CARDINALITIES OF LATTICES OF TOPOLOGIES OF UNARS AND SOME RELATED TOPICS ## Anna Kartashova Department of Algebra and Geometry Volgograd Pedagogical University Eletskaya 7–177, 400120 Volgograd, Russia e-mail: kvk@vspu.ru #### Abstract In this paper we find cardinalities of lattices of topologies of uncountable unars and show that the lattice of topologies of a unar cannor be countably infinite. It is proved that under some finiteness conditions the lattice of topologies of a unar is finite. Furthermore, the relations between the lattice of topologies of an arbitrary unar and its congruence lattice are established. Keywords: unar, lattice of topologies, lattice of congruences. 2000 Mathematics Subject Classification: 08A60, 22A30, 08A30. Let $\mathfrak{A} = \langle A, \Omega \rangle$ be an arbitrary algebra. A topology on the set A, under which every operation from Ω is continuous is called a *topology on the algebra* \mathfrak{A} . It is known [5] (p. 69) that the topologies on an algebra \mathfrak{A} form a lattice under set inclusion. Let us call this lattice the *lattice of topologies* of the algebra \mathfrak{A} . Denote this lattice by $\mathfrak{F}(\mathfrak{A})$. Let now $\mathfrak{A} = \langle A, f \rangle$ be a unar, i. e. an algebra with one unary operation f (see [6]). For any element $a \in A$ and any positive integer n we put $f^0(a) = a$ and $f^n(a) = f(f^{n-1}(a))$. Throughout the paper we shall denote by \mathbb{N} the set of all positive integers and $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$. A unar generated by one element a is called monogenic and it is denoted by (a). A monogenic unar with the generator a and with defining relation $f^n(a) = f^{n+m}(a), \quad n \in \mathbb{N}_0, m \in \mathbb{N}$ is denoted by C_m^n . The unar C_m^0 is termed a cycle of length m. An element a of the unar \mathfrak{A} is cyclic if the subunar generated by this element is cyclic. The set of all cyclic elements of a unar \mathfrak{A} is denoted by $Z(\mathfrak{A})$. An element a of a unar $\mathfrak{A} = \langle A, f \rangle$ is periodic if $f^k(a) \in Z(\mathfrak{A})$ for some $k \in \mathbb{N}_0$. Otherwise it is called torsion-free. The union of a sequence of unars $C_m^0 \subset C_m^1 \subset C_m^2 \subset \ldots$ will be denoted by C_m^∞ . If a is a periodic element of a unar $\mathfrak{A} = \langle A, f \rangle$, then the least integer $n \in \mathbb{N}_0$ such that $f^n(a) \in Z(\mathfrak{A})$, is the depth of a. It is denoted by d(a). A unar is periodic if each element in \mathfrak{A} is periodic. A free monogenic unar is denoted by \mathcal{F}_1 . The disjoint union of two unars \mathfrak{B} and \mathfrak{C} is denoted by $\mathfrak{B} + \mathfrak{C}$. Unars \mathfrak{B} and \mathfrak{C} are *components* of the unar $\mathfrak{B} + \mathfrak{C}$. A unar having no proper components is called *connected*. The set of all connected components of an arbitrary unar \mathfrak{A} is denoted by $c(\mathfrak{A})$. **Proposition 1.