ON THE STRUCTURE OF HALFDIAGONAL-HALFTERMINAL-SYMMETRIC CATEGORIES WITH DIAGONAL INVERSIONS

HANS-JÜRGEN VOGEL

University of Potsdam Institute of Mathematics PF 60 15 53 D-14415 Potsdam, Germany e-mail: vogel@rz.uni-potsdam.de

Dedicated to Hans-Jürgen Hoehnke on the occasion of his 75th birthday.

Abstract

The category of all binary relations between arbitrary sets turns out to be a certain symmetric monoidal category $\underline{\mathrm{Rel}}$ with an additional structure characterized by a family $d = (d_A : A \to A \otimes A \mid A \in |\mathrm{Rel}|)$ of diagonal morphisms, a family $t = (t_A : A \to I \mid A \in |\mathrm{Rel}|)$ of terminal morphisms, and a family $\nabla = (\nabla_A : A \otimes A \to A \mid A \in |\mathrm{Rel}|)$ of diagonal inversions having certain properties. Using this properties in [11] was given a system of axioms which characterizes the abstract concept of a halfdiagonal-halfterminal-symmetric monoidal category with diagonal inversions $(hdht\nabla s\text{-category})$. Besides of certain identities this system of axioms contains two identical implications. In this paper is shown that there is an equivalent characterizing system of axioms for $hdht\nabla s$ -categories consisting of identities only. Therefore, the class of all small $hdht\nabla$ -symmetric categories (interpreted as hetrogeneous algebras of a certain type) forms a variety and hence there are free theories for relational structures.

Keywords: halfdiagonal-halfterminal-symmetric category, diagonal inversion, partial order relation, subidentity, equation.

2000 AMS Subject Classification: 18D10, 18B10, 18D20, 08A05, 08A02.

1. Defining conditions

Let K^{\bullet} be any symmetric monoidal category in the sense of Eilenberg-Kelly ([2]) with the object class |K|, the morphism class K, the distinguished object I, the bifunctor $\otimes: K \times K \to K$, and the families a, r, l, s of isomorphisms of K such that the following axioms are valid for all objects and all morphisms of K. By K[A,B] we denote the set of all morphisms $\rho \in K$ with the domain (source) dom $\rho = A$ and the codomain (target) codom $\rho = B$.

Bifunctor properties:

(F1)
$$\operatorname{dom}(\rho \otimes \rho') = \operatorname{dom} \rho \otimes \operatorname{dom} \rho',$$

(F2)
$$\operatorname{codom}(\rho \otimes \rho') = \operatorname{codom} \rho \otimes \operatorname{codom} \rho',$$

$$(F3) 1_{A \otimes B} = 1_A \otimes 1_B,$$

(F4)
$$(\rho \otimes \rho')(\sigma \otimes \sigma') = \rho \sigma \otimes \rho' \sigma'.$$

Conditions of monoidality:

(M1)
$$a_{A,B,C\otimes D}a_{A\otimes B,C,D} = (1_A \otimes a_{A,B,C})a_{A,B\otimes C,D}(a_{A,B,C} \otimes 1_D),$$

(M2)
$$a_{A,I,B}(r_A \otimes 1_B) = 1_A \otimes l_B,$$

(M3)
$$a_{A,B,C}s_{A\otimes B,C}a_{C,A,B} = (1_A \otimes s_{B,C})a_{A,C,B}(s_{A,C} \otimes 1_B),$$

$$(M4) s_{A,B}s_{B,A} = 1_{A \otimes B},$$

$$(M5) s_{A,I}l_A = r_A,$$

(M6)
$$a_{A,B,C}((\rho \otimes \sigma) \otimes \tau) = (\rho \otimes (\sigma \otimes \tau))a_{A',B',C'},$$

(M7)
$$r_A \rho = (\rho \otimes 1_I) r_{A'},$$

(M8)
$$s_{A,B}(\sigma \otimes \rho) = (\rho \otimes \sigma)s_{A',B'}.$$

Remark that the validity of an equation containing morphism compositions includes that they are defined on both sides.

An immediate consequence of the conditions above is the validity of

(M9)
$$\forall A, B \in |K| (a_{I,A,B}(l_A \otimes 1_B) = l_{A \otimes B}),$$

(M10)
$$\forall A, B \in |K| (a_{A,B,I}r_{A\otimes B} = 1_A \otimes r_B),$$

(M11)
$$r_I = l_I$$
,

$$(M12) s_{I,I} = 1_{I \otimes I},$$

(M13)
$$\forall A \in |K| \ (s_{I,A}r_A = l_A),$$

(M14)
$$\forall A \in |K| \ (l_A \rho = (1_I \otimes \rho) l_{A'}).$$

Using the denotation

$$b_{A,B,C,D} := a_{A \otimes B,C,D}(a_{A,B,C}^{-1}(1_A \otimes s_{B,C})a_{A,C,B} \otimes 1_D)a_{A \otimes C,B,D}^{-1}$$

one obtains the following properties for all objects A, A', B, B', C, C', D, D' of K and all morphisms $\rho \in K[A, A'], \ \sigma \in K[B, B'], \ \lambda \in K[C, C'], \ \mu \in K[D, D']$:

(M15)
$$b_{A,B,C,D}((\rho \otimes \sigma) \otimes (\lambda \otimes \mu) = ((\rho \otimes \lambda) \otimes (\sigma \otimes \mu)b_{A',B',C'D'},$$

(M16)
$$b_{A,I,I,B} = 1_{A \otimes I} \otimes 1_{I \otimes B},$$

(M17)
$$b_{A,B,C,D}b_{A,C,B,D} = 1_{A\times B} \otimes 1_{C\otimes D}$$
,

(M18)
$$b_{A,B,C,D}(s_{A,C} \otimes s_{B,D}) = s_{A \otimes B,C \otimes D} b_{C,D,A,B}.$$

Obviously, all morphisms $b_{A,B,C,D}$ are isomorphims in the category K^{\bullet} .

Definition 1.1 ([1]). A diagonal-terminal-symmetric category (shortly dts-category) $\underline{K} = (K^{\bullet}, d, t)$ is defined as a symmetric monoidal category endowed with morphism families

$$d = (d_A : A \to A \otimes A \mid A \in |K|)$$
 and $t = (t_A : A \to I \mid A \in |K|)$

satisfying the following conditions for all objects $A, B, A' \in |K|$ and all morphisms $\rho \in K[A, A']$.

Diagonality:

(D1)
$$d_A(d_A \otimes 1_A) = d_A(1_A \otimes d_A)a_{A,A,A},$$

(D2)
$$d_A s_{A,A} = d_A,$$

(D3)
$$d_{A\otimes B} = (d_A \otimes d_B)b_{A,A,B,B},$$

(D4)
$$d_A(\rho \otimes \rho) = \rho d_{A'}.$$

Terminality:

$$(T1) d_A(1_A \otimes t_A)r_A = 1_A,$$

$$(T2) t_I = 1_I,$$

(T3)
$$\rho t_{A'} = t_A.$$

Let A, A', B be arbitrary objects in K and let $\rho \in K[A, A']$ be any morphism in K. Then the properties

(D5)
$$d_A(d_A \otimes d_A) = d_A d_{A \otimes A},$$

(D6)
$$d_A(d_A \otimes d_A) = d_A(d_A \otimes d_A)b_{A,A,A,A},$$

(D7)
$$t_A d_I = d_A(t_A \otimes t_A),$$

(D9)
$$\rho d_{A'} d_{A' \otimes A'} = d_A (\rho d_{A'} \otimes d_A (\rho \otimes \rho)),$$

$$(T4) d_A(t_A \otimes 1_A)l_A = 1_A,$$

(T5)
$$d_{A\otimes B}((1_A\otimes t_B)r_A\otimes (t_A\otimes 1_B)l_B)=1_{A\otimes B},$$

$$(T6) t_{A \otimes B} = (t_A \otimes t_B) t_{I \otimes I},$$

$$(T7) r_I = t_{I \otimes I},$$

$$(T8) d_A t_{A \otimes A} = t_A,$$

(T9)
$$\rho t_{A'} d_I = d_A (\rho t_{A'} \otimes t_A)$$

are consequences of the conditions above ([1]).

