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Abstract

In this paper we find cardinalities of lattices of topologies of un-
countable unars and show that the lattice of topologies of a unar cannor
be countably infinite. It is proved that under some finiteness condi-
tions the lattice of topologies of a unar is finite. Furthermore, the
relations between the lattice of topologies of an arbitrary unar and its
congruence lattice are established.
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Let A = 〈A, Ω〉 be an arbitrary algebra. A topology on the set A, under
which every operation from Ω is continuous is called a topology on the algebra
A. It is known [5] (p. 69) that the topologies on an algebra A form a lattice
under set inclusion. Let us call this lattice the lattice of topologies of the
algebra A. Denote this lattice by =(A).

Let now A = 〈A, f〉 be a unar, i. e. an algebra with one unary operation
f (see [6]). For any element a ∈ A and any positive integer n we put
f0(a) = a and fn(a) = f(fn−1(a)). Throughout the paper we shall denote
by N the set of all positive integers and N0 = N ∪ {0}.

A unar generated by one element a is called monogenic and it is denoted
by (a). A monogenic unar with the generator a and with defining relation
fn(a) = fn+m(a), n ∈ N0,m ∈ N is denoted by Cn

m. The unar C0
m is

termed a cycle of length m. An element a of the unar A is cyclic if the
subunar generated by this element is cyclic. The set of all cyclic elements of
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a unar A is denoted by Z(A). An element a of a unar A = 〈A, f〉 is periodic
if fk(a) ∈ Z(A) for some k ∈ N0. Otherwise it is called torsion-free. The
union of a sequence of unars C0

m ⊂ C1
m ⊂ C2

m ⊂ . . . will be denoted by C∞
m .

If a is a periodic element of a unar A = 〈A, f〉, then the least integer n ∈ N0

such that fn(a) ∈ Z(A), is the depth of a. It is denoted by d(a). A unar is
periodic if each element in A is periodic. A free monogenic unar is denoted
by F1.

The disjoint union of two unars B and C is denoted by B + C. Unars
B and C are components of the unar B + C. A unar having no proper
components is called connected. The set of all connected components of an
arbitrary unar A is denoted by c(A).

Proposition 1. The lattice of all topologies on the set c(A) of connected
components of an arbitrary unar A = 〈A, f〉 is isomorphic to some principal
ideal of the lattice =(A).

Proof. Define binary relation η on the set A by setting

xηy ⇔ (∃n,m ∈ N0)[fn(x) = fm(y)]

for any elements x, y ∈ A. It is clear that η ∈ Con(A) and the factor
unar A/η is a union of one-element cycles. Moreover the lattice =(A/η) of
topologies of the unar A/η coincides with the lattice of all topologies on the
set A/η. By [2] (Theorem 3) the lattice of all topologies on the set c(A) is
isomorphic to a principal ideal of =(A) because |c(A)| = |A/η|.
Observe that

the lattice R(Y ) of all topologies on a nonvoid subset Y of an arbitrary
set X can be embedded into the lattice R(X) of all topologies on the set X
as a principal ideal.

In fact, fix a point y0 ∈ Y and define a mapping ψ : R(Y ) → R(X)
in the following way. Let σ ∈ R(Y ). Denote be ψ(σ) the family of subsets
of the set X such that T ∈ ψ(σ) if and only if either T ∈ σ and y0 /∈ T or
T ∩ Y ∈ σ,X r Y ⊆ T and y0 ∈ T . Then ψ is an isomorphism of R(Y )
onto the principal ideal of R(X) generated by the topology ψ(σ1), where σ1

is the discrete topology on X.
From Proposition 1, we can deduce

Lemma 1. Let A = 〈A, f〉 be an arbitrary unar and K be a nonvoid subset
of the set c(A) of connected components of the unar A. Then the lattice
R(K) of all topologies on the set K is isomorphic to a principal ideal of the
lattice =(A).
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Elements a, b of an arbitrary unar A = 〈A, f〉 are incomparable if a /∈ (b)
and b /∈ (a).

