda$. Then $\rho \lambda \leq \sigma \mu$ follows via the definition of \leq by condition $(\ast 1)$:
\(\rho \leq \sigma \land \lambda \leq \mu \Rightarrow \)
\[d_A(\rho \otimes \sigma)\nabla_B = \rho \land d_B(\lambda \otimes \mu)\nabla_C = \lambda\]

\[\Rightarrow \rho \lambda = d_A(\rho \otimes \sigma)\nabla_B d_B(\lambda \otimes \mu)\nabla_C\]

\[= d_A(d_A(\rho \otimes \sigma)\nabla_B d_B(\lambda \otimes \mu)\nabla_C \otimes d_A(\rho \lambda \otimes \mu)\nabla_C)\nabla_C\]

\[= d_A(d_A(\rho \lambda \otimes \rho \lambda) \otimes \sigma \mu)\nabla_C^{-1}(1_C \otimes \nabla_C)\nabla_C\]

\[= d_A(\rho \lambda \otimes \sigma \mu)\nabla_C\]

\[\Rightarrow \rho \lambda \leq \sigma \mu.\]

For morphisms \(\rho \leq \sigma \in K[A, B]\) and \(\rho' \leq \sigma' \in K[A', B']\) one obtains

\[\rho = d_A(\rho \otimes \sigma)\nabla_B\] and \(\rho' = d_A(\rho' \otimes \sigma')\nabla_{B'},\]

hence

\[\rho \otimes \rho' = d_A(\rho \otimes \sigma)\nabla_B \otimes d_A(\rho' \otimes \sigma')\nabla_{B'}\]

\[= (d_A \otimes d_A')(\rho \otimes \sigma) \otimes (\rho' \otimes \sigma')(\nabla_B \otimes \nabla_{B'})\]

\[= d_A(d_A(\rho' \otimes \sigma'(\sigma \otimes \sigma'))b_{B', B'}(\nabla_B \otimes \nabla_{B'}) (D3), (M18))\]

\[= d_A(d_A(\rho' \otimes (\sigma \otimes \sigma'))\nabla_{B \otimes B'} (\nabla5)),\]

therefore \(\rho \otimes \rho' \leq \sigma \otimes \sigma'\).

Now let \(\lambda\) and \(\mu\) be morphisms from \(A\) into \(B\). Then

\[d_A(\lambda \otimes \mu)\nabla_B = d_A(d_A(\lambda \otimes \lambda)\nabla_B \otimes \mu)\nabla_B (D4)\]

\[= d_A(\lambda \otimes d_A(\lambda \otimes \mu)\nabla_B)\nabla_B (D1), (M6), (\nabla3)\]

\[= d_A s_A, A(\lambda \otimes d_A(\lambda \otimes \mu)\nabla_B)\nabla_B (D2)\]

\[= d_A(d_A(\lambda \otimes \mu)\nabla_B \otimes \lambda) s_{B, B'} \nabla_B (M8)\]

\[= d_A(d_A(\lambda \otimes \mu)\nabla_B \otimes \lambda)\nabla_B (\nabla4)\]
hence $d_A(\lambda \otimes \mu)\nabla B \leq \lambda$. In the same manner one shows $d_A(\lambda \otimes \mu)\nabla B \leq \mu$.

Further let be $\tau \leq \lambda$ and $\tau \leq \mu$. Then it follows
\[
\tau = d_A(\tau \otimes \mu)\nabla B = d_A(d_A(\tau \otimes \lambda)\nabla B \otimes \mu)\nabla B = d_A(\tau \otimes d_A(\lambda \otimes \mu)\nabla B)\nabla B,
\]
therefore $\tau \leq d_A(\lambda \otimes \mu)\nabla B$. Consequently, $d_A(\lambda \otimes \mu)\nabla B$ is the greatest lower bound of λ and μ with respect to the partial order relation.

Lemma 2.3. Any $hdht\nabla s$-category K has the following properties:
\[
\forall A \in |K| \quad (\nabla A d_a \leq 1_{A \otimes A}),
\]
\[
\forall A, A' \in |K| \forall \rho \in K[A, A'] \quad (\rho d_A \leq d_A(\rho \otimes \rho)),
\]
\[
\forall A, A' \in |K| \forall \rho \in K[A, A'] \quad (\nabla A \rho \leq (\rho \otimes \rho)\nabla A').
\]

Proof. Composing the equation in condition (D2) with $\nabla A, A'$ and using (\nabla 1) one obtains
\[
\nabla A d_A = \nabla A d_A d_A A \nabla A' A' = d_A A (\nabla A d_A \otimes 1_{A \otimes A'}) \nabla A \otimes A,
\]
hence $\nabla A d_A \leq 1_{A \otimes A}$ by the definition of \leq.

