BALANCED CONGRUENCES*

Ivan Chajda
Department of Algebra and Geometry Palacký University of Olomouc Tomkova 40, CZ-77900 Olomouc, Czech Republic
e-mail:chajda@risc.upol.cz
AND
Günther Eigenthaler
Institut für Algebra und Computermathematik
Technische Universität Wien
Wiedner Hauptstraße 8-10, A-1040 Wien, Austria
e-mail:g.eigenthaler@tuwien.ac.at

Abstract

Let \mathcal{V} be a variety with two distinct nullary operations 0 and 1 . An algebra $\mathfrak{A} \in \mathcal{V}$ is called balanced if for each $\Phi, \Psi \in \operatorname{Con}(\mathfrak{A})$, we have $[0] \Phi=[0] \Psi$ if and only if $[1] \Phi=[1] \Psi$. The variety \mathcal{V} is called balanced if every $\mathfrak{A} \in \mathcal{V}$ is balanced. In this paper, balanced varieties are characterized by a Mal'cev condition (Theorem 3). Furthermore, some special results are given for varieties of bounded lattices.

Keywords: balanced congruence, balanced algebra, balanced variety, Mal'cev condition.

2000 Mathematics Subject Classification: Primary 08A30; Secondary 08B05.

[^0]
1. Balanced congruences on bounded lattices

Let $\mathfrak{L}=(L ; \vee, \wedge, 0,1)$ be a bounded lattice with least element 0 and greatest element 1 . We study congruences on \mathfrak{L} such that the 0 -class determines the 1-class and vice versa.

Let $M \subseteq L$ and $a, b \in L$. Denote by $\Theta(M)$ the least congruence on \mathfrak{L} containing the relation $M \times M$ and by $\Theta(a, b)$ the principal congruence on \mathfrak{L} generated by (a, b), i.e. $\Theta(a, b)=\Theta(M)$ for $M=\{a, b\}$. We will use the following result of G. Grätzer and E. T. Schmidt, see [3]:

Proposition 1. Let \mathfrak{L} be a distributive lattice and $a, b, c, d \in L$ with $c \leq d$. Then $a \Theta(c, d) b$ if and only if $a \wedge c=b \wedge c$ and $a \vee d=b \vee d$.

Here and in the following, we write $a \Phi b$ instead of $(a, b) \in \Phi$, for any $\Phi \in$ $\operatorname{Con}(\mathfrak{L})$ and $a, b \in L$.

From now on, every lattice under consideration is bounded, i.e. it has 0 and 1.

Definition 1. Let \mathfrak{L} be a lattice with 0 and 1 and $\Phi \in \operatorname{Con}(\mathfrak{L})$. Put $I=[0] \Phi$ and $F=[1] \Phi$. We say that Φ is balanced if

$$
[0] \Phi=[0] \Theta(F) \text { and }[1] \Phi=[1] \Theta(I)
$$

Example 1. By Corollary 2.1 in [2], every complemented lattice is locally regular at 0 (in the sense of [1]), i.e. for every $\Phi, \Psi \in \operatorname{Con}(\mathfrak{L})$, if $[a] \Phi=$ $[a] \Psi$ for some $a \in L$, then $[0] \Phi=[0] \Psi$. Dually, it is locally regular at 1, i.e. $[a] \Phi=[a] \Psi$ implies $[1] \Phi=[1] \Psi$. Thus every congruence on every complemented lattice is balanced.