Lemma 2. Let A = 〈A, f〉 be an arbitrary unar and A1 be an infinite set
of pairwise non-cyclic incomparable elements of A. Then the lattice R(A1)
of all topologies on the set A1 can be embedded into the lattice =(A).

Proof. Denote by B = 〈B, f〉 the subunar of unar A generated by set A1.
Define a binary relation ρ = {(a, b) ∈ B×B| a = b∨{a, b}∩A1 = ∅} on the
set B. Certainly the relation ρ is an equivalence.

We claim that ρ ∈ ConB. In fact let a /∈ A1, and f(a) ∈ A1. Since
a ∈ B, there exists an element c ∈ A1 and an integer n ∈ N0 such that
a = fn(c). Hence, f(a) = fn+1(c). It follows that n + 1 = 0 and n /∈ N0,
since f(a) ∈ A1 and c ∈ A1. Every topology on the factor set B/ρ is a
topology on the unar B/ρ because either f−1(X) = ∅ or f−1(X) = B/ρ
holds for any subset X of the set B/ρ. Thus applying [2] (Theorems 2 and
3) and the equality |A1| = |B/ρ| we can conclude that the lattice R(A1) of
all topologies on the set A1 can be embedded into the lattice =(A).

Lemma 3. Let A = 〈A, f〉 be an arbitrary infinite unar. Then either the
lattice =(F1) or the lattice =(C∞

1 ) can be embedded into the lattice =(A) of
all topologies of the unar A.

Proof. If A contains a torsion-free element a, then (a) ∼= F1, where (a) is
the monogenic subunar of the unar A generated by the element a. By [2]
(Theorem 3) the lattice =(F1) can be embedded into the lattice =(A).

If the set c(A) is infinite or the inequality |f−1({a})| ≥ ℵ0 holds for
some a ∈ A, then the lattice R(X) of all topologies on a countable infinite
set X is isomorphic to some sublattice of the lattice =(A) by Lemmas 1
and 2. On the other hand, |F1| = ℵ0. Therefore, the lattice =(F1) of all
topologies of F1 can be embedded into the lattice R(X) and, hence, into
the lattice =(A).

Let A be periodic, |c(A)| < ℵ0, a set f−1({a}) finite for any element
a ∈ A. Then there exists a subunar B = 〈B, f〉 of the unar A, which is
isomorphic to C∞

h , where h ∈ N. Put ρ={(a, b) ∈ B ×B| (a = b)∨ {a, b} ⊆
Z(A)}. Then ρ ∈ ConB and the factor unar B/ρ is isomorphic to C∞

1 .
Consequently, the lattice =(C∞

1 ) of all topologies of C∞
1 can be embedded

into the lattice =(A) by [2] (Theorems 2 and 3).
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The least topology with respect to inclusion on the unary algebra A, con-
taining a given family of subsets {Aα ⊆ A| α ∈ I} will be called the topology
on the algebra A generated by the set of elements {Aα|α ∈ I}. This topol-
ogy will be denoted by t({Aα|α ∈ I}) and respectively by t(U) if the family
{Aα| α ∈ I} consists of one set U .

Lemma 4. Let A = 〈A, f〉 be isomorphic to C∞
1 . Then t(X1) = t(X2) ⇒

X1 = X2 for any nonvoid subsets X1, X2 of the set A r Z(A).

Proof. Since t(X1) = t(X2), we conclude that X2 ∈ t(X1). Hence, the set
X2 is a union of finite intersections of some sets of the form f−i(X1), where
i ∈ N0, because X2 6= ∅ and X2 ⊆ A r Z(A) ⊂

6=
A.