Condition (D\nabla) gives rise to
\[
\rho d_A = (d_A(\rho \otimes \rho)\nabla A') d_A = (d_A(\rho \otimes \rho))(\nabla A' d_A) \leq d_A(\rho \otimes \rho) \quad \text{and}
\]
\[
\nabla A \rho = \nabla A (d_A(\rho \otimes \rho)\nabla A') = (\nabla A d_A)((\rho \otimes \rho)\nabla A') \leq (\rho \otimes \rho)\nabla A',
\]
respectively.

Corollary 2.4. By the definition of the partial order relation,
\[
(D9') \quad \rho d_{A'} = d_A(\rho d_{A'} \otimes d_A(\rho \otimes \rho))\nabla A' \otimes A' \quad \text{and}
\]
\[
(\nabla 9') \quad \nabla A \rho = d_A(\nabla A \rho \otimes (\rho \otimes \rho))\nabla A'
\]
are identities in each $hdht\nabla s$-category K.

Theorem 2.5. Let K be an $hdht\nabla s$-category as defined above. Then the class
\[
F^K := \{\rho \in K \mid d_{\text{dom}, \rho}(\rho \otimes \rho) = \rho d_{\text{cod}, \rho}\}
\]
of so-called functional morphisms forms an $hdht\nabla s$-subcategory F^K of K which is even a $dht\nabla s$-category.

The partial order relation in the $dht\nabla s$-symmetric category F^K is the restriction of \leq in the $hdht\nabla s$-symmetric category K.
Proof. The conditions (D5), (D7), and (D8) show that the class F^K contains all morphisms of the families d, t, ∇, respectively.

Let $\rho \in K[A, B]$ be an isomorphism in K. Then there is a $\rho^{-1} \in K[B, A]$ such that $\rho^{-1}d_A \leq d_B(\rho^{-1} \otimes \rho^{-1})$ and $\rho d_B \leq d_A(\rho \otimes \rho)^{-1}$, hence $d_A(\rho \otimes \rho)^{-1} \leq \rho d_B \leq d_A(\rho \otimes \rho)$, i.e. $pd_B = d_A(\rho \otimes \rho)$. Therefore, each isomorphism of K belongs to F^K, especially, all identities and all morphisms of the families $a, a^{-1}, r, r^{-1}, l, l^{-1}, s, s^{-1}, b, b^{-1}$ are in F^K. All zero morphisms $o_{A,B}, A, B \in |K|$, $o = o_{I,O}$, are elements of F^K since $o_A \cdot o_Bd_B = o_{A,B} = d_A(o_{A,B} \otimes o_{A,B})$.

Let $\rho \in K[A, B] \cap F^K$ and $\sigma \in K[B, C] \cap F^K$. Then

\[(\rho \sigma)d_C = \rho(\sigma d_C) = \rho(d_B(\sigma \otimes \sigma)) = (\rho d_B)(\sigma \otimes \sigma) = d_A(\rho \otimes \rho)(\sigma \otimes \sigma) = d_A(\rho \sigma \otimes \rho \sigma),\]

hence F^K is closed under composition.

If $\rho \in K[A, B]$ and $\rho' \in K[A', B']$ are morphisms of F^K, then $(\rho \otimes \rho') \in K[A \otimes A', B \otimes B']$ is in F^K too, since

\[d_{B \otimes B'} = (\rho \otimes \rho')(d_B \otimes d_B')b_{B, B', B'} \]
\[= (d_A(\rho \otimes \rho) \otimes d_{A'}(\rho' \otimes \rho'))b_{B, B', B'} \]
\[= (d_A \otimes d_{A'})(b_{A, A', A'}((\rho \otimes \rho' \otimes (\rho \otimes \rho'))) \]
\[= d_{A \otimes A'}((\rho \otimes \rho' \otimes (\rho \otimes \rho')).\]

With respect to the axioms of an hdht∇s-category, which are identities only, and because of the defining condition of $F^K \subseteq K$, one has a ∇ht∇s-category E^K.

The partial order relation \leq in K is defined by $\rho \leq \sigma \iff \rho = d_A(\rho \otimes \sigma)\nabla_{A'}$ for morphisms $\rho, \sigma \in K[A, A']$. By property (P$\nabla$), this condition is equivalent to $\rho = d_A(\rho \otimes \sigma)p_{A, A'}^{\rho}$ for morphisms ρ, σ of F^K, hence $\rho \leq \sigma$ with respect to the partial order relation in the ∇ht∇s-category E^K.