Definition 2. Let \mathfrak{L} be a lattice with 0 and 1 . We say that \mathfrak{L} is a d-lattice if for each $a, b, c, d \in L$ the following holds:

$$
\begin{aligned}
& a \Theta(c, 1) 0 \quad \Rightarrow \quad a \wedge c=0 \\
& b \Theta(d, 0) 1 \quad \Rightarrow \quad b \vee d=1
\end{aligned}
$$

Example 2. The lattice \mathfrak{N}_{5} is a d-lattice. Of course, \mathfrak{N}_{5} has just five congruences: the identical one ω, the full square $N_{5} \times N_{5}$ and three nontrivial ones $\Theta_{1}, \Theta_{2}, \Theta_{3}$ defined by the following partitions (see Figure 1):

$$
\begin{array}{lll}
\Theta_{1} & \ldots & \{0, b, c\},\{a, 1\} \\
\Theta_{2} & \ldots & \{0\},\{a\},\{b, c\},\{1\} \\
\Theta_{3} & \ldots & \{0, a\},\{b, c, 1\}
\end{array}
$$

Figure 1
It is an easy exercise to verify our condition for $\Theta_{1}, \Theta_{2}, \Theta_{3}$; for ω and $N_{5} \times N_{5}$ it is trivial (since $\omega=\Theta(0,0)=\Theta(1,1)$ and $N_{5} \times N_{5}=\Theta(0,1)$).

Lemma 1. Every bounded distributive lattice is a d-lattice.
The proof follows immediately by Proposition 1 putting $b=0$ and $d=1$ in the first case and $a=1$ and $c=0$ in the second one.

Lemma 2. Let \mathfrak{L} be a bounded lattice and $\Phi \in \operatorname{Con}(\mathfrak{L})$. Take $S=\{a \in L$: $c \wedge a=0$ for some $c \in[1] \Phi\}$. Then $S \subseteq[0] \Phi$.

Proof. Let $a \in S$. Then $a \wedge c=0$ for some $c \in[1] \Phi$. Hence, $c \Phi 1$ thus also $(c \vee a) \Phi(1 \vee a)=1$, i.e. $c \vee a \in[1] \Phi$. It yields $c \Phi(c \vee a)$ and $0=$ $(c \wedge a) \Phi((c \vee a) \wedge a)=a$ proving $a \in[0] \Phi$.

Theorem 1. Let \mathfrak{L} be a d-lattice and $\Phi \in \operatorname{Con}(\mathfrak{L})$. Then Φ is balanced if and only if

$$
\begin{aligned}
& {[0] \Phi=\{a \in L: c \wedge a=0 \text { for some } c \in[1] \Phi\} \text { and }} \\
& {[1] \Phi=\{b \in L: d \vee b=1 \text { for some } d \in[0] \Phi\}}
\end{aligned}
$$

Proof. Let \mathfrak{L} be a d-lattice and let $\Phi \in \operatorname{Con}(\mathfrak{L})$ be balanced. Define a set $S=\{a \in L: c \wedge a=0$ for some $c \in[1] \Phi\}$. By Lemma 2 we have $S \subseteq[0] \Phi$. Conversely, let $a \in[0] \Phi$. Since Φ is balanced, we have $0 \Theta(F) a$ for $F=[1] \Phi$. Applying the fact that $\operatorname{Con}(\mathfrak{L})$ is a compactly generated lattice, there exist elements $c_{1}, \ldots, c_{k} \in F$ such that $0\left[\Theta\left(1, c_{1}\right) \vee \ldots \vee \Theta\left(1, c_{k}\right)\right] a$. Set $c=c_{1} \wedge \ldots \wedge c_{k}$. Then $c \leq c_{i} \leq 1$ whence $\Theta\left(1, c_{i}\right) \subseteq \Theta(1, c)$, i.e. $0 \Theta(1, c) a$. Since \mathfrak{L} is a d-lattice, it implies $0=c \wedge a$. Since $c \in F$, we have $a \in S$, i.e. $[0] \Phi \subseteq S$. We have shown $[0] \Phi=S$. Dually it can be shown that $[1] \Phi=\{b \in L: d \vee b=1$ for some $d \in[0] \Phi\}$.

Conversely, let $\Phi \in \operatorname{Con}(\mathfrak{L})$, and suppose that $[0] \Phi,[1] \Phi$ are described as in Theorem 1. Set $I=[0] \Phi, F=[1] \Phi$ and $\Psi_{1}=\Theta(F), \Psi_{2}=\Theta(I)$. Evidently, $[1] \Psi_{1}=F$ and $[0] \Psi_{2}=I$.