Since A ∼= C∞
1 and X2 ⊆ A r Z(A), there exists an element x ∈ X2

such that

(∀k ∈ N) [fk(x) /∈ X2].(1)

Since x ∈ X2 and X2 ∈ t(X1) we have x ∈ ⋂
i∈I

f−i(X1) ⊆ X2 for some

finite set of indices I of the set N0. We claim that I = {0}. In fact, if
x ∈ f−i(X1), then f i(x) ∈ X1. On the other hand, since X1 ∈ t(X2), the
set X1 is a union of finite intersections of some sets of the form f−j(X2),
where j ∈ N0. However, by (1), the condition f i+j(x) ∈ X2 implies i+j = 0.
Hence, i = 0 and so I = {0}. Consequently, X1 ⊆ X2. Similarly, we can
prove that X2 ⊆ X1. Thus, X1 = X2.

Let A be an arbitrary algebra and θ ∈ Con(A). θ-congruence classes form a
base of some topology τ(θ) which we shall call the topology generated by the
congruence θ.

Proposition 2. There exists a set H of the cardinality 2ℵ0 of different
Hausdorff topologies on the unar F1, such that for any topology σ ∈ H there
exist topologies σ1, σ2 ∈ H, for which σ1 ≤ σ and σ ≤ σ2.

Proof. Let x, y ∈ F1 and k be an arbitrary fixed positive integer. Put

xζky ⇐⇒ (∃n,m ∈ N0)[fn(x) = fm(y) & n ≡ m(mod k)].(2)

It is not hard to see that ζk ∈ ConF1. Let P (S) be the set of all subsets
of the set S of all primes. We claim now that the mapping ϕ : P (S) → =(F1)
given by
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ϕ(X) =
∨

p∈X

τ(ζp), X ∈ P (S),(3)

is an injection. Let X1, X2 ⊆ S and p ∈ X1 r X2. Denote by a the
generator of the unar F1. Then M = {fn(a)| n ∈ N0, p|n} ∈ ϕ(X1) by
(3). If M ∈ ϕ(X2), then, by (3), we obtain that M is a union of finite
intersections of sets which are open in some topology τ(ζq), q ∈ X2, the
congruence ζq is defined according to (2).

Let a ∈ Lp1 ∩ Lp2 ∩ . . . ∩ Lpk
and Lp1 ∩ Lp2 ∩ . . . ∩ Lpk

⊆ M , where
Lpi ∈ τ(ζpi), pi ∈ X2 for any i ∈ {1, 2, . . . , k}. Then fp1p2...pk(a) ∈ M ,
and p|p1p2 . . . pk, i.e. there exists an index i ∈ {1, 2, . . . , k} such that p =
pi ∈ X2. Therefore, M /∈ ϕ(X2). Thus, the inequality X1 6= X2 implies
ϕ(X1) 6= ϕ(X2).

We claim that if X is an infinite subset of the set of all primes, then
ϕ(X) from (3) is a Hausdorff topology one. Let b, c ∈ F1 and b 6= c. Then
b = fn(a), c = fm(a), where n,m ∈ N0,m 6= n and a is the generator of the
unar F1. Since the set X is infnite, there exists a number p ∈ X such that
n < p and m < p. Hence [b]ζp ∩ [c]ζp = ∅, because m 6= n. On the other
hand, [b]ζp , [c]ζp ∈ ϕ(X) by (2) and (3). It means that ϕ(X) is a Hausdorff
topology.

Thus, the set

H = {ϕ(X)| X ∈ P (S) & |X| = |SrX| = ℵ0}(4)

consists of Hausdorff topologies and has cardinality 2ℵ0 . Let ϕ(X) ∈ H.
Then there exist prime numbers p1 and p2 such that p1 ∈ X, p2 ∈ S r X.
Consequently, ϕ(X r {p1}), ϕ(X ∪ {p2}) ∈ H by (4). On the other hand,
(3) implies ϕ(X r {p1}) ⊂6= ϕ(X) ⊂

6=
ϕ(X ∪ {p2}), because the map ϕ is

injective.