Proposition 2.6. All morphisms $\rho \in K[A, B], A, B \in |K|$, of an hdht$\nabla$s-category K fulfilling the condition $\rho d_B = t_A$ (so-called total morphisms) form a symmetric monoidal subcategory $T^K\bullet$ which contains all coretractions of K and all morphisms $t_A, A \in |K|$.

Moreover, $T^K := (T^K\bullet, d, t)$ is an hdts-category.

Proof. Obviously, all identity morphisms $1_A, A \in |K|$, are in T^K.

Because of

\[\rho t_B = t_A \land \sigma t_C = t_B \Rightarrow (\rho \sigma)t_C = \rho(\sigma t_C) = \rho t_B = t_A,\]
and
\[\rho t_B = t_A \land \rho' t_B = t_A' \Rightarrow (\rho \otimes \rho') t_B \otimes B = (\rho \otimes \rho') (t_B \otimes t_B') t_I \otimes I = (t_A \otimes t_A') t_I \otimes I = t_A \otimes A' \]

the class \(T^K \) is closed under composition and \(\otimes \)-operation.

Let \(\rho \in K[A, B] \) be a coretraction in \(K \). Then there is \(\rho^* \in K[B, A] \) such that \(\rho \rho^* = 1_A \). So, one has (see [6], p. 12)

\[\rho t_B = 1_A \rho t_B = d_A (1_A \otimes t_A) r_A \rho t_B \]

\[= d_A (\rho t_B \otimes t_A) r_I \]

\[= d_A (\rho \otimes \rho) (t_B \otimes \rho^* t_A) r_I \]

\[\geq \rho d_B (t_B \otimes 1_B) (1_I \otimes \rho^* t_A) l_I \]

\[= \rho d_B (t_B \otimes 1_B) l_B \rho^* t_A \]

\[\geq \rho t_B \geq \rho t_B \]

therefore \(\rho t_B = t_A \), hence \(\rho \in T^K \).

Because of \(t_A l_I = t_A 1_I = t_A \), \(A \in |K| \), \(d_A \nabla A = 1_A \), \(A \in |K| \), and each isomorphism is just a coretraction, all morphisms of the families \(a, a^{-1}, r, r^{-1}, l, l^{-1}, s, s^{-1}, b, b^{-1}, d, \) and \(t \) belong to \(T^K \).

Since arbitrary suitable morphisms and objects of \(K \) fulfil the identities

(D1), (D2), (D3), (D4), (D5), (D6), (D7), (T1), (T2), (T3), (T4), (T5), (T6), (T7), (T8), (T9), the sequence \((T^K, d, t)\) is an hdts-category.

Corollary 2.7. Let \(K \) be any hdht\(\nabla \)s-category. Then all morphisms of the families \(1, a, r, s, b, d, t, \nabla, \) and \((o A, B \mid A, B \in |K|) \) possess all properties of such morphisms in a dht\(\nabla \)s-category, especially the following identities are valid:

(1) \(\nabla_I I = 1_I \otimes I \),
(2) \(t_I \otimes I = \nabla_I = l_I = r_I = d_I^{-1} \),
(3) \(d_I = r_I^{-1} = l_I^{-1} \),
(4) \(d_I \otimes d_I = d_I \otimes I \).
Lemma 2.8. Let K be an hdt-∇s-category. Then one has

$$(T9) \quad \rho_{tA'}d_I = d_A(\rho_{tA'} \otimes t_A)$$

for all objects $A, A' \in |K|$ and all morphisms $\rho \in K[A,A']$.

Moreover:

(i) \quad $\forall A, A' \in |K| \ \forall \rho \in K[A,A'] \ (\rho d_{A'} = d_A(\rho \otimes \rho))$

(ii) \quad $\forall A, A' \in |K| \ \forall \rho \in K[A,A'] \ (\nabla_A \rho d_{A'} = d_A(\nabla_A \rho \otimes (\rho \otimes \rho) \nabla_{A'})$

(iii) \quad $\forall A, A' \in |K| \ \forall \rho \in K[A,A'] \ (\rho t_A = d_A(\rho t_A \otimes t_A))$

Proof. Because of $\nabla_I d_I = 1_I \otimes I$ and $\nabla_I = r_I = t_I \otimes I$ the equation

$$d_A(\rho_{tA'} \otimes t_A) = d_A(\rho_{tA'} \otimes t_A) \nabla_I d_I = d_A(\rho_{tA'} \otimes t_A) r_I d_I$$

$$= d_A(1_A \otimes t_A) d_A(\rho_{tA'} d_I) = \rho_{tA'} d_I$$

is valid for each $\rho \in K[A,A']$ and all $A, A' \in |K|$, hence K fulfils condition (T9).