The category Set of all total functions between arbitrary sets is a model of a dts-category by

$$\begin{split} I := \{\emptyset\}, \quad A \otimes B := \{\langle a, b \rangle | \ a \in A \ \land \ b \in B\}, \\ \rho \in Set[A, B] : \Leftrightarrow \rho = \{(a, b) \mid a \in A \ \land \ b = \rho(a) \in B\}, \\ \forall \ a \in A \ \exists !!! \ b \in B \ (b = \rho(a)), \\ \rho \in Set[A, B], \ \sigma \in Set[B, C] \ \Rightarrow \ \rho \circ \sigma := \{(a, c) \mid a \in A \ \land \ c = \sigma(\rho(a))\}, \\ (a, c) \in \rho \circ \sigma \Leftrightarrow \exists \ b \in B \ ((a, b) \in \rho \ \land \ (b, c) \in \sigma), \\ \rho \in Set[A, B], \rho' \in Set[A', B'] \Rightarrow \rho \otimes \rho' := \{(\langle a, a' \rangle, \langle \rho(a), \rho'(a') \rangle) \mid a \in A, a' \in A'\}, \\ a_{A,B,C} := \{(\langle a, \langle b, c \rangle \rangle, \langle \langle a, b \rangle, c \rangle) \mid a \in A, \ b \in B, \ c \in C\}, \\ s_{A,B} := \{(\langle a, b \rangle, \langle b, a \rangle) \mid a \in A, \ b \in B\}, \\ r_{C} := \{(\langle a, b \rangle, \langle b, a \rangle) \mid a \in A, \ b \in B\}, \end{split}$$

$$r_A := \{(\langle a, \emptyset \rangle, a) \mid a \in A\},\$$

$$l_A := \{ (\langle \emptyset, a \rangle, a) \mid a \in A \},$$

$$d_A := \{(a, \langle a, a \rangle) \mid a \in A\},\$$

$$t_A := \{(a, \emptyset) \mid a \in A\}.$$

Remark that I is a terminal object in any dts-category K and $(A \otimes B; p_1^{A,B}, p_2^{A,B})$ forms a categorical product of the objects A, B in the category K, where $p_1^{A,B} := (1_A \otimes t_B)r_A$ and $p_2^{A,B} := (t_A \otimes 1_B)l_B$.

Moreover, $d_A(\rho \otimes \sigma) = \rho d_B$ is equivalent to $\rho = \sigma$ for all $A, B \in |K|$

and all $\rho, \sigma \in K[A, B]$ because of

$$\sigma = \sigma d_B p_2^{B,B} = d_A(\sigma t_B \otimes \sigma) l_B = d_A(t_A \otimes \sigma) l_B$$
$$= d_A(\rho t_B \otimes \sigma) l_B = d_A(\rho \otimes \sigma) p_2^{B,B} = \rho d_B p_2^{B,B} = \rho.$$

The morphisms $p_1^{A,B}$ and $p_2^{A,B}$ are called $canonical\ projections$ in the category K.

Conditions (D9) and (T9) are equivalent to

$$\rho d_{A'} = d_A(\rho d_{A'} \otimes d_A(\rho \otimes \rho)) p_2^{A',A'} \text{ and } \rho t_{A'} = d_A(\rho t_{A'} \otimes t_A) p_2^{I,I}, \text{respectively.}$$

Definition 1.2. Let K^{\bullet} be again a symmetric monoidal category endowed with morhism families d and t as above. Then $\underline{K} = (K^{\bullet}, d, t)$ is called halfdiagonal-terminal-symmetric category (shortly hdts-category), if the conditions

$$(D1)$$
, $(D2)$, $(D3)$, $(D5)$, $(D7)$, $(T1)$, $(T2)$, $(T3)$ hold identically.

As above, the identities (T4), (T5), (T6), (T7), (T8), (T9) follow from the defining conditions in an hdts-category.

Definition 1.3. A diagonal-halfterminal-symmetric category (shortly dhts-category) ([3], [7], [10]) is defined as a sequence $\underline{K} := (K^{\bullet}; d, t, O, o)$ such that K^{\bullet} is again a symmetric monoidal category, d and t are families as above, O is a distinguished zero-object of K^{\bullet} , $o: I \to O$ is a distinguished morphism of K^{\bullet} , and the following equations are fulfilled for all objects $A, B, A', B' \in |K|$ and all morphisms $\rho \in K[A, A'], \ \sigma \in K[B, B'], \ \lambda \in$ $K[A, O], \ \kappa \in K[O, A]$:

- (o1) $t_A o = \lambda$,
- (o2) $(1_A \otimes t_O)r_A = \kappa$,
- (O1) $A \otimes O = O \otimes A = O$.

Remark that the conditions

(D1), (D2), (D3), (D5), (D6), (D7), (D9), (T2), (T7), (T8), (T9), and

(B1)
$$b_{A,B,C,D}(1_{A\otimes C}\otimes t_{B\otimes D})r_{A\otimes C}=(1_A\otimes t_B)r_A\otimes (1_C\otimes t_D)r_C,$$

(B2)
$$b_{A,B,C,D}(t_{A\otimes C}\otimes 1_{B\otimes D})l_{B\otimes D}=(t_A\otimes 1_B)l_B\otimes (t_C\otimes 1_D)l_D$$
 are consequences of the other conditions ([3], [7], [10]).

Formulas (o1), (o2), and (O1) explain that the morphism sets K[A, O] and K[O, A] both consist of exactly one element $o_{A,O}$ and $o_{O,A}$, respectively, and O is a zero object in K. In any dhts-category there is a so-called zero-morphism $o_{A,B}$ to each pair of objects $A, B \in |K|$ with the properties

(o3)
$$\forall \rho \in K[A, A'], \ \sigma \in K[B, B'] \ (\rho o_{A,B} = o_{A',B} \land o_{A,B} \sigma = o_{A,B'}),$$

(o4)
$$\forall \xi, \eta \in K \ (o_{A,B} \otimes \xi = o_{A,B} = \eta \otimes o_{A,B}),$$

(o5)
$$o_{O,A} = (1_A \otimes t_O)r_A = (t_O \otimes 1_A)l_A.$$

The category Par of all partial functions between arbitrary sets is a model of a dhts-category by the same fixations as above and $O = \emptyset$ (the empty set) and $o: I \to O, \ o_{A,O}: A \to O, \ o_{O,A}: O \to A, \ o_{A,B}: A \to B$ as the empty functions. The morphisms are given by

$$\rho \in K[A, B] \quad :\Leftrightarrow \quad \rho = \{(a, \rho(a)) \mid a \in D(\rho) \land \rho(a) \in B\},$$

$$\forall \ a \in D(\rho) \subseteq A \ \exists !! \ b \in B \ (b = \rho(a)).$$

The following fact is of importance for the consideration of dhts-categories.

Lemma 1.4. Let \underline{K} be a symmetric monoidal category endowed with morphism families d and t as above which fulfil conditions (D4), (T1) and (T6). Then conditions (T4) and (T5) are consequences of the validity of (D2) and (D3) in \underline{K} .

Proof. Using (T1) and (D2) one obtains (T4) as follows:

$$1_A = d_A(1_A \otimes t_A)r_A = d_A s_{A,A}(1_A \otimes t_A)r_A = d_A(t_A \otimes 1_A)s_{I,A}r_A = d_A(t_A \otimes 1_A)l_A.$$

The calculation

 $d_{A\otimes B}((1_A\otimes t_B)r_A\otimes (t_A\otimes 1_B)l_B)$

$$= (d_A \otimes d_B)b_{A,A,B,B}((1_A \otimes t_B)r_A \otimes (t_A \otimes 1_B)l_B) \tag{(D3)}$$

$$= (d_A(1_A \otimes t_A) \otimes d_B(t_B \otimes 1_B))b_{A,I,I,B}(r_A \otimes l_B) \tag{(M15)}$$

$$= (d_A(1_A \otimes t_A) \otimes d_B(t_B \otimes 1_B))(1_{A \otimes I} \otimes 1_{I \otimes B})(r_A \otimes l_B) \tag{(M16)}$$

$$= (d_A(1_A \otimes t_A) \otimes d_B(t_B \otimes 1_B))(r_A \otimes l_B) \tag{(F3)}$$

$$= (d_A(1_A \otimes t_A)r_A \otimes d_B(t_B \otimes 1_B)l_B) \tag{(F4)}$$

$$=1_A\otimes 1_B \tag{(T1),(T4)}$$

shows the validity of (T5).

Let \underline{K} be an arbitrary dhts-category. Then all morphisms $\rho \in K[A,A']$, $A,A' \in |K|$, fulfilling $\rho t_{A'} = t_A$, form a subcategory \underline{M}^K of \underline{K} which is even a dts-caregory. Denoting by \underline{M}_K the smallest dts-subcategory of \underline{M}^K containing all morphisms of the families a, r, l, s, d, t one has

$$\underline{M}_K \subseteq \underline{\mathrm{Iso}}(K) \subseteq \underline{\mathrm{Cor}}(K) \subseteq \underline{M}^K$$
,

where $\underline{\text{Iso}}(K)$ ($\underline{\text{Cor}}(K)$) is a dts-subcategory of \underline{M}^K generated by all isomorphisms (coretractions) of K together with all terminal morphisms of K, since all coretractions and all terminal morphisms fulfil the condition (T3) (see [7], [10]).

The object $I \in |K|$ is a terminal object in the subcategories \underline{M}_K , $\underline{\mathrm{Iso}}(K)$, $\underline{\mathrm{Cor}}(K)$, and \underline{M}^K but not in the whole category \underline{K} . Morphisms of the kind $p_1^{A,B} = (1_A \otimes t_B) r_A$ and $p_2^{A,B} = (t_A \otimes 1_B) l_B$ are called canonincal projections again and $(A \otimes B; \ p_1^{A,B}, p_2^{A,B})$ is a categorical product of A and B in \underline{M}^K , but in general not in the whole category.