** The lattice of all topologies on the set $c(\mathfrak{A})$ of connected components of an arbitrary unar $\mathfrak{A} = \langle A, f \rangle$ is isomorphic to some principal ideal of the lattice $\mathfrak{F}(\mathfrak{A})$. **Proof.** Define binary relation η on the set A by setting $$x\eta y \Leftrightarrow (\exists n, m \in \mathbb{N}_0)[f^n(x) = f^m(y)]$$ for any elements $x, y \in A$. It is clear that $\eta \in \text{Con}(\mathfrak{A})$ and the factor unar \mathfrak{A}/η is a union of one-element cycles. Moreover the lattice $\mathfrak{F}(\mathfrak{A}/\eta)$ of topologies of the unar \mathfrak{A}/η coincides with the lattice of all topologies on the set A/η . By [2] (Theorem 3) the lattice of all topologies on the set $c(\mathfrak{A})$ is isomorphic to a principal ideal of $\mathfrak{F}(\mathfrak{A})$ because $|c(\mathfrak{A})| = |\mathfrak{A}/\eta|$. #### Observe that the lattice $\mathcal{R}(Y)$ of all topologies on a nonvoid subset Y of an arbitrary set X can be embedded into the lattice $\mathcal{R}(X)$ of all topologies on the set X as a principal ideal. In fact, fix a point $y_0 \in Y$ and define a mapping $\psi : \mathcal{R}(Y) \to \mathcal{R}(X)$ in the following way. Let $\sigma \in \mathcal{R}(Y)$. Denote be $\psi(\sigma)$ the family of subsets of the set X such that $T \in \psi(\sigma)$ if and only if either $T \in \sigma$ and $y_0 \notin T$ or $T \cap Y \in \sigma, X \setminus Y \subseteq T$ and $y_0 \in T$. Then ψ is an isomorphism of $\mathcal{R}(Y)$ onto the principal ideal of $\mathcal{R}(X)$ generated by the topology $\psi(\sigma_1)$, where σ_1 is the discrete topology on X. From Proposition 1, we can deduce **Lemma 1.** Let $\mathfrak{A} = \langle A, f \rangle$ be an arbitrary unar and K be a nonvoid subset of the set $c(\mathfrak{A})$ of connected components of the unar \mathfrak{A} . Then the lattice $\mathcal{R}(K)$ of all topologies on the set K is isomorphic to a principal ideal of the lattice $\mathfrak{F}(\mathfrak{A})$. Elements a, b of an arbitrary unar $\mathfrak{A} = \langle A, f \rangle$ are incomparable if $a \notin (b)$ and $b \notin (a)$. **Lemma 2.** Let $\mathfrak{A} = \langle A, f \rangle$ be an arbitrary unar and A_1 be an infinite set of pairwise non-cyclic incomparable elements of \mathfrak{A} . Then the lattice $\mathcal{R}(A_1)$ of all topologies on the set A_1 can be embedded into the lattice $\mathfrak{I}(\mathfrak{A})$. **Proof.** Denote by $\mathfrak{B} = \langle B, f \rangle$ the subunar of unar \mathfrak{A} generated by set A_1 . Define a binary relation $\rho = \{(a,b) \in B \times B | a = b \vee \{a,b\} \cap A_1 = \emptyset\}$ on the set B. Certainly the relation ρ is an equivalence. We claim that $\rho \in \text{Con }\mathfrak{B}$. In fact let $a \notin A_1$, and $f(a) \in A_1$. Since $a \in B$, there exists an element $c \in A_1$ and an integer $n \in \mathbb{N}_0$ such that $a = f^n(c)$. Hence, $f(a) = f^{n+1}(c)$. It follows that n+1=0 and $n \notin \mathbb{N}_0$, since $f(a) \in A_1$ and $c \in A_1$. Every topology on the factor set B/ρ is a topology on the unar \mathfrak{B}/ρ because either $f^{-1}(X) = \emptyset$ or $f^{-1}(X) = B/\rho$ holds for any subset X of the set B/ρ . Thus applying [2] (Theorems 2 and 3) and the equality $|A_1| = |B/\rho|$ we can conclude that the lattice $\mathcal{R}(A_1)$ of all topologies on the set A_1 can be embedded into the lattice $\mathfrak{F}(\mathfrak{A})$. **Lemma 3.