The condition (T9') is equivalent to (T9), since

$$d_A(\rho_{tA'} \otimes t_A) = \rho_{tA'} \nabla_I$$

by $d_I \nabla_I = 1_I$ and

$$d_A(\rho_{tA'} \otimes t_A) \nabla_I = \rho_{tA'} \nabla_I = d_A(\rho_{tA'} \otimes t_A) = \rho_{tA'} d_I$$

by $\nabla_I d_I = 1_I \otimes I$, hence property (iii) is shown.

The implications (i) and (ii) are satisfied because of the general property

$$\xi d_B = d_A(\xi \otimes \eta) \Rightarrow \xi = \xi d_B \nabla_B = d_A(\xi \otimes \eta) \nabla_B.$$

Remark 2.9. The opposite of the implications (i) and (ii), respectively, is not true in general, since there are counterexamples in Rel.
Remark 2.10. As in any $dht\nabla s$-category, the morphisms

$$p_{1}^{A,B} := (1_A \otimes t_B)r_A \in K[A \otimes B, A] \cap F^K,$$

$$p_{2}^{A,B} := (t_A \otimes 1_B)l_B \in K[A \otimes B, B] \cap F^K$$

of an arbitrary $hdht\nabla s$-category K are called canonical projections again and one has

$$\nabla_A = \inf \left\{ p_{1A}^{A,A}, p_{2A}^{A,A} \right\} = d_A \left(p_{1A}^{A,A} \otimes p_{2A}^{A,A} \right) \nabla_A$$

for all $A \in |K|$.

Remark that $(A \otimes B; p_{1A}^{A,B}, p_{2A}^{A,B})$ is not a categorical product in the whole category K, but in the subcategory T^K.

The family $\nabla = (\nabla_A \mid A \in |K|)$ is uniquely determined by the family $d = (d_A \mid A \in |K|)$ and the conditions $(\nabla 1)$ and $(\nabla 2)$.

Lemma 2.11. Let K be an arbitrary $hdht\nabla s$-category. Then there holds:

\[\forall A, B, C \in |K| \forall \rho, \rho' \in K[A, B] \forall \sigma, \sigma' \in K[B, C] \ (d_A(\rho \otimes \rho') \nabla_B = \rho \land d_B(\sigma \otimes \sigma') \nabla_C = \sigma) \Rightarrow d_A(\rho \otimes \rho') \nabla_B = \rho \land d_A(\sigma \otimes \sigma') \nabla_B = \sigma, \]

\[\forall A, B \in |K| \forall \rho, \sigma \in K[A, B] \ (d_A(\rho \otimes \sigma) \nabla_B = \rho \land d_A(\sigma \otimes \sigma) = \sigma d_B) \Rightarrow d_A(\rho \otimes \rho) \nabla_B = \rho, \]

\[\forall A, B \in |K| \forall \rho, \sigma \in K[A, B] \ (d_A(\rho \otimes \sigma) \nabla_B = \rho \land d_A(\sigma \otimes \sigma) = \sigma d_B) \Rightarrow d_A(\rho \otimes \sigma) \nabla_B = \rho, \]

\[\forall A, B \in |K| \forall \rho \in K[A, A] \ (d_A(1_A \otimes \rho) \nabla_A = \rho \land d_A(1_A \otimes \rho) \nabla_A = \rho) \Rightarrow d_A(1_A \otimes \rho) p_1^{A,A} = d_A(1_A \otimes \rho) p_2^{A,A} = \rho. \]