Schreckenberger had proved ([7]) that

$$\rho \leq \sigma : \Leftrightarrow d_A(\rho \otimes \sigma) = \rho d_{A'} \qquad (\rho, \sigma \in K[A, A'])$$

defines a partial order relation which is stable under composition and \otimes -operation. Moreover, the following are equivaent:

(i)
$$d_A(\rho \otimes \sigma) = \rho d_{A'},$$

(ii)
$$d_A(\rho \otimes \sigma) p_2^{A',A'} = \rho,$$

(iii)
$$d_A(\sigma\otimes\rho)p_1^{A',A'}=\rho.$$

Hoehnke had shown ([3]) the validity of the identical implication

$$\rho = d_A(\rho \otimes \sigma) p_2^{A',A'} \Rightarrow \rho = d_A(\rho \otimes \sigma) p_1^{A',A'}.$$

The relation \leq in the dhts-category \underline{Par} describes exactly the usual inclusion \subset .

Morphisms $e_A \in K[A, A]$ of any dhts-category \underline{K} fulfilling $e_A \leq 1_A$ for any $A \in |K|$ are called subidentities ([7]). Especially, for each $\rho \in K[A, B]$, the morphism

$$\alpha(\rho) := d_A(\rho \otimes 1_A) p_2^{B,A} (= d_A(1_A \otimes \rho) p_1^{A,B})$$

is a subidentity of $A \in |K|$, since

$$d_{A}(d_{A}(\rho \otimes 1_{A})p_{2}^{B,A} \otimes 1_{A})p_{2}^{A,A} = d_{A}(\rho \otimes d_{A}(1_{A} \otimes 1_{A}))a_{B,A,A}(p_{2}^{B,A} \otimes 1_{A})p_{2}^{A,A}$$

$$= d_{A}(\rho \otimes d_{A})(1_{B} \otimes p_{2}^{A,A})p_{2}^{B,A}$$

$$= d_{A}(\rho \otimes d_{A}p_{2}^{A,A})p_{2}^{B,A} = d_{A}(\rho \otimes 1_{A})p_{2}^{B,A}.$$

Important properties of subidentities are described in [7], [13], [15].

Definition 1.5. A diagonal-halfterminal-symmetric category with diagonal inversion ∇ (shortly $dht\nabla s$ -category, [10]) is, by definition, a sequence $\underline{K} := (K^{\bullet}; d, t, \nabla, O, o)$ such that $(K^{\bullet}; d, t, O, o)$ is a dhts-category endowed with a morphism family $\nabla = (\nabla_A | A \in |K|)$ satisfying the following for all $A \in |K|$:

$$(\nabla 1)$$
 $d_A \nabla_A = 1_A$,

$$(\nabla 2) \qquad \nabla_A d_A d_{A \otimes A} = d_{A \otimes A} (\nabla_A d_A \otimes 1_{A \otimes A}).$$

The category Par is also a model of a $dht\nabla s$ -category, where

$$\nabla_A := \{ (\langle a, a \rangle, a) | a \in A \}, A \in |Par|.$$

The properties

(D8)
$$\nabla_A d_A = d_{A \otimes A} (\nabla_A \otimes \nabla_A),$$

(D9')
$$\rho d_{A'} = d_A(\rho d_{A'} \otimes d_A(\rho \otimes \rho)) \nabla_{A' \otimes A'},$$

(T9')
$$\rho t_{A'} = d_A(\rho t_{A'} \otimes t_A) \nabla_I,$$

$$(\nabla 3) \qquad a_{A,A,A}(\nabla_A \otimes 1_A)\nabla_A = (1_A \otimes \nabla_A)\nabla_A,$$

$$(\nabla 4)$$
 $s_{A,A}\nabla_A = \nabla_A,$

$$(\nabla 5) \qquad \nabla_{A \otimes B} = b_{A,B,A,B} (\nabla_A \otimes \nabla_B),$$

$$(\nabla 6) \qquad \nabla_A d_A = (d_A \otimes 1_A) a_{A,A,A}^{-1} (1_A \otimes \nabla_A),$$

$$(\nabla 7) \qquad \nabla_A d_A = (1_A \otimes d_A) a_{A,A,A} (\nabla_A \otimes 1_A),$$

$$(\nabla 8) \qquad \nabla_A d_A = (d_A \otimes d_A) \nabla_{A \otimes A},$$

$$(\nabla 9) \qquad \nabla_A \rho d_{A'} = d_{A \otimes A} (\nabla_A \rho \otimes (\rho \otimes \rho) \nabla_{A'}),$$

$$(\nabla 9') \qquad \nabla_A \rho = d_{A \otimes A} (\nabla_A \rho \otimes (\rho \otimes \rho) \nabla_{A'}) \nabla_{A'},$$

$$(\nabla 10) \quad \nabla_{A \otimes A} \nabla_A = (\nabla_A \otimes \nabla_A) \nabla_A,$$

$$(D\nabla) \qquad \rho = d_A(\rho \otimes \rho) \nabla_{A'}$$

follow from the axioms and the other properties of a $dht\nabla s$ -category for all $A, A', B \in |K|$ and all $\rho \in K[A, A']$ (see [13]).

By the definition of the partial order relation, (T9) is equivalent to $\rho t_{A'} \leq t_A$, ($\nabla 2$) is equivalent to $\nabla_A d_A \leq 1_{A^2}$, and ($\nabla 9$) is equivalent to $\nabla_A \rho \leq (\rho \otimes \rho) \nabla_{A'}$ for $\rho \in K[A, A']$.

Moreover, one has the following important property in any $dht\nabla s$ -category \underline{K} ([11]):

$$(P\nabla) \quad \forall A, A' \in |K| \ \forall \ \rho, \sigma \in K[A, A'] \ (d_A(\rho \otimes \sigma)p_2^{A', A'} = \rho \Leftrightarrow d_A(\rho \otimes \sigma)\nabla_{A'} = \rho).$$

In any $dht\nabla s$ -category, conditions (D9), (T9), and (∇ 9) result in (D9'), (T9'), and (∇ 9'), respectively.

2. $hdht\nabla s$ -categories

Definition 2.1 ([10]). A sequence $\underline{K} = (K^{\bullet}; d, t, \nabla, o)$ is called *halfdiagonal-halfterminal-symmetric monoidal category with diagonal inversion* ∇ (shortly $hdht\nabla s$ -category), iff K^{\bullet} is a symmetric monoidal category as above,

 $(d_A: A \to A \otimes A \mid A \in |K|), (t_A: A \to I \mid A \in |K|), (\nabla_A: A \otimes A \to A \mid A \in |K|)$ are families of morphisms of K, and $o: I \to O$ $(I \neq O \in |K|)$ is a distinguished morphism of K such that for all objects and all morphisms of the underlying category K the conditions

$$(\nabla 1)$$
, $(\nabla 2)$, $(\nabla 3)$, $(\nabla 4)$, $(\nabla 5)$, $(D\nabla)$,

and

(*1)
$$d_A(\rho \otimes \rho') \nabla_B d_B(\sigma \otimes \sigma') \nabla_C$$

$$= d_A(d_A(\rho \otimes \rho') \nabla_B d_B(\sigma \otimes \sigma') \nabla_C \otimes d_A(\rho \sigma \otimes \rho' \sigma') \nabla_C) \nabla_C$$

are fulfilled.

The system of axioms given in this definition is free of contradictions, because the category \underline{Rel} of all binary relations between sets is a model of it, i.e. \underline{Rel} fulfils all the axioms of an $hdht\nabla s$ -category, where |Rel| is the class of all sets, the morphisms are characterized by

$$\rho \in Rel[A, A'] :\Leftrightarrow \rho = \{(a, a') \mid a \in D(\rho) \subseteq A \land a' \in W(\rho) \subseteq A' \land H(a, a')\},\$$

where H(x,y) is a sentence form in two variables, the distinguished objects are $I = \{\emptyset\}$ and $O = \emptyset$, the operation \otimes for objects is given as in Set, the composition and the \otimes -operation of morphisms are described by

$$\rho \in Rel[A, B], \sigma \in Rel[B, C] \Rightarrow \rho \circ \sigma = \{(a, c) \mid \exists b \in B \ ((a, b) \in \rho \land (b, c) \in \sigma)\},\$$

$$\rho \in Rel[A, B], \rho' \in Rel[A', B'] \Rightarrow \rho \otimes \rho' = \{(\langle a, a' \rangle, \langle b, b' \rangle) \mid (a, b) \in \rho \land (a', b') \in \rho'\},$$

and the morphisms of the families $a, r, l, s, b, d, t, \nabla$, $(0_{A,B} \mid A, B \in |Rel|)$ are as in Par.

