Discussiones Mathematicae
General Algebra and Applications 21 (2001) 129-137

CARDINALITIES OF LATTICES OF TOPOLOGIES OF
UNARS AND SOME RELATED TOPICS

ANNA KARTASHOVA

Department of Algebra and Geometry
Volgograd Pedagogical University

Eletskaya 7-177, 400120 Volgograd, Russia
e-mail: kvk@vspu.ru

Abstract

In this paper we find cardinalities of lattices of topologies of un-
countable unars and show that the lattice of topologies of a unar cannor
be countably infinite. It is proved that under some finiteness condi-
tions the lattice of topologies of a unar is finite. Furthermore, the
relations between the lattice of topologies of an arbitrary unar and its
congruence lattice are established.
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Let 2 = (A,Q) be an arbitrary algebra. A topology on the set A, under
which every operation from ) is continuous is called a topology on the algebra
2. It is known [5] (p. 69) that the topologies on an algebra 2 form a lattice
under set inclusion. Let us call this lattice the lattice of topologies of the
algebra . Denote this lattice by ().

Let now 2l = (A, f) be a unar, i. e. an algebra with one unary operation
[ (see [6]). For any element a € A and any positive integer n we put
f%a) = a and f*(a) = f(f"'(a)). Throughout the paper we shall denote
by N the set of all positive integers and Ny = N U {0}.

A unar generated by one element a is called monogenic and it is denoted
by (a). A monogenic unar with the generator a and with defining relation
f*(a) = f**™(a), n € Ng,m € N is denoted by C?. The unar C9, is
termed a cycle of length m. An element a of the unar 2 is cyclic if the
subunar generated by this element is cyclic. The set of all cyclic elements of
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a unar 2 is denoted by Z(2). An element a of a unar A = (A, f) is periodic
if f*(a) € Z(A) for some k € Ny. Otherwise it is called torsion-free. The
union of a sequence of unars CY, C CL c C2, C ... will be denoted by C°.
If a is a periodic element of a unar 2 = (A, f), then the least integer n € Ny
such that f"(a) € Z(2), is the depth of a. It is denoted by d(a). A unar is
periodic if each element in 2 is periodic. A free monogenic unar is denoted
by Fi.

The disjoint union of two unars 8 and € is denoted by B + €. Unars
B and € are components of the unar %6 4+ €. A unar having no proper
components is called connected. The set of all connected components of an
arbitrary unar 2 is denoted by c(2).

Proposition 1. The lattice of all topologies on the set c(2A) of connected
components of an arbitrary unar A = (A, f) is isomorphic to some principal
ideal of the lattice I(A).

Proof. Define binary relation n on the set A by setting

zny < (In,m € No)[f"(z) = f"(y)]

for any elements z,y € A. It is clear that n € Con(2() and the factor
unar /7 is a union of one-element cycles. Moreover the lattice $(24/n) of
topologies of the unar 2(/n coincides with the lattice of all topologies on the
set A/n. By [2] (Theorem 3) the lattice of all topologies on the set ¢(2) is
isomorphic to a principal ideal of &(2) because |c(2)| = |2(/n]. |

Observe that

the lattice R(Y') of all topologies on a nonvoid subset Y of an arbitrary
set X can be embedded into the lattice R(X) of all topologies on the set X
as a principal ideal.

In fact, fix a point yp € Y and define a mapping ¢ : R(Y) — R(X)
in the following way. Let o € R(Y'). Denote be (o) the family of subsets
of the set X such that T € (o) if and only if either T' € o and yo ¢ T or
TNY €0, X NY CT and yop € T. Then 9 is an isomorphism of R(Y")
onto the principal ideal of R(X) generated by the topology 1 (o1), where o4
is the discrete topology on X. [ ]

From Proposition 1, we can deduce

Lemma 1. Let A = (A, f) be an arbitrary unar and K be a nonvoid subset
of the set c(A) of connected components of the unar A. Then the lattice
R(K) of all topologies on the set K is isomorphic to a principal ideal of the
lattice (). |
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Elements a,b of an arbitrary unar 2 = (A, f) are incomparable if a ¢ (b)
and b ¢ (a).

Lemma 2. Let A = (A, f) be an arbitrary unar and Ay be an infinite set
of pairwise non-cyclic incomparable elements of A. Then the lattice R(A;)
of all topologies on the set A1 can be embedded into the lattice ().