Proof. Axiom $(\ast 1)$ implies condition $(\ast 2)$ because of $\rho \leq \rho' \land \sigma \leq \sigma' \Rightarrow \rho \sigma \leq \rho' \sigma'$. To show $(\ast 3)$ not that $d_A(\rho \otimes \sigma) \nabla_B = \rho \Leftrightarrow \rho \leq \sigma$ and $d_A(\sigma \otimes \sigma) = \sigma d_B \Leftrightarrow \sigma \in F^K$. So one obtains
The property (∗6) arises from (∗3) because of $1_A ∈ F^K$ for each $A ∈ |K|$. □

\[d_A(\rho ⊗ \sigma)p^{B,B}_i = d_A(d_A(\rho ⊗ \sigma)\nabla_B ⊗ \sigma)p^{B,B}_i \]
\[= d_A(\rho ⊗ d_A(\sigma ⊗ \sigma))a_{B,B}(\nabla_B ⊗ 1_B)p^{B,B}_i \quad (\rho ≤ \sigma) \]
\[= d_A(\rho ⊗ \sigma)(1_B ⊗ d_B)a_{B,B}(\nabla_B ⊗ 1_B)p^{B,B}_i \quad (\sigma ∈ F_K) \]
\[= d_A(\rho ⊗ \sigma)\nabla_B d_Bp^{B,B}_i \quad ((∗4)) \]
\[= d_A(\rho ⊗ \sigma)\nabla_B = \rho \quad ((∗7)) \]

with respect to the axioms of an $hdht\nabla s$-category.

The property (∗4) is a consequence of (D9') and (T9'):

\[\rho = \rho d_Bp^{B,B}_i ≤ d_A(\rho ⊗ \rho)p^{B,B}_i \quad (\rho t_B ≤ t_A) \]
\[\Rightarrow d_A(\rho ⊗ \rho)p^{B,B}_i = d_A(\rho ⊗ \rho t_B)r_B ≤ d_A(\rho ⊗ t_A)r_B = d_A(1_A ⊗ t_A)r_A\rho = \rho \]
\[\land \quad d_A(\rho ⊗ \rho)p^{B,B}_i = d_A(\rho t_B ⊗ \rho)l_B ≤ d_A(t_A ⊗ \rho)l_B = d_A(t_A ⊗ 1_A)l_A\rho = \rho. \]

(∗5): Using the previous results and the assumption one obtains

\[d_A(\rho ⊗ \rho) = d_A(d_A(\rho ⊗ \sigma)p^{B,B}_2 ⊗ d_A(\rho ⊗ \sigma))p^{B,B}_2 \]
\[= d_A(d_A ⊗ d_A)((\rho ⊗ \sigma) ⊗ (\rho ⊗ \sigma))(p^{B,B}_2 ⊗ p^{B,B}_2) \]
\[= d_A(d_A ⊗ d_A)((\rho ⊗ \sigma) ⊗ (\rho ⊗ \sigma))(p^{B,B}_2 ⊗ p^{B,B}_2) \]
\[= d_A(d_A(\rho ⊗ \sigma) ⊗ d_A(\sigma ⊗ \sigma))b_{B,B,B,B}(p^{B,B}_2 ⊗ p^{B,B}_2) \]
\[= d_A(d_A(\rho ⊗ \rho) ⊗ \sigma d_B)p^{B,B,B,B}_2 \]
\[= d_A(\rho ⊗ d_A(\rho ⊗ \sigma))a_{B,B,B,B}(1_B ⊗ d_B)p^{B,B,B,B}_2 \]
\[= d_A(\rho ⊗ d_A(\rho ⊗ \sigma))a_{B,B,B,B}(p^{B,B}_2 ⊗ d_B) \]
\[= d_A(\rho ⊗ d_A(\rho ⊗ \sigma))(1_B ⊗ p^{B,B}_2) \]
\[= d_A(\rho ⊗ d_A(\rho ⊗ \sigma))p^{B,B}_2 d_B \]
\[= d_A(\rho ⊗ \rho)p^{B,B}_2 d_B = \rho d_B. \]
Lemma 2.12. Let K be a monoidal symmetric category endowed with morphisms families $d, t, (o_{A,B} | A, B \in |K|)$, and ∇ such that all axioms of an $hdht\nabla s$-category without (*1) are fulfilled. Moreover, let the condition (*2) be valid. Then K is an $hdht\nabla s$-category in the defined sense as above.