It gives immediately

$$
\begin{aligned}
{[0] \Phi } & =\{a \in L: c \wedge a=0 \text { for some } c \in F\}= \\
& =\left\{a \in L: c \wedge a=0 \text { for some } c \in[1] \Psi_{1}\right\}
\end{aligned}
$$

thus $I \subseteq[0] \Psi_{1}$ by Lemma 2. However, both Φ and Ψ_{1} have the 1-class F and Ψ_{1} is the least congruence with this property, i.e. $\Psi_{1} \subseteq \Phi$ whence $[0] \Psi_{1} \subseteq I$. We have shown that $[0] \Phi=I=[0] \Theta(F)$.

Analogously one can prove $[1] \Phi=[1] \Theta(I)$, i.e. Φ is balanced.
Example 3. Consider the distributive lattice \mathfrak{L} visualized in Figure 2. Consider the congruences Φ_{1} and Φ_{2} determined by the following partitions:

$$
\begin{array}{lll}
\Phi_{1} & \ldots & \{0, a\},\{p, q\},\{c, 1\} \\
\Phi_{2} & \ldots & \{0, p\},\{a, q\},\{c\},\{1\} .
\end{array}
$$

Then Φ_{1} is balanced since

$$
\begin{aligned}
& {[0] \Phi_{1} }=\{0, a\} \\
& {[1] \Phi_{1} }=\{c, 1\}=\{x \in L: c \wedge x=0\}, \\
&=\{y \in L: a \vee y=1\} .
\end{aligned}
$$

On the contrary, Φ_{2} is not balanced since $[1] \Phi_{2}=\{1\}=[1] \omega$, whereas $[0] \Phi_{2} \neq[0] \omega$.

Figure 2

2. Balanced algebras with two nullary operations

Definition 3. Let τ be a type containing two distinct nullary operations denoted by 0 and 1 and let \mathfrak{A} be an algebra of type τ. A congruence $\Phi \in \operatorname{Con}(\mathfrak{A})$ is called balanced if

$$
[0] \Phi=[0] \Theta(F) \text { and }[1] \Phi=[1] \Theta(I)
$$

where, as in Definition $1, I=[0] \Phi, F=[1] \Phi$ and for $M \subseteq A, \Theta(M)$ denotes the least congruence on \mathfrak{A} containing $M \times M$. The algebra \mathfrak{A} is called balanced if each $\Phi \in \operatorname{Con}(\mathfrak{A})$ is balanced. A variety \mathcal{V} of type τ is called balanced if every $\mathfrak{A} \in \mathcal{V}$ has this property.

Lemma 3. An algebra \mathfrak{A} with nullary operations 0 and 1 is balanced if and only if for each $\Phi, \Psi \in \operatorname{Con}(\mathfrak{A})$ the following condition holds:

$$
[0] \Phi=[0] \Psi \text { if and only if }[1] \Phi=[1] \Psi
$$

Proof. Of course, if Φ and Ψ are balanced and $[0] \Phi=[0] \Psi=I$, then $[1] \Phi=[1] \Theta(I)=[1] \Psi$ and vice versa. Conversely, suppose that $[0] \Phi=[0] \Psi$ if and only if $[1] \Phi=[1] \Psi$ for each $\Phi, \Psi \in \operatorname{Con}(\mathfrak{A})$. Then $[0] \Phi=I=[0] \Theta(I)$, thus also $[1] \Phi=[1] \Theta(I)$ and similarly, $[0] \Phi=[0] \Theta(F)$ with $F=[1] \Phi$, i.e. every congruence on \mathfrak{A} is balanced. So \mathfrak{A} is balanced.

Example 4. The lattice \mathfrak{N}_{5} (see Figure 1) is balanced, since for Θ_{2} (of Example 2), we have $[0] \Theta_{2}=[0] \omega$ and $[1] \Theta_{2}=[1] \omega$. We have $\Theta_{2} \neq \omega$, so it is a nontrivial example.