Lemma 2.2. The relation \leq defined by

$$\rho \leq \sigma : \Leftrightarrow d_A(\rho \otimes \sigma) \nabla_B = \rho$$

is a partial order relation in any $hdht\nabla$ -symmetric category which is compatible with composition and \otimes -operation for morphisms. Moreover, the greatest

lower bound of two morphisms λ , $\mu \in K[A, B]$ with respect to the canonical order relation \leq is given by

$$d_A(\lambda \otimes \mu) \nabla_B = \inf\{\lambda, \mu\}.$$

Proof. Condition $(D\nabla)$ shows the reflexivity of \leq . The relation is antisymmetric because of

$$\rho \leq \sigma \wedge \sigma \leq \rho \Rightarrow \sigma = d_A(\sigma \otimes \rho) \nabla_B
= d_A s_{A,A}(\sigma \otimes \rho) \nabla_B \qquad ((D2))
= d_A(\rho \otimes \sigma) s_{B,B} \nabla_B \qquad ((M8))
= d_A(\rho \otimes \sigma) \nabla_B \qquad ((\nabla 4))
= \rho.$$

The implication

$$\rho \leq \sigma \wedge \sigma \leq \tau \Rightarrow \rho = d_A(\rho \otimes \sigma) \nabla_B \\
= d_A(\rho \otimes d_A(\sigma \otimes \tau) \nabla_B) \nabla_B \\
= d_A(1_A \otimes d_A)(\rho \otimes (\sigma \otimes \tau))(1_B \otimes \nabla_B) \nabla_B \\
= d_A(d_A \otimes 1_A)((\rho \otimes \sigma) \otimes \tau) a_{B,B,B}^{-1}(1_B \otimes \nabla_B) \nabla_B \quad ((M6), (D1)) \\
= d_A(d_A(\rho \otimes \sigma) \otimes \tau)(\nabla_B \otimes 1_B) \nabla_B \quad ((\nabla 3)) \\
= d_A(d_A(\rho \otimes \sigma) \nabla_B \otimes \tau) \nabla_B \\
= d_A(\rho \otimes \tau) \nabla_B \\
\Rightarrow \rho \leq \tau$$

yields the transitivity of the relation \leq .

Now suppose $\rho \leq \sigma$, $\lambda \leq \mu$, and cod $\rho = \text{dom } \lambda$. Then $\rho \lambda \leq \sigma \mu$ follows via the definition of \leq by condition (*1):

$$\rho \leq \sigma \wedge \lambda \leq \mu \Rightarrow d_A(\rho \otimes \sigma) \nabla_B = \rho \wedge d_B(\lambda \otimes \mu) \nabla_C = \lambda$$

$$\Rightarrow \rho \lambda = d_A(\rho \otimes \sigma) \nabla_B d_B(\lambda \otimes \mu) \nabla_C$$

$$= d_A(d_A(\rho \otimes \sigma) \nabla_B d_B(\lambda \otimes \mu) \nabla_C \otimes d_A(\rho \lambda \otimes \sigma \mu) \nabla_C) \nabla_C$$

$$= d_A(\rho \lambda \otimes d_A(\rho \lambda \otimes \sigma \mu) \nabla_C) \nabla_C$$

$$= d_A(\rho \lambda \otimes \rho \lambda) \otimes \sigma \mu) a_{C,C,C}^{-1}(1_C \otimes \nabla_C) \nabla_C$$

$$= d_A(\rho \lambda \otimes \rho \lambda) \nabla_C \otimes \sigma \mu) \nabla_C$$

$$= d_A(\rho \lambda \otimes \sigma \mu) \nabla_C$$

$$\Rightarrow \rho \lambda \leq \sigma \mu.$$

For morphisms $\rho \leq \sigma \in K[A, B]$ and $\rho' \leq \sigma' \in K[A', B']$ one obtains

$$\rho = d_A(\rho \otimes \sigma) \nabla_B \text{ and } \rho' = d_{A'}(\rho' \otimes \sigma') \nabla_{B'},$$

hence

$$\rho \otimes \rho' = d_A(\rho \otimes \sigma) \nabla_B \otimes d_{A'}(\rho' \otimes \sigma') \nabla_{B'}
= (d_A \otimes d_{A'})((\rho \otimes \sigma) \otimes (\rho' \otimes \sigma'))(\nabla_B \otimes \nabla_{B'})
= d_{A \otimes A'}((\rho \otimes \rho') \otimes (\sigma \otimes \sigma'))b_{B,B',B,B'}(\nabla_B \otimes \nabla_{B'}) \quad ((D3), (M18))
= d_{A \otimes A'}((\rho \otimes \rho') \otimes (\sigma \otimes \sigma')) \nabla_{B \otimes B'} \quad ((\nabla 5)),$$

therefore $\rho \otimes \rho' < \sigma \otimes \sigma'$.

Now let λ and μ be morphisms from A into B. Then

$$d_{A}(\lambda \otimes \mu) \nabla_{B} = d_{A}(d_{A}(\lambda \otimes \lambda) \nabla_{B} \otimes \mu) \nabla_{B} \qquad ((D\nabla))$$

$$= d_{A}(\lambda \otimes d_{A}(\lambda \otimes \mu) \nabla_{B}) \nabla_{B} \qquad ((D1), (M6), (\nabla3))$$

$$= d_{A}s_{A,A}(\lambda \otimes d_{A}(\lambda \otimes \mu) \nabla_{B}) \nabla_{B} \qquad ((D2))$$

$$= d_{A}(d_{A}(\lambda \otimes \mu) \nabla_{B} \otimes \lambda)s_{B,B} \nabla_{B} \qquad ((M8))$$

$$= d_{A}(d_{A}(\lambda \otimes \mu) \nabla_{B} \otimes \lambda) \nabla_{B} \qquad ((\nabla4)),$$

hence $d_A(\lambda \otimes \mu)\nabla_B \leq \lambda$. In the same manner one shows $d_A(\lambda \otimes \mu)\nabla_B \leq \mu$.

Further let be $\tau \leq \lambda$ and $\tau \leq \mu$. Then it follows

$$\tau = d_A(\tau \otimes \mu) \nabla_B = d_A(d_A(\tau \otimes \lambda) \nabla_B \otimes \mu) \nabla_B = d_A(\tau \otimes d_A(\lambda \otimes \mu) \nabla_B) \nabla_B,$$

therefore $\tau \leq d_A(\lambda \otimes \mu) \nabla_B$. Consequently, $d_A(\lambda \otimes \mu) \nabla_B$ is the greatest lower bound of λ and μ with respect to the partial order relation.

Lemma 2.3. Any $hdht\nabla s$ -category \underline{K} has the following properties:

$$\forall A \in |K| \qquad (\nabla_A d_a \le 1_{A \otimes A}),$$

$$\forall A, A' \in |K| \ \forall \ \rho \in K[A, A'] \quad (\rho d_{A'} \le d_A(\rho \otimes \rho)),$$

$$\forall A, A' \in |K| \ \forall \ \rho \in K[A, A'] \quad (\nabla_A \rho < (\rho \otimes \rho) \nabla_{A'}).$$

Proof. Composing the equation in condition $(\nabla 2)$ with $\nabla_{A',A'}$ and using $(\nabla 1)$ one obtains

$$\nabla_A d_A = \nabla_A d_A d_{A \otimes A} \nabla_{A' \otimes A'} = d_{A \otimes A} (\nabla_A d_A \otimes 1_{A \otimes A}) \nabla_{A \otimes A},$$

hence $\nabla_A d_A \leq 1_{A \otimes A}$ by the definition of \leq .

Condition $(D\nabla)$ gives rise to

$$\rho d_{A'} = (d_A(\rho \otimes \rho) \nabla_{A'}) d_{A'} = (d_A(\rho \otimes \rho)) (\nabla_{A'} d_{A'}) \le d_A(\rho \otimes \rho) \quad \text{and}$$

$$\nabla_A \rho = \nabla_A (d_A(\rho \otimes \rho) \nabla_{A'}) = (\nabla_A d_A) ((\rho \otimes \rho) \nabla_{A'}) \le (\rho \otimes \rho) \nabla_{A'},$$

respectively.

Corollary 2.4. By the definition of the partial order relation,

(D9')
$$\rho d_{A'} = d_A(\rho d_{A'} \otimes d_A(\rho \otimes \rho)) \nabla_{A' \otimes A'}$$
 and

$$(\nabla 9') \quad \nabla_A \rho = d_{A \otimes A} (\nabla_A \rho \otimes (\rho \otimes \rho) \nabla_{A'}) \nabla_{A'}$$

are identities in each $hdht\nabla s$ -category K.

Theorem 2.5. Let \underline{K} be an $hdht\nabla s$ -category as defined above. Then the class

$$F^K := \{ \rho \in K \mid d_{\operatorname{dom} \rho}(\rho \otimes \rho) = \rho d_{\operatorname{cod} \rho} \}$$

of so-called functional morphisms forms an $hdht\nabla s$ -subcategory \underline{F}^K of \underline{K} which is even a $dht\nabla s$ -category.

