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Abstract

The authors prove that a local n-quasigroup defined by the equation

xn+1 = F (x1, . . . , xn) =
f1(x1) + . . . + fn(xn)

x1 + . . . + xn
,

where fi(xi), i, j = 1, . . . , n, are arbitrary functions, is irreducible if
and only if any two functions fi(xi) and fj(xj), i 6= j, are not both
linear homogeneous, or these functions are linear homogeneous but
fi(xi)

xi
6= fj(xj)

xj
. This gives a solution of Belousov’s problem to construct

examples of irreducible n-quasigroups for any n ≥ 3.

Keywords: n-ary quasigroup, reducible, irreducible.

2000 Mathematics Subject Classification: Primary 20N05.

1. Introduction

An n-quasigroup is a set Q with an n-ary operation A such that each equa-
tion A(a1, a2, . . . ai−1, x, ai+1, . . . , an) = b is uniquely solvable with respect
to x (i = 1, . . . , n). An n-quasigroup A, n > 2, is reducible if there exist a
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k-ary operation B and (n−k+1)-ary operation C such that A(x1, . . . , xn) =
B(C(x1, . . . , xk), xk+1, . . . , xn). Otherwise, an n-quasigroup A is said to be
irreducible.

In his monograph [1], Belousov posed the following problem (p. 217,
problem 5): Construct examples of irreducible n-quasigroups, n > 3. Do
there exist irreducible n-quasigroups for any n > 3? We describe now the
development in the solution of this problem.

• Belousov and Sandik (see [2]) constructed an example of an irreducible
3-quasigroup of order 4 (see also [1], p. 115).

• Frenkin (see [5]) proved that for any n ≥ 3, there exist irreducible n-
quasigroups of order 4.

• Using methods of web geometry, Goldberg proved in [8], [9] (see also the
book [10], Ch. 4) an existence of infinite local irreducible n-quasigroups
for any n ≥ 3. It is well-known that the theory of (n + 1)-webs is
equivalent to the theory of local differentiable n-quasigroups. Goldberg
proved that in general an arbitrary (n + 1)-web (or a local differentiable
n-quasigroup) is irreducible.

• One year later, independently, using algebraic methods, Glukhov in [6]
(see also [7]) proved an existence of infinite irreducible n-quasigroups for
any n ≥ 3.

• For any n ≥ 3, Borisenko (see [4]) constructed examples of irreducible
n-quasigroups of finite composite order t > 4.

Note that in all these works, no examples of infinite irreducible n-quasigroups
were given.

In the current paper we present the simplest examples of local irreducible
and reducible n-quasigroups. They are coordinate n-quasigroups of a series
of irreducible and reducible (n + 1)-webs. We came to these examples from
the web theory. However, to make this paper accessible for mathematicians
not working in web geometry, in our presentation we formulate the main
results and their proofs without using the web geometry terminology.

Note also that we could give much more examples of local irreducible
n-quasigroups but they will be more complicated than examples considered
in this paper.
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2. Preliminaries

Suppose that a local differentiable n-quasigroup A is given on a differentiable
manifold Q by the equation

xn+1 = F (x1, x2, . . . , xn),(1)

where F is a C2-function. First, we indicate invariant conditions for such a
local n-quasigroup A to be reducible.

Note that for a ternary quasigroup (i.e., when n = 3), Goldberg proved
in [8] (see also [10]) that a 3-quasigroup A defined by the equation

x4 = F (x1, x2, x3)(2)

is reducible of type

x4 = g(h(x1, x2), x3)(3)

(where g and h are differentiable functions) if and only if the function F
satisfies the following second-order nonlinear partial differential equation

F31

F32
=

F1

F2
.(4)

Here and in what follows, we use the notation

Fi =
∂F

∂xi
, Fij =

∂2F

∂xi∂xj
, i, j = 1, . . . , n.

Equation (4) was noticed by Goursat [11], as far back as 1899, who
indicated that function (3), where g and h are arbitrary functions of two
variables each, is a general solution of equation (4).

We define a local reducible n-quasigroup. Without loss of generality, we
can define a local reducible n-quasigroup A as an n-quasigroup for which the
function F (x1, . . . , xn) has the following form:

xn+1 = g(h(x1, . . . , xk), xk+1, . . . , xn),(5)

(i.e., its operation is reduced to a k-ary and (n + 1 − k)-ary operations,
2 ≤ k ≤ n − 1). In terminology of [2] (see also [1]), such an n-quasigroup
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is (1, k)-reducible. Goldberg (see [9] or [10]) found necessary and sufficient
conditions for an n-quasigroup (1) to be reducible. For reducibility of type
(5), these conditions are: the function F must satisfy the following system
of second-order nonlinear partial differential equations

Fpa

Fpb
=

Fa

Fb
, a, b = 1, . . . k, a 6= b; p, q = k + 1, . . . , n.(6)

The proof of this statement is straightforward: conditions (6) can be
obtained from (5) by differentiation, and it can be shown that the
function defined by equation (5) is a general solution of the system (6).