Proof. It remains to show the condition (*1):

\[
d_A(d_A(\rho \otimes \rho')\nabla_B d_B(\sigma \otimes \sigma')\nabla_C & \otimes d_A(\rho \otimes \rho'\sigma')\nabla_C)\nabla_C
\]
\[
= d_A(\rho \otimes d_A(\rho \otimes \rho'\sigma')\nabla_C)\nabla_C
\]
\[
= d_A(1_A \otimes d_A)(\rho \otimes (\rho \otimes \rho'\sigma'))(1_C \otimes \nabla_C)\nabla_C
\]
\[
= d_A(d_A \otimes 1_A)a_{A,A,A}^{-1}(\rho \otimes (\rho \otimes \rho'\sigma'))(1_C \otimes \nabla_C)\nabla_C
\]
\[
= d_A(d_A \otimes 1_A)((\rho \otimes \rho \otimes \rho'\sigma')a_{C,C,C}^{-1}(1_C \otimes \nabla_C)\nabla_C
\]
\[
= d_A(d_A)(\rho \otimes \rho \otimes \rho'\sigma')(\nabla_C \otimes 1_C)\nabla_C
\]
\[
= d_A(d_A)(\rho \otimes \rho \otimes \rho'\sigma')(\nabla_C \otimes \rho'\sigma')\nabla_C
\]
\[
= d_A(\rho \otimes \rho'\sigma')\nabla_C
\]
\[
= \rho \sigma
\]
\[
= d_A(\rho \otimes \rho'\sigma')\nabla_C
\]
\[
= (D)\nabla
\]
algebras and there are free many-sorted algebras to each generating set with respect to this variety. Especially, there are free $\text{hdht}\nabla$-theories, i.e. free algebraic theories for relational structures, by analogy with the existence of free algebraic theories for partial algebras ([3], [10]).

Lemma 2.13. In any $\text{hdht}\nabla$-symmetric category the following conditions are fulfilled for arbitrary morphisms ρ, σ:

(j) $\rho \sigma = 1_A \wedge \sigma \rho \leq 1_B \Rightarrow d_A(\rho \otimes \rho) = \rho d_B$

(jj) $\rho \sigma \leq 1_A \wedge \sigma \rho = 1_B \Rightarrow \nabla A \rho = (\rho \otimes \rho) \nabla B$

Proof. To show (j) we use at first the known property $\sigma d_A \leq d_B(\sigma \otimes \sigma)$. Further,

$$d_A(\rho \otimes \rho) = \rho \sigma d_A(\rho \otimes \rho) \leq \rho d_B(\sigma \otimes \sigma)(\rho \otimes \rho) \leq \rho d_B(1_B \otimes 1_B) = \rho d_B,$$

hence $d_A(\rho \otimes \rho) = \rho d_B$ by $\rho d_B \leq d_A(\rho \otimes \rho)$.

In a similar way one shows the statement (jj), namely because of $\nabla B \sigma \leq (\sigma \otimes \sigma) \nabla A$ and

$$(\rho \otimes \rho) \nabla B = (\rho \otimes \rho) \nabla B \sigma \rho \leq (\rho \sigma \otimes \rho \sigma) \nabla A \rho \leq \nabla A \rho \leq (\rho \otimes \rho) \nabla B$$

one has $\nabla A \rho = (\rho \otimes \rho) \nabla B$.

Definition 2.14. Morphisms $e \in K[A, A] \subseteq K$ with the property $e \leq 1_A$, i.e. $e = d_A(1_A \otimes e) \nabla A$, are called subidentities in K (compare with ([7])).

Proposition 2.15 (cf. [7]). For each morphism $\rho : A \to B$, $A, B \in |K|$, the morphism

$$\alpha(\rho) := d_A(\rho \otimes 1_A)p_{2, A}^{B, A}$$

is a subidentity of A in K and there holds $\alpha(\rho) \rho = \rho$. Each subidentity e of K fulfills $d_A(e \otimes e) = e d_A$, therefore the subidentities of K are the subidentities of E^K and satisfy the following conditions for all suitable morphisms and objects of K:
(e1) \(e \leq 1_A \quad \Rightarrow \quad ee = e \),
(e2) \(e_1, e_2 \leq 1_A \quad \Rightarrow \quad e_1 e_2 = e_2 e_1 = \inf \{e_1, e_2\} \),
(e3) \(e_1 \leq e_2 \leq 1_A \quad \Leftrightarrow \quad e_1 = e_1 e_2 \leq 1_A \),
(e4) \(e \leq 1_A \quad \Leftrightarrow \quad \alpha(e) = e \),
(e5) \(e \leq 1_A \quad \Rightarrow \quad ed_A = d_A(e \otimes e) = d_A(e \otimes 1_A) \),
(e6) \(e \leq 1_A \quad \Rightarrow \quad \nabla_A e = (e \otimes e)\nabla_A = (e \otimes 1_A)\nabla_A \),
(e7) \(\rho, \sigma \in K[A,B] \quad \Rightarrow \quad \alpha(\rho)\sigma = d_A(\rho \otimes \sigma)p_{B,2}^{A,B} \land \alpha(\sigma)\rho = d_A(\rho \otimes \sigma)p_{1,B}^{B,B} \),
(e8) \(\alpha(\rho)\sigma = \rho \quad \Rightarrow \quad \rho \leq \sigma \),
(e9) \(e\rho = \rho \land e \leq 1_A \quad \Leftrightarrow \quad \alpha(\rho) \leq e \leq 1_A \),
(e10) \(\text{cod}\rho = \text{dom}\sigma \quad \Rightarrow \quad \alpha(\rho\sigma) \leq \alpha(\rho) \),
(e11) \(e \leq 1_A \quad \Rightarrow \quad \alpha(e\rho) \leq e \),
(e12) \(e \leq 1_A \quad \Rightarrow \quad \alpha(e\rho) = e\alpha(\rho) \),
(e13) \(\rho \leq \sigma \quad \Rightarrow \quad \alpha(\rho) \leq \alpha(\sigma) \),
(e14) \(\text{cod}\rho = \text{dom}\sigma \quad \Rightarrow \quad \rho\alpha(\sigma) \leq \alpha(\rho\sigma)\rho \),
(e15) \(\text{cod}\rho = \text{dom}\sigma \quad \Rightarrow \quad \alpha(\rho\sigma) = \alpha(\rho\alpha(\sigma)) \).