The consequence of Example 1 is that every complemented lattice is balanced (this yields another proof that \mathfrak{N}_{5} is balanced). However, this condition is not necessary. For example, every simple lattice is balanced but it need not be complemented, see e.g. Figure 3.

Figure 3

Problem. If \mathfrak{L} is a bounded distributive lattice (or a d-lattice), is it true that \mathfrak{L} is balanced if and only if \mathfrak{L} is complemented?

Lemma 4. Let \mathfrak{A} be an algebra with nullary operations 0 and 1. If \mathfrak{A} is balanced then for each $\Phi \in \operatorname{Con}(\mathfrak{A})$ the following property holds:

$$
\begin{equation*}
[0] \Phi \text { is a singleton if and only if }[1] \Phi \text { is a singleton } \tag{S}
\end{equation*}
$$

Proof. Suppose, e.g., that $[1] \Phi=\{1\}$. Then $[1] \Phi=[1] \omega$ for the identical congruence $\omega \in \operatorname{Con}(\mathfrak{A})$, thus, by Lemma 3, also $[0] \Phi=[0] \omega=\{0\}$. The converse can be shown analogously.
For varieties, the converse statement is also valid:
Theorem 2. Let \mathcal{V} be a variety of type τ containing two distinct nullary operations 0 and $1 . \mathcal{V}$ is balanced if and only if for each $\mathfrak{A} \in \mathcal{V}$ and every $\Phi \in \operatorname{Con}(\mathfrak{A})$ property (S) holds.

Proof. Let \mathcal{V} satisfy condition (S), let $\mathfrak{A} \in \mathcal{V}$ and $\Phi, \Psi \in \operatorname{Con}(\mathfrak{A})$. Suppose $[1] \Phi=[1] \Psi$. Then clearly also $[1] \Phi=[1] \Phi \wedge \Psi$, so we can assume $\Psi \subseteq \Phi$ without loss of generality. Consider the factor algebra \mathfrak{A} / Ψ and the factor congruence $\Phi / \Psi \in \operatorname{Con}(\mathfrak{A} / \Psi)$. Since $[1] \Psi=[1] \Phi$, the class of Φ / Ψ containing the element $[1] \Psi \in \mathfrak{A} / \Psi$ is a singleton. Thus, by (S), also the class $[[0] \Psi] \Phi / \Psi$ is a singleton whence $[0] \Psi=[0] \Phi$.

Analogously we can show that $[0] \Phi=[0] \Psi \Rightarrow[1] \Phi=[1] \Psi$, thus \mathfrak{A} and hence also \mathcal{V} is balanced, by Lemma 3. The converse assertion follows directly by Lemma 4.

3. A characterization of balanced varieties

The following Theorem characterizes balanced varieties by a Mal'cev condition.

Theorem 3. Let \mathcal{V} be a variety of type τ which contains two distinct nullary operations 0 and 1 . The following conditions are equivalent:

1. \mathcal{V} is balanced.
2. There exist - for some m, n, k and h - unary terms $p_{1}, \ldots, p_{m}, q_{1}, \ldots, q_{n}$, $(2 m+1)$-ary terms r_{1}, \ldots, r_{k} and $(2 n+1)$-ary terms s_{1}, \ldots, s_{h} such that the following identities hold in \mathcal{V} :