Proof. Denote by B = (B, f) the subunar of unar 2 generated by set Aj.
Define a binary relation p = {(a,b) € Bx Bl a =bV {a,b} N A1 = ()} on the
set B. Certainly the relation p is an equivalence.

We claim that p € Con®®B. In fact let a ¢ Aj, and f(a) € A;. Since
a € B, there exists an element ¢ € A; and an integer n € Ny such that
a = f*(c). Hence, f(a) = f"(c). It follows that n + 1 = 0 and n ¢ N,
since f(a) € A1 and ¢ € A;. Every topology on the factor set B/p is a
topology on the unar $B/p because either f~1(X) = 0 or f~4(X) = B/p
holds for any subset X of the set B/p. Thus applying [2] (Theorems 2 and
3) and the equality |A1| = |B/p| we can conclude that the lattice R(A;) of
all topologies on the set A; can be embedded into the lattice (). [ ]

Lemma 3. Let A = (A, f) be an arbitrary infinite unar. Then either the
lattice S(F1) or the lattice I(CT°) can be embedded into the lattice I(A) of
all topologies of the unar 2.

Proof. If 2 contains a torsion-free element a, then (a) = F7, where (a) is
the monogenic subunar of the unar 2 generated by the element a. By [2]
(Theorem 3) the lattice (F7) can be embedded into the lattice ().

If the set c(2) is infinite or the inequality |f~({a})| > Ny holds for
some a € A, then the lattice R(X) of all topologies on a countable infinite
set X is isomorphic to some sublattice of the lattice ¥(2() by Lemmas 1
and 2. On the other hand, |F;| = Xg. Therefore, the lattice (F1) of all
topologies of F; can be embedded into the lattice R(X) and, hence, into
the lattice ().

Let 2 be periodic, |c(2A)| < Vo, a set f~({a}) finite for any element
a € 2. Then there exists a subunar B = (B, f) of the unar 2, which is
isomorphic to C;°, where h € N. Put p={(a,b) € B x B| (a =b) V {a,b} C
Z(A)}. Then p € ConB and the factor unar B/p is isomorphic to C7°.
Consequently, the lattice I(CF°) of all topologies of C{° can be embedded
into the lattice () by [2] (Theorems 2 and 3). |
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The least topology with respect to inclusion on the unary algebra 2, con-
taining a given family of subsets {A, C A| a € I} will be called the topology
on the algebra A generated by the set of elements {Aq|« € I}. This topol-
ogy will be denoted by ¢({As| @ € I'}) and respectively by ¢(U) if the family
{A.| o € I} consists of one set U.

Lemma 4. Let A = (A, f) be isomorphic to C{°. Then t(X1) = t(X2) =
X1 = Xy for any nonvoid subsets X1, Xo of the set A ~ Z ().
)

Proof. Since t(X1) = t(X2), we conclude that Xo € t(X1). Hence, the set
X5 is a union of finite intersections of some sets of the form f~%(Xy), where
i € Ng, because Xo # () and Xo C A . Z(2) % A.

Since A = C° and X9 € A ~\ Z(2), there exists an element x € Xo
such that

(1) (Vk € N) [f*(x) ¢ Xo.

Since z € X5 and Xy € #(X;) we have z € () f~%(X;1) € X, for some
iel
finite set of indices I of the set Ny. We claim that I = {0}. In fact, if
r € f74(X4), then fi(z) € X;. On the other hand, since X; € #(X3), the
set X7 is a union of finite intersections of some sets of the form f*j(Xg),
where j € Ng. However, by (1), the condition f*+/(x) € X3 implies i+j = 0.
Hence, i = 0 and so I = {0}. Consequently, X; C X5. Similarly, we can
prove that Xo C X;. Thus, X; = Xs. [ ]

Let 2 be an arbitrary algebra and 6 € Con(2(). 8-congruence classes form a
base of some topology 7(#) which we shall call the topology generated by the
congruence 0.

Proposition 2. There exists a set H of the cardinality 280 of different
Hausdorff topologies on the unar Fi, such that for any topology o € H there
exist topologies 01,09 € H, for which o1 < o and o < 03.

Proof. Let x,y € F; and k be an arbitrary fixed positive integer. Put
(2) a2y <= (In,m e Ny)[f"(x) = f"(y) & n = m(mod k)].