Proof. Because of \(pt_B \leq t_A \) one obtains
\[
\alpha(\rho) = d_A(\rho \otimes 1_A)p_{2,A}^{B,A} = d_A(pt_B \otimes 1_A)l_A \leq d_A(t_A \otimes 1_A)l_A = 1_A.
\]
Using the definition of \(\alpha(\rho) \), properties \((M14), (M15)\), and \(\alpha(\rho) \leq 1_A \) one receives \(\alpha(\rho)\rho = \rho \) via
\[
\alpha(\rho)\rho = d_A(\rho \otimes 1_A)p_{2,A}^{B,A} \rho = d_A(\rho \otimes \rho)p_{2,B}^{B,B} \geq \rho d_B p_{2,B}^{B,B} = \rho = 1_A \rho \geq \alpha(\rho)\rho.
\]
Because of \(e \leq 1_A \) the property \(d_A(e \otimes e) = ed_A \) is a consequence of Lemma 2.11, \((*5)\), and the subidentities of \(K \) are exactly the subidentities of \(E^K \), therefore, all subidentities have the properties \((e1), (e2), (e3)\) and \((e4)\) (cf. [7]).
To show property (e5) use the property (e4) $e \leq 1_A \Rightarrow e = \alpha(e) = d_A(e \otimes 1_A)p_{2,A}^A$:

$$d_A(e \otimes e) = d_A(e \otimes d_A(e \otimes 1_A)p_{2,A}^A) = d_A(d_A(e \otimes e) \otimes 1_A)a_{A,A,A}^{-1}(1_A \otimes p_{2,A}^A)$$

$$= d_A(d_A(e \otimes e)p_{1,A}^A \otimes 1_A) = d_A(e \otimes 1_A).$$

The second part of the property (e6) is a consequence of (e2) and (e5) owing to $\nabla_A d_A \leq 1_A \otimes A$, $(e \otimes e) \leq 1_A \otimes A$, and $(e \otimes 1_A) \leq 1_A \otimes A$:

$$d_A(e \otimes e) = d_A(e \otimes 1_A) \Rightarrow \nabla_A d_A(e \otimes e) = \nabla_A d_A(e \otimes 1_A)$$

$$\Rightarrow (e \otimes e) \nabla_A d_A = (e \otimes 1_A) \nabla_A d_A \nabla_A \quad ((e2))$$

$$\Rightarrow (e \otimes e) \nabla_A d_A \nabla_A = (e \otimes 1_A) \nabla_A d_A \nabla_A \nabla_A$$

$$\Rightarrow (e \otimes e) \nabla_A = (e \otimes 1_A) \nabla_A. \quad ((\nabla 1))$$

Because of $(e \otimes e) \leq 1_A \otimes A$ and $\nabla_A d_A \leq 1_A \otimes A$ one has

$$(e \otimes e) \nabla_A = (e \otimes e) \nabla_A d_A \nabla_A$$

$$(d_A \nabla_A = 1_A)$$

$$= \nabla_A d_A(e \otimes e) \nabla_A$$

$$(e2)$$

$$= \nabla_A e. \quad ((\nabla D))$$

Property (e7) is an immediate consequence of $(M7)$, $(M14)$, $(M8)$, and $(M13)$.