** Let $\mathfrak{A} = \langle A, f \rangle$ be an arbitrary infinite unar. Then either the lattice $\mathfrak{I}(\mathcal{F}_1)$ or the lattice $\mathfrak{I}(C_1^{\infty})$ can be embedded into the lattice $\mathfrak{I}(\mathfrak{A})$ of all topologies of the unar \mathfrak{A} . **Proof.** If \mathfrak{A} contains a torsion-free element a, then $(a) \cong \mathcal{F}_1$, where (a) is the monogenic subunar of the unar \mathfrak{A} generated by the element a. By [2] (Theorem 3) the lattice $\mathfrak{F}(\mathcal{F}_1)$ can be embedded into the lattice $\mathfrak{F}(\mathfrak{A})$. If the set $c(\mathfrak{A})$ is infinite or the inequality $|f^{-1}(\{a\})| \geq \aleph_0$ holds for some $a \in A$, then the lattice $\mathcal{R}(X)$ of all topologies on a countable infinite set X is isomorphic to some sublattice of the lattice $\Im(\mathfrak{A})$ by Lemmas 1 and 2. On the other hand, $|\mathcal{F}_1| = \aleph_0$. Therefore, the lattice $\Im(\mathcal{F}_1)$ of all topologies of \mathcal{F}_1 can be embedded into the lattice $\mathcal{R}(X)$ and, hence, into the lattice $\Im(\mathfrak{A})$. Let \mathfrak{A} be periodic, $|c(\mathfrak{A})| < \aleph_0$, a set $f^{-1}(\{a\})$ finite for any element $a \in \mathfrak{A}$. Then there exists a subunar $\mathfrak{B} = \langle B, f \rangle$ of the unar \mathfrak{A} , which is isomorphic to C_h^{∞} , where $h \in \mathbb{N}$. Put $\rho = \{(a,b) \in B \times B | (a=b) \vee \{a,b\} \subseteq Z(\mathfrak{A})\}$. Then $\rho \in \text{Con }\mathfrak{B}$ and the factor unar \mathfrak{B}/ρ is isomorphic to C_1^{∞} . Consequently, the lattice $\mathfrak{F}(C_1^{\infty})$ of all topologies of C_1^{∞} can be embedded into the lattice $\mathfrak{F}(\mathfrak{A})$ by [2] (Theorems 2 and 3). The least topology with respect to inclusion on the unary algebra \mathfrak{A} , containing a given family of subsets $\{A_{\alpha} \subseteq A | \alpha \in I\}$ will be called the *topology* on the algebra \mathfrak{A} generated by the set of elements $\{A_{\alpha} | \alpha \in I\}$. This topology will be denoted by $t(\{A_{\alpha} | \alpha \in I\})$ and respectively by t(U) if the family $\{A_{\alpha} | \alpha \in I\}$ consists of one set U. **Lemma 4.** Let $\mathfrak{A} = \langle A, f \rangle$ be isomorphic to C_1^{∞} . Then $t(X_1) = t(X_2) \Rightarrow X_1 = X_2$ for any nonvoid subsets X_1, X_2 of the set $A \setminus Z(\mathfrak{A})$. **Proof.** Since $t(X_1) = t(X_2)$, we conclude that $X_2 \in t(X_1)$. Hence, the set X_2 is a union of finite intersections of some sets of the form $f^{-i}(X_1)$, where $i \in \mathbb{N}_0$, because $X_2 \neq \emptyset$ and $X_2 \subseteq A \setminus Z(\mathfrak{A}) \subset A$. Since $\mathfrak{A} \cong C_1^{\infty}$ and $X_2 \subseteq A \setminus Z(\mathfrak{A})$, there exists an element $x \in X_2$ such that (1) $$(\forall k \in \mathbb{N}) \ [f^k(x) \notin X_2].