$$
\begin{aligned}
& p_{1}(0)=\ldots=p_{m}(0)=1, q_{1}(1)=\ldots=q_{n}(1)=0, \text { and } \\
& x=r_{1}\left(p_{1}(x), \ldots, p_{m}(x), 1, \ldots, 1, x\right) \\
& r_{i}\left(1, \ldots, 1, p_{1}(x), \ldots, p_{m}(x), x\right)=r_{i+1}\left(p_{1}(x), \ldots, p_{m}(x), 1, \ldots, 1, x\right), \\
& i=1, \ldots, k-1, \\
& 0=r_{k}\left(1, \ldots, 1, p_{1}(x), \ldots, p_{m}(x), x\right), \text { and } \\
& x=s_{1}\left(q_{1}(x), \ldots, q_{n}(x), 0, \ldots, 0, x\right) \\
& s_{j}\left(0, \ldots, 0, q_{1}(x), \ldots, q_{n}(x), x\right)=s_{j+1}\left(q_{1}(x), \ldots, q_{n}(x), 0, \ldots, 0, x\right) \text {, } \\
& j=1, \ldots, h-1 \\
& 1=s_{h}\left(0, \ldots, 0, q_{1}(x), \ldots, q_{n}(x), x\right)
\end{aligned}
$$

3. There exist - for some m, n - unary terms $p_{1}, \ldots, p_{m}, q_{1}, \ldots, q_{n}$ and 3 -ary terms $r_{1}, \ldots, r_{m}, s_{1}, \ldots, s_{n}$ such that the following identities hold in \mathcal{V} :
$p_{1}(0)=\ldots=p_{m}(0)=1, q_{1}(1)=\ldots=q_{n}(1)=0$, and
$x=r_{1}\left(p_{1}(x), 1, x\right)$,
$r_{i}\left(1, p_{i}(x), x\right)=r_{i+1}\left(p_{i+1}(x), 1, x\right), i=1, \ldots, m-1$,
$0=r_{m}\left(1, p_{m}(x), x\right)$, and
$x=s_{1}\left(q_{1}(x), 0, x\right)$,
$s_{j}\left(0, q_{j}(x), x\right)=s_{j+1}\left(q_{j+1}(x), 0, x\right), j=1, \ldots, n-1$, $1=s_{n}\left(0, q_{n}(x), x\right)$.
4. There exist - for some m, n - unary terms $p_{1}, \ldots, p_{m}, q_{1}, \ldots, q_{n}$ such that

$$
\begin{aligned}
{\left[p_{1}(x)=1 \& \ldots \& p_{m}(x)=1\right] } & \Leftrightarrow x=0 \\
{\left[q_{1}(x)=0 \& \ldots \& q_{n}(x)=0\right] } & \Leftrightarrow x=1
\end{aligned}
$$

Proof. (1) $\Rightarrow(2)$: Let $\mathfrak{A}=\mathfrak{F}_{\mathcal{V}}(x)$ be a free algebra of \mathcal{V} with one free generator x, let $\Psi=\Theta(x, 0) \in \operatorname{Con}(\mathfrak{A})$ and $B=[1] \Psi$. Set $\Phi=\Theta(B)$, i.e., Φ is the least congruence on \mathfrak{A} having the 1 -class equal to B. Then $[1] \Psi=[1] \Phi$ thus, by (1), also $[0] \Psi=[0] \Phi$, i.e., $0 \Phi x$. As the lattice $\operatorname{Con}(\mathfrak{A})$ is compactly generated, there exist $b_{1}, \ldots, b_{m} \in B$ such that

$$
\begin{equation*}
x\left[\Theta\left(1, b_{1}\right) \vee \ldots \vee \Theta\left(1, b_{m}\right)\right] 0 \tag{*}
\end{equation*}
$$

Since $b_{i} \in \mathfrak{F} \mathcal{V}(x)$, there exist unary terms $p_{i}(x)$ such that $b_{i}=p_{i}(x)$ for $i=1, \ldots, m$. Since $b_{i} \in[1] \Theta(x, 0)$, it implies immediately

$$
p_{i}(0)=1 \text { for } i=1, \ldots, m
$$

Applying the well-known Mal'cev scheme (see [4]) on (*), we obtain

$$
\begin{aligned}
x & =r_{1}\left(p_{1}(x), \ldots, p_{m}(x), 1, \ldots, 1, x\right) \\
r_{j}\left(1, \ldots, 1, p_{1}(x), \ldots, p_{m}(x), x\right) & =r_{j+1}\left(p_{1}(x), \ldots, p_{m}(x), 1, \ldots, 1, x\right) \\
0 & =r_{k}\left(1, \ldots, 1, p_{1}(x), \ldots, p_{m}(x), x\right)
\end{aligned}
$$