To show (e8) take into consideration

$$\rho = \alpha(\rho) \sigma \leq 1_A \sigma = \sigma.$$

(e9): Assuming $e \rho = \rho$, $e \leq 1_A$ one gets

$$\alpha(\rho) = \alpha(e \rho) = d_A(e \rho \otimes 1_A)p_{2,B}^{A} = d_A(e \rho t_B \otimes 1_A)l_A \leq d_A(e t_A \otimes 1_A)l_A = \alpha(e) = e.$$

Conversely, $\alpha(\rho) \leq e \leq 1_A$ yields

$$\rho = \alpha(\rho) \rho \leq e \rho \leq 1_A \rho = \rho.$$

Condition (e10) is true, since

$$\alpha(\rho \sigma) = d_A(\rho \sigma \otimes 1_A)p_{2}^{C,A} = d_A(\rho \sigma t_C \otimes 1_A)l_A \leq d_A(\rho t_B \otimes 1_A)l_A = \alpha(\rho).$$
Condition (e11) arises from $\alpha(e\rho) \leq \alpha(e) = e$.

Property (e12) is a consequence of (e5) as follows:

\[
\alpha(e\rho) = d_A(e\rho \otimes 1_A)p_{2B}^{A} = d_A(e \otimes 1_A)(\rho \otimes 1_A)p_{2B}^{A}
\]
\[
= d_A(e \otimes e)(\rho \otimes 1_A)p_{2B}^{A} = e \rho d_A(\rho \otimes 1_A)p_{2B}^{A}
\]
\[
= e \alpha(\rho).
\]

To show (e13) use the definitions of \leq and $\alpha(\rho)$ ($\rho : A \rightarrow B$, $\sigma : B \rightarrow C$):

\[
\alpha(\rho) = d_A(\rho \otimes 1_A)p_{2B}^{A} = d_A(d_A(\rho \otimes \sigma)\nabla B \otimes 1_A)p_{2B}^{A}
\]
\[
\leq d_A(d_A(\rho \otimes \sigma)p_{2B}^{B} \otimes 1_A)p_{2B}^{A} \quad (\nabla B \leq p_{2B}^{B})
\]
\[
= d_A(d_A(\rho \otimes 1_A)p_{2B}^{B} \otimes 1_A)p_{2B}^{A} \quad ((M14))
\]
\[
= d_A(\alpha(\rho)\sigma \otimes 1_A)p_{2B}^{A}
\]
\[
\leq d_A(\sigma \otimes 1_A)p_{2B}^{A} = \alpha(\sigma). \quad (\alpha(\rho)\sigma \leq \sigma)
\]

Assertion (e14) is true since

\[
\rho \alpha(\sigma) = \rho d_B(\sigma \otimes 1_B)p_{2C}^{B} \leq d_A(\rho \sigma \otimes \rho)p_{2C}^{B} = \alpha(\rho\sigma)\rho.
\]

Condition (e15) follows by (e10), (e13), and (e14):

Let ρ and σ be as above. Then one has

\[
\alpha(\rho\sigma) = \alpha(\rho \alpha(\sigma)\sigma) \leq \alpha(\rho\alpha(\sigma)),
\]

hence

\[
\alpha(\rho\sigma) \leq \alpha(\rho\alpha(\sigma)) \leq \alpha(\rho(\alpha(\sigma)\rho) \leq \alpha(\rho(\alpha(\sigma)\alpha(\rho))
\]

\[
\leq \alpha(\alpha(\rho\sigma)1_A) = \alpha(\rho\sigma) = \alpha(\rho\sigma).
\]

Remark that, as an easy example shows, in Red the opposite implication to (e8) is not true: Let be given $A = \{a\}, B = \{b_1, b_2\}, \rho = \{(a, b_1)\}, \sigma = \{(a, b_1), (a, b_2)\}$. Then $\rho \leq \sigma$ and $\rho < \alpha(\rho)\sigma = \sigma$.

Furthermore, the equality in (e14) is not true in general. For this let be the sets A and B as above and let be $C = \{x\}$. For the relations σ as above and $\tau = \{(b_1, x)\}$ one obtains $\sigma\alpha(\tau) = \{(a, b_1)\}$ and $\sigma\tau = \{(a, x)\}$, hence $\alpha(\sigma\tau) = \{(a, a)\}$, consequently $\alpha(\sigma\tau)\sigma = \{(a, b_1), (a, b_2)\} = \sigma \neq \sigma\alpha(\tau)$.
References

Received 6 December 2000