$$ Since $x \in X_2$ and $X_2 \in t(X_1)$ we have $x \in \bigcap_{i \in I} f^{-i}(X_1) \subseteq X_2$ for some finite set of indices I of the set \mathbb{N}_0 . We claim that $I = \{0\}$. In fact, if $x \in f^{-i}(X_1)$, then $f^i(x) \in X_1$. On the other hand, since $X_1 \in t(X_2)$, the set X_1 is a union of finite intersections of some sets of the form $f^{-j}(X_2)$, where $j \in \mathbb{N}_0$. However, by (1), the condition $f^{i+j}(x) \in X_2$ implies i+j=0. Hence, i=0 and so $I=\{0\}$. Consequently, $X_1 \subseteq X_2$. Similarly, we can prove that $X_2 \subseteq X_1$. Thus, $X_1 = X_2$. Let \mathfrak{A} be an arbitrary algebra and $\theta \in \text{Con}(\mathfrak{A})$. θ -congruence classes form a base of some topology $\tau(\theta)$ which we shall call the *topology generated by the* congruence θ . **Proposition 2.** There exists a set \mathcal{H} of the cardinality 2^{\aleph_0} of different Hausdorff topologies on the unar \mathcal{F}_1 , such that for any topology $\sigma \in \mathcal{H}$ there exist topologies $\sigma_1, \sigma_2 \in \mathcal{H}$, for which $\sigma_1 \leq \sigma$ and $\sigma \leq \sigma_2$. **Proof.** Let $x, y \in \mathcal{F}_1$ and k be an arbitrary fixed positive integer. Put (2) $$x\zeta_k y \iff (\exists n, m \in \mathbb{N}_0)[f^n(x) = f^m(y) \& n \equiv m \pmod{k}].$$ It is not hard to see that $\zeta_k \in \operatorname{Con} \mathcal{F}_1$. Let P(S) be the set of all subsets of the set S of all primes. We claim now that the mapping $\varphi : P(S) \to \Im(\mathcal{F}_1)$ given by (3) $$\varphi(X) = \bigvee_{p \in X} \tau(\zeta_p), \qquad X \in P(S),$$ is an injection. Let $X_1, X_2 \subseteq S$ and $p \in X_1 \setminus X_2$. Denote by a the generator of the unar \mathcal{F}_1 . Then $M = \{f^n(a) | n \in \mathbb{N}_0, \ p|n\} \in \varphi(X_1)$ by (3). If $M \in \varphi(X_2)$, then, by (3), we obtain that M is a union of finite intersections of sets which are open in some topology $\tau(\zeta_q), \ q \in X_2$, the congruence ζ_q is defined according to (2). Let $a \in L_{p_1} \cap L_{p_2} \cap \ldots \cap L_{p_k}$ and $L_{p_1} \cap L_{p_2} \cap \ldots \cap L_{p_k} \subseteq M$, where $L_{p_i} \in \tau(\zeta_{p_i}), \quad p_i \in X_2$ for any $i \in \{1, 2, \ldots, k\}$. Then $f^{p_1p_2\ldots p_k}(a) \in M$, and $p|p_1p_2\ldots p_k$, i.e. there exists an index $i \in \{1, 2, \ldots, k\}$ such that $p = p_i \in X_2$. Therefore, $M \notin \varphi(X_2)$. Thus, the inequality $X_1 \neq X_2$ implies $\varphi(X_1) \neq \varphi(X_2)$. We claim that if X is an infinite subset of the set of all primes, then $\varphi(X)$ from (3) is a Hausdorff topology one. Let $b, c \in \mathcal{F}_1$ and $b \neq c$. Then $b = f^n(a), c = f^m(a)$, where $n, m \in \mathbb{N}_0, m \neq n$ and a is the generator of the unar \mathcal{F}_1 . Since the set X is infinite, there exists a number $p \in X$ such that n < p and m < p. Hence $[b]_{\zeta_p} \cap [c]_{\zeta_p} = \emptyset$, because $m \neq n$. On the other hand, $[b]_{\zeta_p}, [c]_{\zeta_p} \in \varphi(X)$ by (2) and (3). It means that $\varphi(X)$ is a Hausdorff topology. Thus, the set (4) $$\mathcal{H} = \{ \varphi(X) | X \in