Let us consider a few examples.

Example 1. If an n-quasigroup is (1, 2)-reducible, i.e., if

xn+1 = g(h(x1, x2), x3 . . . , xn),(7)

then conditions (6) take the form

Fp1

Fp2
=

F1

F2
, p = 3, . . . , n.(8)

Example 2. If an n-quasigroup is (1, 2)- and (3, 5)-reducible, i.e., if

xn+1 = g(h(x1, x2), k(x3, x4, x5), x6, . . . , xn),(9)

then conditions (6) take the form





Fp1

Fp2
=

F1

F2
, p = 3, . . . , n;

Fσa

Fσb
=

Fa

Fb
, a, b = 3, 4, 5, a 6= b; σ = 1, 2, 6, 7, . . . , n.

(10)
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Example 3. If an n-quasigroup is (1, 2, 3)- and (1, 2)-reducible, i.e., if

xn+1 = g(h(k(x1, x2), x3)), x4, . . . , xn),(11)

then conditions (6) take the form





Fpa

Fpb
=

Fa

Fb
, a, b = 1, 2, 3, a 6= b; p = 4, 5, . . . , n;

F31

F32
=

F1

F2
.

(12)

These three examples show how to get conditions (6) for different kinds
of reducibilities.

Now we will formulate our main theorem.

Theorem 1. A local n-quasigroup defined by the equation

xn+1 = F (x1, . . . , xn) =
f1(x1) + . . . + fn(xn)

x1 + . . . + xn
(13)

is irreducible if and only if any two functions fi(xi) and fj(xj), i 6= j, are
not both linear homogeneous, or these functions are both linear homogeneous
but fi(xi)

xi
6= fj(xj)

xj
.

The proof of this theorem follows from the next theorem on necessary
and sufficient conditions for an n-quasigroup defined by equation (13) to be
reducible.

Note that the function (13) defines an n-cone system (see [12]).

Theorem 2. A local n-quasigroup defined by equation (13) is (1, k)-reducible
if and only if

fa(xa) = cxa, a = 1, . . . , k,(14)

where c is the same constant for all a = 1, . . . , k.
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Proof. A necessary and sufficient condition for an n-quasigroup to be
(1, k)-reducible is that the function F from (13) satisfies the system of
partial differential equations (6). We write equations (6) for any two fixed
different values a and b, a, b = 1, . . . , k:

Fpa

Fpb
=

Fa

Fb
.(15)

For the n-quasigroup defined by equation (13), equation (15) takes the form

(f ′a(xa)− f ′b(xb))[f ′p(xp)(x1 + . . . + xn)− (f1(x1) + . . . + fn(xn))]=0.(16)

First, we assume that

f ′p(xp)(x1 + . . . + xn)− (f1(x1) + . . . + fn(xn)) = 0.

Then

f ′p(xp) =
f1(x1) + . . . + fn(xn)

x1 + . . . + xn
(= F ).

Since the left-hand side does not depend on xa, then Fa = 0. But Fp = 0
implies that f ′p(xp)

∑
i xi −

∑
i fi(xi) = 0, i.e., f ′a(xa) = F . This along with

f ′p(xp) = F leads to f ′i(xi) = F, i = 1, . . . , n. These equalities are possible
if and only if

F = A = (const.)

However, in this case equation (13) does not define a local n-quasigroup
since it is not solvable with respect to the variables xi, i = 1, . . . , n.

Leaving this case aside, we find from condition (16) that

f ′a(xa) = f ′b(xb).

We can see again that both sides of this equation are constant:

f ′a(xa) = f ′b(xb) = c (= const.).
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Integration gives
fa(xa) = cxa, fb(xb) = cxb.

Since a and b are arbitrary numbers from 1, . . . , k, this proves that

fa(xa) = cxa, a = 1, . . . , k.

Thus,

F =
c(x1 + . . . + xk) + fk+1(xk+1) + . . . + fn(xn)

x1 + . . . + xn
.(17)

The following corollary gives a geometric meaning of local reducible n-
quasigroups defined by equation (13). First, note that in Rn equation (13)
determines an (n + 1)-web W formed by hyperplanes xi = ci, i = 1, . . . , n,
parallel to the coordinate hyperplanes of a Cartesian coordinate system
of Rn and by a family λn+1 of hypersurfaces V defined by the equations
F = α(= const.)