for some $(2 m+1)$-ary terms r_{1}, \ldots, r_{k} and $j=1, \ldots, k-1$.
If we set $\Psi=\Theta(x, 1)$ and $B=[0] \Psi$, then the constants 0 and 1 only interchange their roles and we obtain the remaining identities of (2) analogously.
$(2) \Rightarrow(3):$ For $i=2, \ldots, m-1$ and $j=1, \ldots, k$ put $r_{j 1}(u, v, x)=r_{j}\left(u, p_{2}(x), \ldots, p_{m}(x), v, 1, \ldots, 1, x\right)$ $r_{j i}(u, v, x)=r_{j}\left(1, \ldots, 1, u, p_{i+1}(x), \ldots, p_{m}(x), p_{1}(x), \ldots, p_{i-1}(x), v, 1, \ldots, 1, x\right)$,
where there are $i-1$ nullary operations 1 at the beginning and $m-i$ nullary operations 1 after v, and

$$
r_{j m}(u, v, x)=r_{j}\left(1, \ldots, 1, u, p_{1}(x), \ldots, p_{m-1}(x), v, x\right)
$$

Furthermore, put $p_{j i}(x)=p_{i}(x)$ for $i=1, \ldots, m$ and $j=1, \ldots, k$.
Then we have for $i=1, \ldots, m-1$ and $j=1, \ldots, k$:

$$
\begin{aligned}
& r_{j i}\left(1, p_{j i}(x), x\right)= \\
= & r_{j}\left(1, \ldots, 1,1, p_{i+1}(x), \ldots, p_{m}(x), p_{1}(x), \ldots, p_{i-1}(x), p_{i}(x), 1, \ldots, 1, x\right)= \\
= & r_{j, i+1}\left(p_{j, i+1}(x), 1, x\right)
\end{aligned}
$$

and for $j=1, \ldots, k-1$:

$$
\begin{aligned}
r_{j m}\left(1, p_{j m}(x), x\right) & =r_{j}\left(1, \ldots, 1,1, p_{1}(x), \ldots, p_{m-1}(x), p_{m}(x), x\right)= \\
& =r_{j+1}\left(p_{1}(x), \ldots, p_{m}(x), 1, \ldots, 1, x\right)= \\
& =r_{j+1,1}\left(p_{j+1,1}(x), 1, x\right)
\end{aligned}
$$

where the second identity follows from (2).
Furthermore we have, again by (2):

$$
\begin{aligned}
r_{11}\left(p_{11}(x), 1, x\right) & =r_{1}\left(p_{1}(x), p_{2}(x), \ldots, p_{m}(x), 1,1, \ldots, 1, x\right)=x \\
r_{k m}\left(1, p_{k m}(x), x\right) & =r_{k}\left(1, \ldots, 1,1, p_{1}(x), \ldots, p_{m-1}(x), p_{m}(x), x\right)=0
\end{aligned}
$$

By writing m instead of $k m, r_{1}, \ldots, r_{m}$ instead of $r_{11}, \ldots, r_{k m}$ and p_{1}, \ldots, p_{m} instead of $p_{11}, \ldots, p_{k m}$ (both in lexicographic order), we obtain the first part of (3). The second part of (3) can be shown analogously.
$(3) \Rightarrow(4)$: Take the same terms p_{i}, q_{j} as in (3). Then $p_{i}(0)=1, q_{j}(1)=0$ for $i=1, \ldots, m$ and $j=1, \ldots, n$.