The partial order relation in the $dht\nabla$ -symmetric category \underline{F}^K is the restriction of \leq in the $hdht\nabla$ -symmetric category K.

Proof. The conditions (D5), (D7), and (D8) show that the class F^K contains all morphisms of the families d, t, and ∇ , respectively.

Let $\rho \in K[A, B]$ be an isomorphism in \underline{K} . Then there is a $\rho^{-1} \in K[B, A]$ such that $\rho^{-1}d_A \leq d_B(\rho^{-1} \otimes \rho^{-1})$ and $\rho d_B \leq d_A(\rho \otimes \rho)$, hence $d_A(\rho \otimes \rho) \leq \rho d_B \leq d_A(\rho \otimes \rho)$, i.e. $\rho d_B = d_A(\rho \otimes \rho)$. Therefore, each isomorphism of \underline{K} belongs to F^K , especially, all identities and all morphisms of the families $a, a^{-1}, r, r^{-1}, l, l^{-1}, s, s^{-1}, b, b^{-1}$ are in F^K . All zero morphisms $o_{A,B}, A, B \in |K|, o = o_{I,O}$, are elements of F^K since $o_{A,B}d_B = o_{A,B\otimes B} = d_A(o_{A,B} \otimes o_{A,B})$.

Let $\rho \in K[A,B] \cap F^K$ and $\sigma \in K[B,C] \cap F^K$. Then

$$(\rho\sigma)d_C = \rho(\sigma d_C) = \rho(d_B(\sigma \otimes \sigma)) = (\rho d_B)(\sigma \otimes \sigma) = d_A(\rho \otimes \rho)(\sigma \otimes \sigma) = d_A(\rho \sigma \otimes \rho \sigma),$$

hence F^K is closed under composition.

If $\rho \in K[A, B]$ and $\rho' \in K[A', B']$ are morphisms of F^K , then $(\rho \otimes \rho') \in K[A \otimes A', B \otimes B']$ is in F^K too, since

$$(\rho \otimes \rho')d_{B \otimes B'} = (\rho \otimes \rho')(d_B \otimes d_{B'})b_{B,B,B',B'}$$

$$= (d_A(\rho \otimes \rho) \otimes d_{A'}(\rho' \otimes \rho')b_{B,B,B',B'}$$

$$= (d_A \otimes d_{A'})b_{A,A,A',A'}((\rho \otimes \rho') \otimes (\rho \otimes \rho'))$$

$$= d_{A \otimes A'}((\rho \otimes \rho') \otimes (\rho \otimes \rho')).$$

With respect to the axioms of an $hdht\nabla s$ -category, which are identities only, and because of the defining condition of $F^K\subseteq K$, one has a $dht\nabla s$ -category \underline{F}^K .

The partial order relation \leq in \underline{K} is defined by $\rho \leq \sigma \Leftrightarrow \rho = d_A(\rho \otimes \sigma)\nabla_{A'}$ for morphisms $\rho, \sigma \in K[A, A']$. By property $(P\nabla)$, this condition is equivalent to $\rho = d_A(\rho \otimes \sigma)p_2^{A',A'}$ for morphisms ρ, σ of F^K , hence $\rho \leq \sigma$ with respect to the partial order relation in the $dht\nabla s$ -category \underline{F}^K .

Proposition 2.6. All morphisms $\rho \in K[A, B]$, $A, B \in |K|$, of an $hdht\nabla s$ -category \underline{K} fulfilling the condition $\rho t_B = t_A$ (so-called total morphisms) form a symmetric monoidal subcategory $T^{K\bullet}$ which contains all coretractions of \underline{K} and all morphims t_A , $A \in |K|$.

Moreover, $\underline{T}^K := (T^{K \bullet}, d, t)$ is an hdts-category.

Proof. Obviously, all identity morphisms 1_A , $A \in |K|$, are in T^K . Because of

$$\rho t_B = t_A \wedge \sigma t_C = t_B \Rightarrow (\rho \sigma) t_c = \rho(\sigma t_C) = \rho t_B = t_A$$

and

$$\rho t_B = t_A \wedge \rho' t_{B'} = t_{A'} \Rightarrow (\rho \otimes \rho') t_{B \otimes B'} = (\rho \otimes \rho') (t_B \otimes t_{B'}) t_{I \otimes I} = (t_A \otimes t_{A'}) t_{I \otimes I} = t_{A \otimes A'}$$

the class T^K is closed under composition and \otimes -operation.

Let $\rho \in K[A, B]$ be a coretraction in \underline{K} . Then there is $\rho^* \in K[B, A]$ such that $\rho \rho^* = 1_A$. So, one has (see [6], p. 12)

$$\rho t_B = 1_A \rho t_B = d_A (1_A \otimes t_A) r_A \rho t_B \tag{(T1)}$$

$$= d_A (\rho t_B \otimes t_A) r_I \tag{(M7)}$$

$$= d_A (\rho \otimes \rho) (t_B \otimes \rho^* t_A) r_I \tag{(\rho \rho^* = 1_A)}$$

$$\geq \rho d_B (t_B \otimes 1_B) (1_I \otimes \rho^* t_A) l_I \tag{(2.3)}$$

$$= \rho d_b (t_B \otimes 1_B) l_B \rho^* t_A \tag{(M14)}$$

$$= \rho 1_B \rho^* t_A \tag{(T4)}$$

therefore $\rho t_B = t_A$, hence $\rho \in T^K$.

 $= t_A \ge \rho t_B$

Because of $t_A t_I = t_A 1_I = t_A$, $A \in |K|$, $d_A \nabla_A = 1_A$, $A \in |K|$, and each isomorphism is just a coretraction, all morphisms of the families $a, a^{-1}, r, r^{-1}, l, l^{-1}, s, s^{-1}, b, b^{-1}, d$, and t belong to T^K .

Since arbitrary suitable morphisms and objects of \underline{K} fulfil the identities (D1), (D2), (D3), (D5), (D6), (D7), (T1), (T2), (T3), (T4), (T5), (T6), (T7), (T8), (T9), the sequence $(T^{K\bullet}, d, t)$ is an hdts-category.

Corollary 2.7. Let \underline{K} be any $hdht\nabla s$ -category. Then all morphisms of the families 1, a, r, l, s, b, d, t, ∇ , and $(o_{A,B} \mid A, B \in |K|)$ possess all properties of such morhisms in a $dht\nabla s$ -category, especially the following identities are valid:

(D8), (T4), (T5), (T7), (T8), (B1), (B2), (o3), (o4), (o5), (
$$\nabla$$
6), ∇ 7), (∇ 8), (∇ 10),

(I1)
$$\nabla_I d_I = 1_{I \otimes I},$$

(I2)
$$t_{I \otimes I} = \nabla_I = l_I = r_I = d_I^{-1},$$

(I3)
$$d_I = r_I^{-1} = l_I^{-1},$$

$$(\mathrm{I4}) \qquad \qquad d_I \otimes d_I = d_{I \otimes I}.$$

154 H.-J. VOGEL

Lemma 2.8. Let \underline{K} be an $hdht\nabla s$ -category. Then one has (T9) $\rho t_{A'}d_I = d_A(\rho t_{A'} \otimes t_A)$

for all objects $A, A' \in |K|$ and all morphisms $\rho \in K[A, A']$.

Moreover:

(i)
$$\forall A, A' \in |K| \ \forall \ \rho \in K[A, A'] \ (\rho d_{A'} d_{A' \otimes A'} = d_A(\rho d_{A'} \otimes d_A(\rho \otimes \rho))$$

 $\Rightarrow \rho d_{A'} = d_A(\rho d_{A'} \otimes d_A(\rho \otimes \rho)) \nabla_{A' \otimes A'},$

(ii)
$$\forall A, A' \in |K| \ \forall \ \rho \in K[A, A'] \ (\nabla_A \rho d_{A'} = d_A(\nabla_A \rho \otimes (\rho \otimes \rho) \nabla_{A'})$$

$$\Rightarrow \nabla_A \rho = d_A(\nabla_A \rho \otimes (\rho \otimes \rho) \nabla_{A'}) \nabla_{A'}),$$

(iii)
$$\forall A, A' \in |K| \ \forall \ \rho \in K[A, A'] \ (\rho t_{A'} d_I = d_A(\rho t_{A'} \otimes t_A)$$

 $\Leftrightarrow \rho t_{A'} = d_A(\rho t_{A'} \otimes t_A) \nabla_I$.

Proof. Because of $\nabla_I d_I = 1_{I \otimes I}$ and $\nabla_I = r_I = l_I = t_{I \otimes I}$ the equation

$$d_A(\rho t_{A'} \otimes t_A) = d_A(\rho t_{A'} \otimes t_A) \nabla_I d_I = d_A(\rho t_{A'} \otimes t_A) r_I d_I$$
$$= d_A(1_A \otimes t_A) r_A \rho t_{A'} d_I = \rho t_{A'} d_I$$

is valid for each $\rho \in K[A, A']$ and all $A, A' \in |K|$, hence \underline{K} fulfils condition (T9).