Corollary 3. A local n-quasigroup (13) is reducible if and only if in a
Cartesian coordinate system of Rn, the normal vector to any hypersurface
of the (n + 1)-web W has at least two equal coordinates (i.e., if at least two
projections of this vector onto the coordinate axes are equal).

Proof. In fact, the equation of a hypersurface V is

f1(x1) + . . . + fn(xn)− α(x1 + . . . + xn) = 0,

where α is a constant.
In a Cartesian coordinate system of Rn, the normal vector N at an

arbitrary point of the hypersurface V has the coordinates

f ′1(x1)− α, . . . , f ′n(xn)− α.

Thus, if two of these coordinates are equal, this implies f ′i(xi)=f ′j(xj), i 6= j.
As we saw in the proof of Theorem 2, this implies that fi(xi) + fj(xj) =
c(xi + xj), and the local n-quasigroup is reducible.

The converse statement is trivial: it follows from equation (17) if one
calculate the coordinates of a normal vector.
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By Theorem 2, for reducibilities of types (7), (9), and (11), the function F
defined by (13) has the forms

F =
c(x1 + x2) + f3(x3) + . . . + fn(xn)

x1 + . . . + xn
,

F =
c(x1 + x2) + e(x3 + x4 + x5) + f6(x6) + . . . + fn(xn)

x1 + . . . + xn
,

and

F =
c(x1 + x2 + x3) + f4(x4) + . . . + fn(xn)

x1 + . . . + xn

(where c and e are constants), respectively.

Example 4. It follows from Theorem 1 that we obtain the simplest ex-
ample of an irreducible n-quasigroup of type (13) by taking the functions
fi(xi) = cixi, i, j = 1, . . . , n, where ci 6= cj if i 6= j.

One can produce numerous examples of irreducible n-quasigroups of this
kind. For example, the local n-quasigroup defined by the equation

xn+1 =
x1 + 2x2 + 3x3 + . . . + nxn

x1 + . . . + xn
, n ≥ 3,(18)

is irreducible. An (n + 1)-web in Rn corresponding to this n-quasigroup is
formed by n pencils of hyperplanes parallel to the coordinate hyperplanes
of a Cartesian coordinate system of Rn and a pencil of hyperplanes whose
axis is an (n− 2)-plane defined by the equations

x1 + 2x2 + 3x3 + . . . + nxn = 0, x1 + . . . + xn = 0.

Note that for n = 2, equation (18) defines a parallelizable web in a 2-plane.

It is easy to see that a local n-quasigroup defined by equation (13) is
isotopic to the n-quasigroup defined by the equation

xn+1 = F (x1, . . . , xn) =
f1(x1) + . . . + fn(xn) + A

x1 + . . . + xn + a
,(19)
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where A and a are constants. In fact, we can make two successive isotopic
transformations for n-quasigroup (19):

xn + a → xn.

and
fn(xn − a) + A → fn(xn).

As a result, we will get the n-quasigroup defined by equation (13). Thus,
the local n-quasigroups defined by equations (13) and (19) are isotopic.

Example 5. If we take f(xi) = x2
i in (21), then we obtain the local

n-quasigroup defined by

xn+1 = F (x1, . . . , xn) =
(x1)2 + . . . + (xn)2 + A

x1 + . . . + xn + a
.(20)

By Theorem 1, this n-quasigroup is irreducible.
It is easy to see that F = α (= const) defines a family λn+1 of hyper-

spheres in Rn. If all these hyperspheres pass through the points (1, 0, . . . , 0),
(0, 1, . . . , 0), (0, 0, . . . , 1), then (20) implies that 1 + A = α(1 + a). Since the
last equation must be valid for any α, it follows that A = a = −1. The
family λn+1 along with the families λi, i = 1, . . . , n, of hyperplanes xi = ci

parallel to the coordinate hyperplanes of a Cartesian coordinate system of
Rn form an irreducible (n + 1)-web.

In particular, if n = 3, we have

x4 =
(x1)2 + (x2)2 + (x3)2 − 1

x1 + x2 + x3 − 1
.

In this case, the family λ4 of the web W is the 1-parameter family of
hyperspheres in R4 passing through the points (1, 0, 0), (0, 1, 0), and
(0, 0, 1).
Moreover, if n = 2, then we have

x3 =
(x1)2 + (x2)2 − 1

x1 + x2 − 1
.
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In this case, the equation

(x1)2 + (x2)2 − 1− α(x1 + x2 − 1) = 0, α = const.,

determines an 1-parameter family of circles in R3 passing through the points
(1, 0) and (0, 1). This family and the two 1-parameter families of straight
lines parallel to the coordinate lines of a Cartesian coordinate system of R2

form a nonhexagonal 3-web (cf. [3], §3, where the same 3-web is considered
— the only difference is that in [3], circles pass through the points (0, 0) and
(1, 1)).
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