P(S) \quad \& \quad |X| = |S \setminus X| = \aleph_0 \}$$ consists of Hausdorff topologies and has cardinality 2^{\aleph_0} . Let $\varphi(X) \in \mathcal{H}$. Then there exist prime numbers p_1 and p_2 such that $p_1 \in X, p_2 \in S \setminus X$. Consequently, $\varphi(X \setminus \{p_1\}), \varphi(X \cup \{p_2\}) \in \mathcal{H}$ by (4). On the other hand, (3) implies $\varphi(X \setminus \{p_1\}) \subset \varphi(X) \subset \varphi(X \cup \{p_2\})$, because the map φ is injective. **Theorem 1.** Let $\mathfrak{A} = \langle A, f \rangle$ be an arbitrary unar. Then the following conditions are equivalent: - 1. the lattice $\Im(\mathfrak{A})$ is finite; - 2. the lattice $\Im(\mathfrak{A})$ has a finite width; - 3. the lattice $\Im(\mathfrak{A})$ satisfies the descending chain condition; - 4. the lattice $\Im(\mathfrak{A})$ satisfies the ascending chain condition. **Proof.** Implications $1) \Rightarrow 2$, $1) \Rightarrow 3$, $1) \Rightarrow 4$ are obvious. Let the lattice $\Im(\mathfrak{A})$ of topologies of \mathfrak{A} be infinite. Then $|A| \geq \aleph_0$. We shall show that $\Im(\mathfrak{A})$ is not a lattice of finite width and satisfies neither the descending chain condition nor the ascending chain condition. By Lemma 3, it suffices to consider the cases $\mathfrak{A} \cong \mathcal{F}_1$ and $\mathfrak{A} \cong C_1^{\infty}$. If $\mathfrak{A} \cong \mathcal{F}_1$, then $\mathfrak{F}(\mathfrak{A})$ is not a lattice of a finite width by Theorem 1 of [2] and Theorem 4 of [1]. Furthermore, this lattice satisfies neither the descending chain condition nor the ascending chain condition by Proposition 2. Let $\mathfrak{A} \cong C_1^{\infty}$. Put (5) $$X_i = \{a | a \in A \quad \& \quad d(a) \equiv 1 \pmod{i}\}$$ for any integer $i \in \mathbb{N}_0$. Fix arbitrary different primes i and j. We are going to show that the elements $t(X_i)$ and $t(X_j)$ of the lattice $\Im(\mathfrak{A})$ are incomparable. In fact, if $t(X_i) \leq t(X_j)$, then $X_i \in t(X_j)$. It means that the set X_i is a union of finite intersections of some sets of the form $f^{-l}(X_j)$, where $j \in \mathbb{N}_0$. Since $\mathfrak{A} \cong C_1^{\infty}$, there exists an element $a \in \mathfrak{A}$ of the depth 1. Then (5) implies $a \in X_i$. Consequently, (6) $$a \in f^{-l_1}(X_j) \cap \ldots \cap f^{-l_s}(X_j)$$ and (7) $$\bigcap_{k=1}^{s} f^{-l_k}(X_j) \subseteq X_i$$ for some $s \in \mathbb{N}$, $\{l_1, \ldots, l_s\} \subseteq \mathbb{N}_0$. By (6), we have $f^{l_k}(a) \in X_j$ for any $k \in \{1, \ldots, s\}$. From (5), we can deduce that $l_k = 0$ for any $k \in \{1, \ldots, s\}$ and d(a) = 1. Applying (7), we have $X_j \subseteq X_i$ a contradiction with (5), because i and j are different primes. Thus, the inequality $t(X_i) \leq t(X_j)$ doesn't hold. Similarly, we can prove that the inequality $t(X_j) \leq t(X_i)$ doesn't hold either. Therefore, the elements $t(X_i)$ and $t(X_j)$ of the lattice $\Im(\mathfrak{A})$ are incomparable for any prime different numbers i and j. Hence, if $\mathfrak{A} \cong C_1^{\infty}$, then $\Im(\mathfrak{A})$ is not a lattice of a finite width. Let