The condition (T9') is equivalent to (T9), since

$$d_A(\rho t_{A'} \otimes t_A) = \rho t_{A'} d_I \Rightarrow d_A(\rho t_{A'} \otimes t_A) \nabla_I = \rho t_{A'}$$

by $d_I \nabla_I = 1_I$ and

$$d_A(\rho t_{A'} \otimes t_A) \nabla_I = \rho t_{A'} \Rightarrow d_A(\rho t_{A'} \otimes t_A) = \rho t_{A'} d_I$$

by $\nabla_I d_I = 1_{I \otimes I}$, hence property (iii) is shown.

The implications (i) and (ii) are satisfied because of the general property

$$\xi d_B = d_A(\xi \otimes \eta) \Rightarrow \xi = \xi d_B \nabla_B = d_A(\xi \otimes \eta) \nabla_B.$$

Remark 2.9. The opposite of the implications (i) and (ii), respectively, is not true in general, since there are conterexamples in <u>Rel</u>.

Remark 2.10. As in any $dht\nabla s$ -category, the morphisms

$$p_1^{A,B} := (1_A \otimes t_B)r_A \in K[A \otimes B, A] \cap F^K,$$
$$p_2^{A,B} := (t_A \otimes 1_B)l_B \in K[A \otimes B, B] \cap F^K$$

of an arbitrary $hdht\nabla s$ -category \underline{K} are called canonical projections again and one has

$$\nabla_{A} = \inf \left\{ p_{1}^{A,A}, p_{2}^{A,A} \right\} = d_{A} \left(p_{1}^{A,A} \otimes p_{2}^{A,A} \right) \nabla_{A}$$

for all $A \in |K|$.

Remark that $(A \otimes B; p_1^{A,B}, p_2^{A,B})$ is not a categorical product in the whole category \underline{K} , but in the subcategory T^K

The family $\nabla = (\nabla_A \mid A \in |K|)$ is uniquely determined by the family $d = (d_A \mid A \in |K|)$ and the conditions $(\nabla 1)$ and $(\nabla 2)$.

Lemma 2.11. Let K be an arbitrary $hdht\nabla s$ -category. Then there holds:

- (*2) $\forall A, B, C \in |K| \ \forall \rho, \rho' \in K[A, B] \ \forall \sigma, \sigma' \in K[B, C] \ (d_A(\rho \otimes \rho') \nabla_B = \rho \wedge d_B(\sigma \otimes \sigma') \nabla_C = \sigma \Rightarrow d_A(\rho \sigma \otimes \rho' \sigma') \nabla_C = \rho \sigma),$
- (*3) $\forall A, B \in |K| \ \forall \rho, \sigma \in K[A, B] \ (d_A(\rho \otimes \sigma) \nabla_B = \rho \ \land \ d_A(\sigma \otimes \sigma) = \sigma d_B$ $\Rightarrow d_A(\rho \otimes \sigma) p_i^{B,B} = \rho \ (i \in \{1, 2\})),$
- (*4) $\forall A, B \in |K| \ \forall \rho \in K[A, B] \ (d_A(\rho \otimes \rho)p_i^{B,B} = \rho \ (i \in \{1, 2\})),$
- (*5) $\forall A, B \in |K| \ \forall \rho, \sigma \in K[A, B] \ (d_A(\rho \otimes \sigma) \nabla_B = \rho \land d_A(\sigma \otimes \sigma) = \sigma d_B$ $\Rightarrow d_A(\rho \otimes \rho) = \rho d_B),$
- (*6) $\forall A \in |K| \ \forall \rho \in K[A, A] \ (d_A(1_A \otimes \rho) \nabla_A = \rho$ $\Rightarrow d_A(1_A \otimes \rho) p_1^{A,A} = d_A(1_A \otimes \rho) p_2^{A,A} = \rho).$

Proof. Axiom (*1) implies condition (*2) because of $\rho \leq \rho' \wedge \sigma \leq \sigma' \Rightarrow \rho\sigma \leq \rho'\sigma'$. To show (*3) not that $d_A(\rho \otimes \sigma)\nabla_B = \rho \Leftrightarrow \rho \leq \sigma$ and $d_A(\sigma \otimes \sigma) = \sigma d_B \Leftrightarrow \sigma \in F^K$. So one obtains

156 H.-J. VOGEL

$$d_{A}(\rho \otimes \sigma)p_{i}^{B,B} = d_{A}(d_{A}(\rho \otimes \sigma)\nabla_{B} \otimes \sigma)p_{i}^{B,B} \qquad (\rho \leq \sigma)$$

$$= d_{A}(\rho \otimes d_{A}(\sigma \otimes \sigma))a_{B,B,B}(\nabla_{B} \otimes 1_{B})p_{i}^{B,B} \qquad (\sigma \in F_{K})$$

$$= d_{A}(\rho \otimes \sigma)(1_{B} \otimes d_{B})a_{B,B,B}(\nabla_{B} \otimes 1_{B})p_{i}^{B,B} \qquad ((F4))$$

$$= d_{A}(\rho \otimes \sigma)\nabla_{B}d_{B}p_{i}^{B,B} \qquad ((\nabla 7))$$

$$= d_{A}(\rho \otimes \sigma)\nabla_{B} = \rho$$

with respect to the axioms of an $hdht\nabla s$ -category.

The property (*4) is a consequence of (D9') and (T9'):

$$\rho = \rho d_B p_i^{B,B} \le d_A(\rho \otimes \rho) p_i^{B,B} \wedge \rho t_B \le t_A$$

$$\Rightarrow d_A(\rho \otimes \rho) p_1^{B,B} = d_A(\rho \otimes \rho t_B) r_B \le d_A(\rho \otimes t_A) r_B = d_A(1_A \otimes t_A) r_A \rho = \rho$$

$$\wedge d_A(\rho \otimes \rho) p_2^{B,B} = d_A(\rho t_B \otimes \rho) l_B \le d_A(t_A \otimes \rho) l_B = d_A(t_A \otimes 1_A) l_A \rho = \rho.$$

(*5): Using the previous results and the assumption one obtains

$$d_{A}(\rho \otimes \rho) = d_{A}(d_{A}(\rho \otimes \sigma)p_{2}^{B,B} \otimes d_{A}(\rho \otimes \sigma))p_{2}^{B,B})$$

$$= d_{A}(d_{A} \otimes d_{A})((\rho \otimes \sigma) \otimes (\rho \otimes \sigma)(p_{2}^{B,B} \otimes p_{2}^{B,B}))$$

$$= d_{A}d_{A \otimes A}((\rho \otimes \sigma) \otimes (\rho \otimes \sigma))(p_{2}^{B,B} \otimes p_{2}^{B,B})$$

$$= d_{A}(d_{A}(\rho \otimes \rho) \otimes d_{A}(\sigma \otimes \sigma))b_{B,B,B,B}(p_{2}^{B,B} \otimes p_{2}^{B,B})$$

$$= d_{A}(d_{A}(\rho \otimes \rho) \otimes \sigma d_{B})p_{2}^{B \otimes B,B \otimes B}$$

$$= d_{A}(\rho \otimes d_{A}(\rho \otimes \sigma))a_{B,B,B}(1_{B \otimes B} \otimes d_{B})p_{2}^{B \otimes B,B \otimes B}$$

$$= d_{A}(\rho \otimes d_{A}(\rho \otimes \sigma))a_{B,B,B}p_{2}^{B \otimes B,B}d_{B}$$

$$= d_{A}(\rho \otimes d_{A}(\rho \otimes \sigma))(1_{B} \otimes p_{2}^{B,B})p_{2}^{B,B}d_{B}$$

$$= d_{A}(\rho \otimes d_{A}(\rho \otimes \sigma)p_{2}^{B,B})p_{2}^{B,B}d_{B}$$

$$= d_{A}(\rho \otimes d_{A}(\rho \otimes \sigma)p_{2}^{B,B})p_{2}^{B,B}d_{B}$$

$$= d_{A}(\rho \otimes \rho)p_{2}^{B,B}d_{B} = \rho d_{B}.$$

The property (*6) arises from (*3) because of $1_A \in F^K$ for each $A \in |K|$.

Lemma 2.12. Let \underline{K} be a monoidal symmetric category endowed with morphisms families d, t, $(o_{A,B} \mid A, B \in |K|)$, and ∇ such that all axioms of an $hdht\nabla s$ -category without (*1) are fulfilled. Moreover, let the condition (*2) be valid. Then \underline{K} is an $hdht\nabla s$ -category in the defined sense as above.