Theorem 1. Let A = 〈A, f〉 be an arbitrary unar. Then the following
conditions are equivalent:

1. the lattice =(A) is finite;

2. the lattice =(A) has a finite width;

3. the lattice =(A) satisfies the descending chain condition;

4. the lattice =(A) satisfies the ascending chain condition.
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Proof. Implications 1) ⇒ 2), 1) ⇒ 3), 1) ⇒ 4 are obvious. Let the lattice
=(A) of topologies of A be infinite. Then |A| ≥ ℵ0. We shall show that
=(A) is not a lattice of finite width and satisfies neither the descending
chain condition nor the ascending chain condition. By Lemma 3, it suffices
to consider the cases A ∼= F1 and A ∼= C∞

1 .
If A ∼= F1, then =(A) is not a lattice of a finite width by Theo-

rem 1 of [2] and Theorem 4 of [1]. Furthermore, this lattice satisfies nei-
ther the descending chain condition nor the ascending chain condition by
Proposition 2.

Let A ∼= C∞
1 . Put

Xi = {a|a ∈ A & d(a) ≡ 1 (mod i)}(5)

for any integer i ∈ N0. Fix arbitrary different primes i and j. We are
going to show that the elements t(Xi) and t(Xj) of the lattice =(A) are
incomparable. In fact, if t(Xi) ≤ t(Xj), then Xi ∈ t(Xj). It means that the
set Xi is a union of finite intersections of some sets of the form f−l(Xj),
where j ∈ N0.

Since A ∼= C∞
1 , there exists an element a ∈ A of the depth 1. Then (5)

implies a ∈ Xi. Consequently,

a ∈ f−l1(Xj) ∩ . . . ∩ f−ls(Xj)(6)

and
s⋂

k=1

f−lk(Xj) ⊆ Xi(7)

for some s ∈ N, {l1, . . . , ls} ⊆ N0. By (6), we have f lk(a) ∈ Xj for any
k ∈ {1, . . . , s}. From (5), we can deduce that lk = 0 for any k ∈ {1, . . . , s}
and d(a) = 1. Applying (7), we have Xj ⊆ Xi a contradiction with (5),
because i and j are different primes.

Thus, the inequality t(Xi) ≤ t(Xj) doesn’t hold. Similarly, we can
prove that the inequality t(Xj) ≤ t(Xi) doesn’t hold either. Therefore, the
elements t(Xi) and t(Xj) of the lattice =(A) are incomparable for any prime
different numbers i and j. Hence, if A ∼= C∞

1 , then =(A) is not a lattice of
a finite width.

Let X be an arbitrary subset of the set A r Z(A). Then the decreasing
chain t(X) ⊃ t(f−1(X)) ⊃ t(f−2(X)) ⊃ . . . of elements of =(A) does not
terminate by Lemma 4.
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It remains to construct an infinite increasing chain of elements of the lattice
=(A). Let Xi = {x|x ∈ A r Z(A) & d(x) /∈ {2, . . . , i + 1}}, where i ∈ N.
We claim that Xi = Xi+1 ∪ f−(i+1)(Xi+1) for any i ∈ N. If x ∈ Xi, then
either x ∈ Xi+1 or d(x) = i + 2. However, the equation d(x) = i + 2 implies
d(f i+1(x)) = 1, hence f i+1(x) ∈ Xi+1 and x ∈ f−(i+1)(Xi+1). Therefore,
Xi ⊆ Xi+1 ∪ f−(i+1)(Xi+1). Let x ∈ f−(i+1)(Xi+1). Then f i+1(x) ∈ Xi+1,
hence either d(f i+1(x)) = 1 or d(f i+1(x)) ≥ i + 3. So, d(x) ≥ i + 2, i. e.
x ∈ Xi. Thus, Xi = Xi+1 ∪ f−(i+1)(Xi+1). It means that Xi ∈ t(Xi+1).