X be an arbitrary subset of the set $A \setminus Z(\mathfrak{A})$. Then the decreasing chain $t(X) \supset t(f^{-1}(X)) \supset t(f^{-2}(X)) \supset \ldots$ of elements of $\mathfrak{F}(\mathfrak{A})$ does not terminate by Lemma 4. It remains to construct an infinite increasing chain of elements of the lattice $\Im(\mathfrak{A})$. Let $X_i = \{x | x \in A \setminus Z(\mathfrak{A}) \& d(x) \notin \{2, \ldots, i+1\}\}$, where $i \in \mathbb{N}$. We claim that $X_i = X_{i+1} \cup f^{-(i+1)}(X_{i+1})$ for any $i \in \mathbb{N}$. If $x \in X_i$, then either $x \in X_{i+1}$ or d(x) = i+2. However, the equation d(x) = i+2 implies $d(f^{i+1}(x)) = 1$, hence $f^{i+1}(x) \in X_{i+1}$ and $x \in f^{-(i+1)}(X_{i+1})$. Therefore, $X_i \subseteq X_{i+1} \cup f^{-(i+1)}(X_{i+1})$. Let $x \in f^{-(i+1)}(X_{i+1})$. Then $f^{i+1}(x) \in X_{i+1}$, hence either $d(f^{i+1}(x)) = 1$ or $d(f^{i+1}(x)) \ge i+3$. So, $d(x) \ge i+2$, i. e. $x \in X_i$. Thus, $X_i = X_{i+1} \cup f^{-(i+1)}(X_{i+1})$. It means that $X_i \in t(X_{i+1})$. By Lemma 4 the relation $t(X_i) \subset t(X_{i+1})$ is valid for any $i \in \mathbb{N}$. Finally, the lattice $\Im(\mathfrak{A})$ of topologies of the unar \mathfrak{A} does not satisfy the ascending chain condition because it contains the infinite chain $t(X_1) \subset t(X_2) \subset \ldots$ **Theorem 2.** Let $\mathfrak{A} = \langle A, f \rangle$ be an arbitrary unar. Then it holds: - 1. the lattice $\Im(\mathfrak{A})$ isn't countably infinite; - 2. if the set A is uncountable, then $|\Im(\mathfrak{A})| = 2^{2^{|A|}}$. **Proof.** The first statement of the theorem follows from Lemmas 3, and 4, and Proposition 2. Let us prove the second statement. Let $|A| > \aleph_0$. If $|c(\mathfrak{A})| = |A|$, then $|\Im(\mathfrak{A})| = 2^{2^{|A|}}$ by Lemma 1 and p. 380 of [7]. Now let $|c(\mathfrak{A})| < |A|$. By [3], p. 315, there exists a set A_1 of pairwise incomparable noncyclic elements of \mathfrak{A} such that $|A_1| = |A|$. Hence, $|\Im(\mathfrak{A})| = 2^{2^{|A|}}$ by Lemma 2 and [7] (p. 380). Corollary 1. If a unar $\mathfrak{A} = \langle A, f \rangle$ is not a cycle, then $|\Im(\mathfrak{A})| > |\operatorname{Con}(\mathfrak{A})|$. **Proof.** If $|A| > \aleph_0$, then $|\Im(\mathfrak{A})| = 2^{2^{|A|}}$ by Theorem 2 and $|\operatorname{Con}(\mathfrak{A})| = 2^{|A|}$ by [3] (p. 312). Hence, $|\Im(\mathfrak{A})| > |\operatorname{Con}(\mathfrak{A})|$. Let the set A be countably infinite. If the set $c(\mathfrak{A})$ of connected components of \mathfrak{A} is infinite or \mathfrak{A} contains some infinite set of pairwise incomparable noncyclic elements, then $|\mathfrak{F}(\mathfrak{A})| = 2^{2^{\aleph_0}} > 2^{\aleph_0} = |\operatorname{Con}(\mathfrak{A})|$ by Lemmas 1 and 2, and the main Theorem from [4]. Otherwise, by [4] and Theorem 2, we obtain $|\mathfrak{F}(\mathfrak{A})| \geq 2^{\aleph_0} > \aleph_0 = |\operatorname{Con}(\mathfrak{A})|$. Let now the set A be finite. We claim that the mapping $\theta \mapsto \tau(\theta)$ from $\operatorname{Con}(\mathfrak{A})$ into $\mathfrak{I}(\mathfrak{A})$ is not surjective. Indeed, there exist such