Proof. It remains to show the condition (*1):

 $d_A(d_A(\rho\otimes\rho')\nabla_Bd_B(\sigma\otimes\sigma')\nabla_C\otimes d_A(\rho\sigma\otimes\rho'\sigma')\nabla_C)\nabla_C$

$$= d_A(\rho\sigma \otimes d_A(\rho\sigma \otimes \rho'\sigma')\nabla_C)\nabla_C \tag{(*2)}$$

$$= d_A(1_A \otimes d_A)(\rho\sigma \otimes (\rho\sigma \otimes \rho'\sigma'))(1_C \otimes \nabla_C)\nabla_C \tag{(F4)}$$

$$= d_A(d_A \otimes 1_A) a_{A,A,A}^{-1}(\rho \sigma \otimes (\rho \sigma \otimes \rho' \sigma')) (1_C \otimes \nabla_C) \nabla_C \tag{(D3)}$$

$$= d_A(d_A \otimes 1_A)((\rho\sigma \otimes \rho\sigma) \otimes \rho'\sigma')a_{C.C.C}^{-1}(1_C \otimes \nabla_C)\nabla_C \qquad ((M6))$$

$$= d_A(d_A)(\rho\sigma \otimes \rho\sigma) \otimes \rho'\sigma')(\nabla_C \otimes 1_C)\nabla_C \tag{(\nabla3)}$$

$$= d_A(d_A(\rho\sigma \otimes \rho\sigma)\nabla_C \otimes \rho'\sigma'))\nabla_C \tag{(F4)}$$

$$= d_A(\rho\sigma \otimes \rho'\sigma')\nabla_C \tag{(D\nabla)}$$

$$= \rho \sigma \tag{(*2)}$$

$$= d_A(\rho \otimes \rho') \nabla_B d_B(\sigma \otimes \sigma') \nabla_C \tag{(*2)}$$

The results of the last both lemmata are important for the axiomization of $hdht\nabla s$ - categories. The system of axioms for an $hdht\nabla s$ -category given in [11] contains two identical implications, namely (21) (\Leftrightarrow (*2)) and (20) (\Leftrightarrow (*6)). The property (*6) is a consequence of the other properties and the conditions (*1) and (*2) are equivalent in a monoidal symmetric category \underline{K} endowed with morphisms families d, t, ($o_{A,B} \mid A, B \in |K|$), and ∇ such that

(D1), (D2), (D3), (D5), (D7), (D8), (T1), (T2), (T6), (T9'),
$$(\nabla 1)$$
, $(\nabla 2)$, $(\nabla 3)$, $(\nabla 4)$, $(\nabla 5)$, $(\nabla 6)$, $(\nabla 7)$, $(D\nabla)$, (o1), (o2), (O1)

are fulfilled. Therefore, $hdht\nabla s$ -categories are axiomatizable by identities only, hence all small $hdht\nabla s$ -categories form a variety of many-sorted total

158 H.-J. VOGEL

algebras and there are free many-sorted algebras to each generating set with respect to this variety. Especially, there are free $hdht\nabla s$ -theories, i.e. free algebraic theories for relational structures, by analogy with the existence of free algebraic theories for partial algebras ([3], [10]).

Lemma 2.13. In any $hdht\nabla$ -symmetric category the following conditions are fulfilled for arbitrary morphisms ρ , σ :

(j)
$$\rho \sigma = 1_A \wedge \sigma \rho \le 1_B \Rightarrow d_A(\rho \otimes \rho) = \rho d_B$$

(jj)
$$\rho\sigma \leq 1_A \wedge \sigma\rho = 1_B \Rightarrow \nabla_A \rho = (\rho \otimes \rho)\nabla_B$$

Proof. To show (j) we use at first the known property $\sigma d_A \leq d_B(\sigma \otimes \sigma)$. Further,

$$d_A(\rho \otimes \rho) = \rho \sigma d_A(\rho \otimes \rho) < \rho d_B(\sigma \otimes \sigma)(\rho \otimes \rho) < \rho d_B(1_B \otimes 1_B) = \rho d_B$$

hence $d_A(\rho \otimes \rho) = \rho d_B$ by $\rho d_B \leq d_A(\rho \otimes \rho)$.

In a similar way one shows the statement (jj), namely because of $\nabla_B \sigma \le (\sigma \otimes \sigma) \nabla_A$ and

$$(\rho \otimes \rho) \nabla_B = (\rho \otimes \rho) \nabla_B \sigma \rho \le (\rho \sigma \otimes \rho \sigma) \nabla_A \rho \le \nabla_A \rho \le (\rho \otimes \rho) \nabla_B$$

one has
$$\nabla_A \rho = (\rho \otimes \rho) \nabla_B$$
.

Definition 2.14. Morphisms $e \in K[A, A] \subseteq K$ with the property $e \leq 1_A$, i.e. $e = d_A(1_A \otimes e) \nabla_A$, are called *subidentities* in \underline{K} (compare with ([7])).

Proposition 2.15 (cf. [7]). For each morphism $\rho: A \to B$, $A, B \in |K|$, the morphism

$$\alpha(\rho) := d_A(\rho \otimes 1_A) p_2^{B,A}$$

is a subidentity of A in \underline{K} and there holds $\alpha(\rho)\rho = \rho$. Each subidentity e of \underline{K} fulfils $d_A(e \otimes e) = ed_A$, therefore the subidentities of \underline{K} are the subidentities of \underline{F}^K and satisfy the following conditions for all suitable morphims and objects of K:

(e1)
$$e \le 1_A$$
 \Rightarrow $ee = e$,

(e2)
$$e_1, e_2 \le 1_A$$
 $\Rightarrow e_1 e_2 = e_2 e_1 = \inf\{e_1, e_2\},$

(e3)
$$e_1 \le e_2 \le 1_A \quad \Leftrightarrow \quad e_1 = e_1 e_2 \le 1_A$$
,

(e4)
$$e \le 1_A$$
 $\Leftrightarrow \alpha(e) = e$,

(e5)
$$e \le 1_A$$
 $\Rightarrow ed_A = d_A(e \otimes e) = d_A(e \otimes 1_A),$

(e6)
$$e \le 1_A$$
 $\Rightarrow \nabla_A e = (e \otimes e) \nabla_A = (e \otimes 1_A) \nabla_A$,

(e7)
$$\rho, \sigma \in K[A, B] \Rightarrow \alpha(\rho)\sigma = d_A(\rho \otimes \sigma)p_2^{B,B} \wedge \alpha(\sigma)\rho = d_A(\rho \otimes \sigma)p_1^{B,B},$$

(e8)
$$\alpha(\rho)\sigma = \rho \qquad \Rightarrow \qquad \rho \leq \sigma,$$

(e9)
$$e\rho = \rho \land e \leq 1_A \Leftrightarrow \alpha(\rho) \leq e \leq 1_A$$
,

(e10)
$$cod\rho = dom\sigma \Rightarrow \alpha(\rho\sigma) \leq \alpha(\rho),$$

(e11)
$$e \le 1_A$$
 $\Rightarrow \alpha(e\rho) \le e$,

(e12)
$$e \le 1_A$$
 $\Rightarrow \alpha(e\rho) = e\alpha(\rho),$

(e13)
$$\rho \le \sigma$$
 $\Rightarrow \alpha(\rho) \le \alpha(\sigma)$,

(e14)
$$cod\rho = dom\sigma \Rightarrow \rho\alpha(\sigma) \le \alpha(\rho\sigma)\rho$$
,

(e15)
$$cod\rho = dom\sigma \Rightarrow \alpha(\rho\sigma) = \alpha(\rho\alpha(\sigma)),$$

Proof. Because of $\rho t_B \leq t_A$ one obtains

$$\alpha(\rho) = d_A(\rho \otimes 1_A)p_2^{B,A} = d_A(\rho t_B \otimes 1_A)l_A \le d_A(t_A \otimes 1_A)l_A = 1_A.$$

Using the definition of $\alpha(\rho)$, properties (M14), (M15), and $\alpha(\rho) \leq 1_A$ one receives $\alpha(\rho)\rho = \rho$ via

$$\alpha(\rho)\rho = d_A(\rho \otimes 1_A)p_2^{B,A}\rho = d_A(\rho \otimes \rho)p_2^{B,B} \ge \rho d_B p_2^{B,B} = \rho = 1_A \rho \ge \alpha(\rho)\rho.$$

Because of $e \leq 1_A$ the property $d_A(e \otimes e) = ed_A$ is a consequence of Lemma 2.11, (*5), and the subidentities of \underline{K} are exactly the subidentities of \underline{F}^K , therefore, all subidentities have the properties (e1), (e2), (e3) and (e4) (cf. [7]).