If we suppose $p_{i}(x)=1$ for $i=1, \ldots, m$, then, by (3), we obtain

$$
\begin{aligned}
x & =r_{1}\left(p_{1}(x), 1, x\right)=r_{1}(1,1, x)= \\
& =r_{2}(1,1, x)=\ldots=r_{k}(1,1, x)= \\
& =r_{m}\left(1, p_{m}(x), x\right)=0
\end{aligned}
$$

i.e., $x=0$, thus we have the first implication of (4). The second one can be shown analogously.
$(4) \Rightarrow(1):$ Let $\mathfrak{A} \in \mathcal{V}$ and $\Phi \in \operatorname{Con}(\mathfrak{A})$. Suppose, e.g., $[1] \Phi=\{1\}$ and take $b \in[0] \Phi$. Then $[b] \Phi=[0] \Phi$ and, by (4), we have in the factor algebra \mathfrak{A} / Φ

$$
\left[p_{i}(b)\right] \Phi=p_{i}([b] \Phi)=p_{i}([0] \Phi)=[1] \Phi=\{1\}
$$

whence $p_{i}(b)=1$ for $i=1, \ldots, m$. Applying (4) again, we conclude $b=0$, thus $[0] \Phi=\{0\}$. Analogously we can show

$$
[0] \Phi=\{0\} \Rightarrow[1] \Phi=\{1\}
$$

By Theorem $2, \mathcal{V}$ is balanced.
Remark. The equivalence of (2) and (3) can also be proved directly since $(3) \Rightarrow(2)$ can be seen as follows:
Take the r_{i} in (3) and define the $(2 m+1)$-ary terms \bar{r}_{i} by

$$
\bar{r}_{i}\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{m}, x\right)=r_{i}\left(x_{i}, y_{i}, x\right), i=1, \ldots, m
$$

then we have

$$
\begin{aligned}
& \bar{r}_{i}\left(p_{1}(x), \ldots, p_{m}(x), 1, \ldots, 1, x\right)=r_{i}\left(p_{i}(x), 1, x\right) \text { and } \\
& \bar{r}_{i}\left(1, \ldots, 1, p_{1}(x), \ldots, p_{m}(x), x\right)=r_{i}\left(1, p_{i}(x), x\right)
\end{aligned}
$$

and we obtain the identities of (2) with $m=k$ and \bar{r}_{i} instead of r_{i}. Similarly, we obtain the identities of (2) with $n=h$ and some \bar{s}_{i} instead of s_{i}.

Example 5. The variety of all ortholattices $(L ; \vee, \wedge, \perp, 0,1)$ is balanced. We can take $m=1=n$ and $p_{1}(x)=q_{1}(x)=x^{\perp}$. Then $p_{1}(x)=1$ if and only if $x=0$ and $q_{1}(x)=0$ if and only if $x=1$.

Example 6. Every variety of double p-algebras is balanced (a double p-algebra is an algebra $\left(L ; \vee, \wedge^{*},^{+}, 0,1\right)$ of type $(2,2,1,1,0,0)$, where $(L ; \vee, \wedge, 0,1)$ is a bounded lattice, a^{*} is a pseudocomplement of $a \in L$ and a^{+}is a dual pseudocomplement). We can take $m=1=n$ and $p_{1}(x)=x^{*}, q_{1}(x)=x^{+}$. Of course, $0^{*}=1,1^{+}=0$, and $x^{*}=1 \Rightarrow x=0$, $x^{+}=0 \Rightarrow x=1$.

References

[1] I. Chajda, Locally regular varieties, Acta Sci. Math. (Szeged) 64 (1998), 431-435.
[2] I. Chajda and G. Eigenthaler, A remark on congruence kernels in complemented lattices and pseudocomplemented semilattices, Contributions to General Algebra 11 (1999), 55-58.
[3] G. Grätzer and E.T. Schmidt, Ideals and congruence relations in lattices, Acta Math. Sci. Hungar. 9 (1958), 137-175.
[4] A.I. Mal'cev, On the general theory of algebraic systems (Russian), Mat. Sb. 35 (1954), 3-20.

[^0]: *This paper is a result of the collaboration of the authors within the framework of the "Aktion Österreich-Tschechische Republik" (grant No. 26p2"Local and global congruence properties").