elements $a,b \in A$, that $a \notin (b)$ because the unar \mathfrak{A} is not a cycle. Suppose that ρ is a congruence of \mathfrak{A} such that $\tau(\rho) = t(\{a\})$. Then $[b]_{\rho} \in t(\{a\})$. Hence, $[b]_{\rho} = A$, because $b \notin \bigcup_{i \in \mathbb{N}_0} f^{-i}(\{a\})$. Therefore, ρ is the universal relation and the topology $t(\{a\}) = \tau(\rho)$ is anti-discrete. However, $\{a\} \in t(\{a\})$. Consequently, the mapping τ is not surjective. On the other hand, τ is injective by Lemma 3 of [2]. Thus, $|\Im(\mathfrak{A})| > |\operatorname{Con}(\mathfrak{A})|$. **Corollary 2.** The lattice $\Im(\mathfrak{A})$ of topologies of an arbitrary unar \mathfrak{A} is isomorphic to the lattice $\operatorname{Con}(\mathfrak{A})$ of its congruences if and only if \mathfrak{A} is a cycle. **Proof.** The necessity of this assertion follows from the previous corollary. Let $\mathfrak{A} \cong C_n^0$, where $n \in \mathbb{N}$. Then $\mathfrak{F}(\mathfrak{A}) \cong \operatorname{Con}(\mathfrak{A})$ by Corollary 2 from Theorem 1 of [2]. Corollary 3. The following properties hold - 1. there exist unars with isomorphic lattices of congruences, the lattices of topologies of which are not isomorphic; - 2. there exist unars with isomorphic lattices of topologies, the lattices of congruences of which are not isomorphic. **Proof.** The lattices $\operatorname{Con}(C_1^0 + C_1^0)$ and $\operatorname{Con}(C_p^0)$, where p is a prime, are isomorphic, because they both are two-element chains. However, the lattice $\Im(C_1^0 + C_1^0)$ is four-element and $\Im(C_p^0) \cong \operatorname{Con}(C_p^0)$ according to Corollary 2. In order to prove the second assertion, we note first that $\Im(C_1^0 + C_1^0) \cong \Im(C_{p_1p_2}^0)$, where p_1, p_2 are different prime numbers. On the other hand, the lattices $\operatorname{Con}(C_1^0 + C_1^0)$ and $\operatorname{Con}(C_{p_1p_2}^0)$ are not isomorphic because $|\operatorname{Con}(C_1^0 + C_1^0)| = 2$ and $|\operatorname{Con}(C_{p_1p_2}^0)| = 4$. ### Acknowledgements The author is grateful to Profesor V.A. Artamonov for fruitful discussions and regular attention to my work. #### References - [1] D.P. Egorova, Unars with congruence lattices of special kinds (Russian), Issledovania po algebre (Saratov) 5 (1977), 3–19. - [2] A.V. Kartashova, About some properties of lattices of topologies of algebras (Russian), Dep. no. 404 VINITI, 21.02.00. - [3] O. Kopeček, $|EndA| = |Con A| = |SubA| = 2^A$ for any uncountable 1-unary algebra A, Algebra Universalis 16 (1983), 312–317. - [4] O. Kopeček, A note on some cardinal functions on unary algebras, Contributions to General Algebra 2 (1983), 221–227. - [5] S.D. Orlov, About the lattice of possible topologies (Russian), Uporadočennye množestva i rešetki (Saratov) 2 (1974), 68–71. - [6] L.A. Skorniakov, Unars, p. 735–743 in: Colloq. Math. Soc. J. Bolyai, vol. 29 ("Universal Algebra"), North-Holland, Amsterdam 1982. - [7] A.K. Steiner, *The lattice of topologies: Structure and complementation*, Trans. Amer. Math. Soc. **122** (1966), 379–398. Received 27 November 2000 Revised 14 December 2001