To show property (e5) use the property (e4) $e \le 1_A \Rightarrow e = \alpha(e) = d_A(e \otimes 1_A)p_2^{A,A}$:

$$d_A(e \otimes e) = d_A(e \otimes d_A(e \otimes 1_A)p_2^{A,A}) = d_A(d_A(e \otimes e) \otimes 1_A)a_{A,A,A}^{-1}(1_A \otimes p_2^{A,A})$$
$$= d_A(d_A(e \otimes e)p_1^{A,A} \otimes 1_A) = d_A(e \otimes 1_A).$$

The second part of the property (e6) is a consequence of (e2) and (e5) owing to $\nabla_A d_A \leq 1_{A \otimes A}$, $(e \otimes e) \leq 1_{A \otimes A}$, and $(e \otimes 1_A) \leq 1_{A \otimes A}$:

$$d_{A}(e \otimes e) = d_{A}(e \otimes 1_{A}) \Rightarrow \nabla_{A}d_{A}(e \otimes e) = \nabla_{A}d_{A}(e \otimes 1_{A})$$

$$\Rightarrow (e \otimes e)\nabla_{A}d_{A} = (e \otimes 1_{A})\nabla_{A}d_{A} \qquad ((e2))$$

$$\Rightarrow (e \otimes e)\nabla_{A}d_{A}\nabla_{A} = (e \otimes 1_{A})\nabla_{A}d_{A}\nabla_{A}$$

$$\Rightarrow (e \otimes e)\nabla_{A} = (e \otimes 1_{A})\nabla_{A}. \qquad ((\nabla 1))$$

Because of $(e \otimes e) \leq 1_{A \otimes A}$ and $\nabla_A d_A \leq 1_{A \otimes A}$ one has

$$(e \otimes e)\nabla_A = (e \otimes e)\nabla_A d_A \nabla_A \qquad (d_A \nabla_A = 1_A)$$
$$= \nabla_A d_A (e \otimes e)\nabla_A \qquad ((e2))$$
$$= \nabla_A e. \qquad ((D\nabla))$$

Property (e7) is an immediate consequence of (M7), (M14), (M8), and (M13).

To show (e8) take into consideration

$$\rho = \alpha(\rho)\sigma \le 1_A \sigma = \sigma.$$

(e9): Assuming $e\rho = \rho$, $e \le 1_A$ one gets

$$\alpha(\rho) = \alpha(e\rho) = d_A(e\rho \otimes 1_A)p_2^{B,A} = d_A(e\rho t_B \otimes 1_A)l_A \le d_A(et_A \otimes 1_A)l_A = \alpha(e) = e.$$

Conversely, $\alpha(\rho) \leq e \leq 1_A$ yields

$$\rho = \alpha(\rho)\rho \le e\rho \le 1_A \rho = \rho.$$

Condition (e10) is true, since

$$\alpha(\rho\sigma) = d_A(\rho\sigma\otimes 1_A)p_2^{C,A} = d_A(\rho\sigma t_C\otimes 1_A)l_A \leq d_A(\rho t_B\otimes 1_A)l_A = \alpha(\rho).$$

Condition (e11) arises from $\alpha(e\rho) \leq \alpha(e) = e$.

Property (e12) is a consequence of (e5) as follows:

$$\alpha(e\rho) = d_A(e\rho \otimes 1_A)p_2^{B,A} = d_A(e \otimes 1_A)(\rho \otimes 1_A)p_2^{B,A}$$
$$= d_A(e \otimes e)(\rho \otimes 1_A)p_2^{B,A} = ed_A(\rho \otimes 1_A)p_2^{B,A}$$
$$= e\alpha(\rho).$$

To show (e13) use the definitions of \leq and $\alpha(\rho)$ ($\rho: A \to B$, $\sigma: B \to C$):

$$\alpha(\rho) = d_{A}(\rho \otimes 1_{A})p_{2}^{B,A} = d_{A}(d_{A}(\rho \otimes \sigma)\nabla_{B} \otimes 1_{A})p_{2}^{B,A} \qquad (\rho \leq \sigma)$$

$$\leq d_{A}(d_{A}(\rho \otimes \sigma)p_{2}^{B,B} \otimes 1_{A})p_{2}^{B,A} \qquad (\nabla_{B} \leq p_{2}^{B,B})$$

$$= d_{A}(d_{A}(\rho \otimes 1_{A})p_{2}^{B,A}\sigma \otimes 1_{A})p_{2}^{B,A} \qquad ((M14))$$

$$= d_{A}(\alpha(\rho)\sigma \otimes 1_{A})p_{2}^{B,A}$$

$$\leq d_{A}(\sigma \otimes 1_{A})p_{2}^{B,A} = \alpha(\sigma). \qquad (\alpha(\rho)\sigma \leq \sigma)$$

Assertion (e14) is true since

$$\rho\alpha(\sigma) = \rho d_B(\sigma \otimes 1_B) p_2^{C,B} \le d_A(\rho\sigma \otimes \rho) p_2^{C,B} = \alpha(\rho\sigma)\rho.$$

Condition (e15) follows by (e10), (e13), and (e14):

Let ρ and σ be as above. Then one has

$$\alpha(\rho\sigma) = \alpha(\rho\alpha(\sigma)\sigma) < \alpha(\rho\alpha(\sigma)),$$

hence

$$\alpha(\rho\sigma) \le \alpha(\rho\alpha(\sigma)) \qquad \le \alpha(\alpha(\rho\sigma)\rho) \le \alpha(\alpha(\rho\sigma)\alpha(\rho))$$
$$\le \alpha(\alpha(\rho\sigma)1_A) = \alpha(\alpha(\rho\sigma)) \qquad = \alpha(\rho\sigma).$$

Remark that, as an easy example shows, in <u>Rel</u> the opposite implication to (e8) is not true: Let be given $A = \{a\}, B = \{b_1, b_2\}, \rho = \{(a, b_1)\}, \sigma = \{(a, b_1), (a, b_2)\}$. Then $\rho \leq \sigma$ and $\rho < \alpha(\rho)\sigma = \sigma$.

Furthermore, the equality in (e14) is not true in general. For this let be the sets A and B as above and let be $C = \{x\}$. For the relations σ as above and $\tau = \{(b_1, x)\}$ one obtains $\sigma\alpha(\tau) = \{(a, b_1)\}$ and $\sigma\tau = \{(a, x)\}$, hence $\alpha(\sigma\tau) = \{(a, a)\}$, consequently $\alpha(\sigma\tau)\sigma = \{(a, b_1), (a, b_2)\} = \sigma \neq \sigma\alpha(\tau)$.

162 H.-J. VOGEL

References

- L. Budach and H.-J. Hoehnke, Automaten und Funktoren, Akademie-Verlag, Berlin 1975.
- [2] S. Eilenberg and G.M. Kelly, Closed categories, p. 421–562 in: "Proceedings of the Conference on Categorical Algebra (La Jolla, 1965)", Springer-Verlag, New York 1966.
- [3] H.-J. Hoehnke, On partial algebras, p. 373–412 in: Colloquia Mathematica Societatis János Bolyai, 29 ("Universal Algebra, Esztergom (Hungary) 1977"), North-Holland, Amsterdam 1981.
- [4] G.M. Kelly, On MacLane's condition for coherence of natural associativities, commutativities, etc., J. Algebra 1 (1964), 397–402.
- [5] S. Maclane, Kategorien, Begriffssprache und mathematische Theorie, Springer-Verlag, Berlin-New York 1972.
- [6] J. Schreckenberger, Über dht-symmetrische Kategorien, Semesterarbeit Päd. Hochschule Köthen, Köthen 1978.
- [7] J. Schreckenberger, Über die Einbettung von dht-symmetrischen Kategorien in die Kategorie der partiellen Abbildungen zwischen Mengen, AdW DDR Berlin, Zentralinstitut f. Mathematik und Mechanik, Preprint P-12/8 (1980).
- [8] J. Schreckenberger, Zur Theorie der dht-symmetrischen Kategorien, Dissertation (B), eingereicht an der Math.-Naturwiss. Fak. d. Wiss. Rates d. Pädag. Hochschule "Karl Liebknecht", Potsdam 1984.
- [9] J. Schreckenberger, Zur Axiomatik von Kategorien partieller Morphismen, Beiträge Algebra Geom. (Halle/Saale) 24 (1987), 83–98.
- [10] H.-J. Vogel, Eine kategorientheoretische Sprache zur Beschreibung von Birkhoff-Algebren, AdW DDR, Institut f. Mathematik, Report R-MATH-06/84, Berlin (1984).
- [11] H.-J. Vogel, Relations as morphisms of a certain monoidal category, p. 205–217, in: "General Algebra and Applications in Discrete Mathematics", Shaker Verlag, Aachen 1997.
- [12] H.-J. Vogel, On functors between dht∇-symmetric categories, Discuss. Math.
 Algebra & Stochastic Methods 18 (1998), 131–147.
- [13] H.-J. Vogel, On Properties of dht∇-symmetric categories, Contributions to General Algebra 11 (1999), 211–223.
- [14] H.-J. Vogel, Halfdiagonal-halfterminal-symmetric monoidal categories with inversions, p. 189–204 in: "General Algebra and Discrete Mathematics", Shaker Verlag, Aachen 1999.

[15] H.-J. Vogel, On morphisms between prtial algebras, p. 427–453 in: "Algebras and Combinatorics. An International Congress, ICAC '97, Hong Kong", Springer-Verlag, Singapore 1999.

Received 6 December 2000