It is not hard to see that ( € Con Fj. Let P(S) be the set of all subsets
of the set S of all primes. We claim now that the mapping ¢ : P(S) — S(F1)
given by
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(3) p(X)=\ 7(G),  XeP(s),

peX

is an injection. Let X1,Xo € S and p € X; ~ Xo. Denote by a the
generator of the unar F;. Then M = {f"(a)| n € Ny, p|n} € ¢(X;) by
(3). If M € ¢(X2), then, by (3), we obtain that M is a union of finite
intersections of sets which are open in some topology 7((;), ¢ € X2, the
congruence (4 is defined according to (2).

Let a € Ly, N Ly, N...N Ly, and L, N Ly, N...N Ly, € M, where
L, € 7(¢p;); pi € Xo for any i € {1,2,...,k}. Then fPP2-Pk(a) € M,
and p|pip2...pk, i.e. there exists an index ¢ € {1,2,...,k} such that p =
pi € Xo. Therefore, M ¢ p(X3). Thus, the inequality X; # Xo implies
P(X1) # 9(Xa).

We claim that if X is an infinite subset of the set of all primes, then
©(X) from (3) is a Hausdorff topology one. Let b,c € F; and b # ¢. Then
b= f"(a),c= f™(a), where n,m € No,m # n and a is the generator of the
unar F7. Since the set X is infnite, there exists a number p € X such that
n < p and m < p. Hence [b];, N [c]¢, = , because m # n. On the other
hand, [b]¢,,[cl¢, € ¢(X) by (2) and (3). It means that ¢(X) is a Hausdorff
topology.

Thus, the set

(4) H={p(X)| X € P(S) & |X|=I|S~X|=No}

consists of Hausdorff topologies and has cardinality 2%. Let p(X) € H.
Then there exist prime numbers p; and ps such that p;1 € X,ps € S ~ X.
Consequently, (X ~ {p1}), (X U{p2}) € H by (4). On the other hand,
(3) implies p(X ~ {p1}) ; o(X) % ©(X U {p2}), because the map ¢ is

injective.

Theorem 1. Let A = (A, f) be an arbitrary unar. Then the following
conditions are equivalent:

1. the lattice I(A) is finite;

2. the lattice I(A) has a finite width;

3. the lattice I(A) satisfies the descending chain condition;
()

4. the lattice F() satisfies the ascending chain condition.
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Proof. Implications 1) = 2),1) = 3),1) = 4 are obvious. Let the lattice
J(2A) of topologies of A be infinite. Then |A] > Rg. We shall show that
J(2A) is not a lattice of finite width and satisfies neither the descending
chain condition nor the ascending chain condition. By Lemma 3, it suffices
to consider the cases 2 = F; and A = C7°.

If A = Fp, then I(A) is not a lattice of a finite width by Theo-
rem 1 of [2] and Theorem 4 of [1]. Furthermore, this lattice satisfies nei-
ther the descending chain condition nor the ascending chain condition by
Proposition 2.

Let 2 = C7°. Put
(5) Xi={alaec A & d(a)=1 (modi)}

for any integer ¢ € Ny. Fix arbitrary different primes ¢ and j. We are
going to show that the elements ¢(X;) and ¢(X;) of the lattice J(2A) are
incomparable. In fact, if ¢(X;) < t(X;), then X; € t(X;). It means that the
set X; is a union of finite intersections of some sets of the form f~!(X;),
where j € Ny.

Since 2 = C7°, there exists an element a € 2 of the depth 1. Then (5)
implies a € X;. Consequently,

(6) @€ FIX) N0 X))
and
(7) ﬂ F(X;) C X;

k=1

for some s € N, {ly,...,ls} € No. By (6), we have f*(a) € X; for any
ke {l,...,s}. From (5), we can deduce that [ = 0 for any k € {1,...,s}
and d(a) = 1. Applying (7), we have X; C X; a contradiction with (5),
because ¢ and j are different primes.

Thus, the inequality t(X;) < t(X;) doesn’t hold. Similarly, we can
prove that the inequality ¢(X;) < t(X;) doesn’t hold either. Therefore, the
elements ¢(X;) and t(X;) of the lattice () are incomparable for any prime
different numbers i and j. Hence, if A = C{°, then () is not a lattice of
a finite width.