By Lemma 4 the relation t(Xi) ⊂6= t(Xi+1) is valid for any i ∈ N. Finally,

the lattice =(A) of topologies of the unar A does not satisfy the ascending
chain condition because it contains the infinite chain t(X1) ⊂6= t(X2) ⊂6= . . .

Theorem 2. Let A = 〈A, f〉 be an arbitrary unar. Then it holds:

1. the lattice =(A) isn’t countably infinite;

2. if the set A is uncountable, then |=(A)| = 22|A|.

Proof. The first statement of the theorem follows from Lemmas 3, and 4,
and Proposition 2. Let us prove the second statement. Let |A| > ℵ0. If
|c(A)| = |A|, then |=(A)| = 22|A| by Lemma 1 and p. 380 of [7]. Now let
|c(A)| < |A|. By [3], p. 315, there exists a set A1 of pairwise incomparable
noncyclic elements of A such that |A1| = |A|. Hence, |=(A)| = 22|A| by
Lemma 2 and [7] (p. 380).

Corollary 1. If a unar A = 〈A, f〉 is not a cycle, then |=(A)| > |Con(A)|.
Proof. If |A| > ℵ0, then |=(A)| = 22|A| by Theorem 2 and |Con(A)| = 2|A|

by [3] (p. 312). Hence, |=(A)| > |Con(A)|.
Let the set A be countably infinite. If the set c(A) of connected compo-

nents of A is infinite or A contains some infinite set of pairwise incomparable
noncyclic elements, then |=(A)| = 22ℵ0 > 2ℵ0 = |Con(A)| by Lemmas 1 and
2, and the main Theorem from [4]. Otherwise, by [4] and Theorem 2, we
obtain |=(A)| ≥ 2ℵ0 > ℵ0 = |Con(A)|.

Let now the set A be finite. We claim that the mappping θ 7→ τ(θ)
from Con(A) into =(A) is not surjective. Indeed, there exist such elements
a, b ∈ A, that a /∈ (b) because the unar A is not a cycle. Suppose that ρ
is a congruence of A such that τ(ρ) = t({a}). Then [b]ρ ∈ t({a}). Hence,
[b]ρ = A, because b /∈ ∪i∈N0f

−i({a}). Therefore, ρ is the universal relation
and the topology t({a}) = τ(ρ) is anti-discrete. However, {a} ∈ t({a}).
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Consequently, the mapping τ is not surjective. On the other hand, τ is
injective by Lemma 3 of [2]. Thus, |=(A)| > |Con(A)|.
Corollary 2. The lattice =(A) of topologies of an arbitrary unar A is iso-
morphic to the lattice Con(A) of its congruences if and only if A is a cycle.

Proof. The necessity of this assertion follows from the previous corollary.
Let A ∼= C0

n, where n ∈ N. Then =(A) ∼= Con(A) by Corollary 2 from
Theorem 1 of [2].

Corollary 3. The following properties hold

1. there exist unars with isomorphic lattices of congruences, the lattices
of topologies of which are not isomorphic;

2. there exist unars with isomorphic lattices of topologies, the lattices of
congruences of which are not isomorphic.

Proof. The lattices Con(C0
1 + C0

1 ) and Con(C0
p), where p is a prime,

are isomorphic, because they both are two-element chains. However, the
lattice =(C0

1 + C0
1 ) is four-element and =(C0

p) ∼= Con(C0
p) according to

Corollary 2. In order to prove the second assertion, we note first that
=(C0

1 + C0
1 ) ∼= =(C0

p1p2
), where p1, p2 are different prime numbers. On the

other hand, the lattices Con(C0
1 + C0

1 ) and Con(C0
p1p2

) are not isomorphic
because |Con(C0

1 + C0
1 )| = 2 and |Con(C0

p1p2
)| = 4.
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