Let X be an arbitrary subset of the set A ~ Z(2). Then the decreasing
chain ¢(X) D t(f~1(X)) D t(f~2(X)) D ... of elements of I(A) does not
terminate by Lemma 4.
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It remains to construct an infinite increasing chain of elements of the lattice
SA). Let Xy ={zlrec ANZRA) & d(z)¢{2,...,i+1}}, wherei e N.
We claim that X; = X;41 U f*(”l)(XiH) for any ¢ € N. If z € X, then
either v € X,y or d(z) =i+ 2. However, the equation d(x) = i + 2 implies
d(f*(z)) = 1, hence f*(x) € X;41 and z € f~0+D(X,;, ). Therefore,
Xi € Xipa U f~ 0D (X4). Let € f~0+D(X;44). Then f(z) € X,
hence either d(f"*'(z)) = 1 or d(f"*1(x)) > i+3. So, d(z) >i+2,i e.
x € X;. Thus, X; = X;11 U f_(i+1)(Xi+1). It means that X; € t(XH_l).

By Lemma 4 the relation ¢(X;) % t(X;+1) is valid for any ¢ € N. Finally,

the lattice (1) of topologies of the unar 2 does not satisfy the ascending
chain condition because it contains the infinite chain ¢(X) % t(X2) ; ... :

Theorem 2. Let A = (A, f) be an arbitrary unar. Then it holds:

1. the lattice S(A) isn’t countably infinite;

2. if the set A is uncountable, then |()| = 22141,

Proof. The first statement of the theorem follows from Lemmas 3, and 4,
and Proposition 2. Let us prove the second statement. Let |A| > Wo. If
le(20)] = |A], then |J()] = 22! by Lemma 1 and p. 380 of [7]. Now let
le(2)| < |A]. By [3], p. 315, there exists a set A; of pairwise incomparable
noncyclic elements of 2 such that |A;| = |A|. Hence, |3(2A)| = 224 by
Lemma 2 and [7] (p. 380). |

Corollary 1. If a unar A = (A, f) is not a cycle, then |I(2A)| > | Con(A)|.

Proof. If |A| > R, then |3(2)| = 22" by Theorem 2 and | Con(2)| = 2/4
by [3] (p. 312). Hence, |3(2()] > | Con(21)].

Let the set A be countably infinite. If the set ¢(2() of connected compo-
nents of 2 is infinite or A contains some infinite set of pairwise incomparable
noncyclic elements, then |3(2()| = 9220 > o0 — | Con(21)| by Lemmas 1 and
2, and the main Theorem from [4]. Otherwise, by [4] and Theorem 2, we
obtain |I(2A)| > 2% > Ry = | Con()|.

Let now the set A be finite. We claim that the mappping 6 — 7(6)
from Con(2) into () is not surjective. Indeed, there exist such elements
a,b € A, that a ¢ (b) because the unar 2 is not a cycle. Suppose that p
is a congruence of A such that 7(p) = t({a}). Then [b], € t({a}). Hence,
[b], = A, because b ¢ Uien, f*({a}). Therefore, p is the universal relation
and the topology t({a}) = 7(p) is anti-discrete. However, {a} € t({a}).
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Consequently, the mapping 7 is not surjective. On the other hand, 7 is
injective by Lemma 3 of [2]. Thus, |$(2()| > | Con(2)].

Corollary 2. The lattice (1) of topologies of an arbitrary unar A is iso-
morphic to the lattice Con(2A) of its congruences if and only if A is a cycle.

Proof. The necessity of this assertion follows from the previous corollary.
Let 2 22 CY, where n € N. Then 3(2() = Con(2() by Corollary 2 from

n’

Theorem 1 of [2]. |
Corollary 3. The following properties hold

1. there exist unars with isomorphic lattices of congruences, the lattices
of topologies of which are not isomorphic;

2. there exist unars with isomorphic lattices of topologies, the lattices of
congruences of which are not isomorphic.

Proof. The lattices Con(C) + C) and Con(Cg), where p is a prime,
are isomorphic, because they both are two-element chains. However, the
lattice S(C) + Cf) is four-element and S(C)) = Con(Cy) according to
Corollary 2. In order to prove the second assertion, we note first that
I(CY + CY) = 3(CY ), where py,ps are different prime numbers. On the

pip2

other hand, the lattices Con(C? + C?) and Con(Cj,,,) are not isomorphic

because | Con(CY + CY)| = 2 and |C0n(C’81p2)| =4. u
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