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Abstract

In this paper congruences on orthomodular lattices are studied with
particular regard to analogies in Boolean algebras. For this reason the
lattice of p-ideals (corresponding to the congruence lattice) and the
interplay between congruence classes is investigated. From the results
adduced there, congruence regularity, uniformity and permutability for
orthomodular lattices can be derived easily.
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1. Basic facts

Orthomodular lattices are a well studied structure, we refer for instance to
the monographs [1], [5] and [7]. Of special interest is the occurrence of these
algebras in axiomatic quantum mechanics as so-called quantum logics. This
has caused and continuously stimulated their investigation (see, e.g., [7]). In
notation we follow [5] wherein proofs of the basic facts stated in this section
can be found unless an other reference is given.
An orthomodular lattice (OML, for short) L = 〈L;∧,∨,′ , 0, 1〉 is a bounded
lattice 〈L;∧,∨, 0, 1〉 with an orthocomplementation ′, i.e. for all x, y ∈ L it
holds

x ∧ x′ = 0, x ∨ x′ = 1, x′′ = x, x ≤ y implies y′ ≤ x′,
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and L satisfies the orthomodular law:

x ≤ y implies y = x ∨ (y ∧ x′).

As distinguished from Boolean algebras in orthomodular lattices the dis-
tributive law x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) does not hold in general. The
following two relations provide a measure for how far a particular OML L is
from being a Boolean algebra:

1. The commutativity relation C: aCb if and only if the subalgebra gen-
erated by {a, b} in L is Boolean. For instance, a ≤ b or a ≤ b′ implies
aCb.

2. The perspectivity relation ∼: a ∼ b if and only if a and b have a common
(algebraic) complement, i.e. there exists an element c ∈ L such that
a ∧ c = b ∧ c = 0 and a ∨ c = b ∨ c = 1 holds.

An OML L is a Boolean algebra if and only if C is the all relation or equiv-
alently, if and only if ∼ is the identity.

The most effective application of the orthomodular law is furnished by
the Theorem of Foulis and Holland (see, e.g., Theorem I.3.3 in [5]), which
ensures distributivity for the elements a, b, c provided one of them commutes
with the other two. This theorem will be used extensively in the subsequent
calculations without referring to it explicitly.

In the following let L denote an arbitrary OML. It is a well known fact
that there is a bijection between congruence relations of L and certain ideals
of L, so called p-ideals (cf. [3]): A (lattice-)ideal I is a p-ideal if it is closed
under perspectivity, i.e. a ∈ I and b ∼ a together imply b ∈ I. For every
congruence relation θ the class of 0, which we will denote by [0]θ, is a p-ideal,
and starting from a p-ideal I, the relation θ defined by

aθb if and only if a4b := (a ∨ b) ∧ (a′ ∨ b′) ∈ I

is a congruence relation. Furthermore, these mappings connecting p-ideals
and congruence relations are inverse to each other. The following character-
ization of p-ideals (cf. [1], Theorem V.4.2) will be used frequently:
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Theorem 1.1. Let I be an ideal of L, then the following conditions are
equivalent:

1. I is a p-ideal,

2. x ∧ (i ∨ x′) ∈ I, for all i ∈ I and all x ∈ L,

3. (i ∨ x) ∧ (i ∨ x′) ∈ I, for all i ∈ I and all x ∈ L.

2. The lattice of p-ideals

We firstly deal with the question how the operations of infimum and supre-
mum in the congruence lattice of L, denoted by Con(L) = 〈Con(L );∧,∨〉,
can be translated into the language of p-ideals.

Whenever in the following the operations ∧, ∨ and ′ occur in connection
with subsets of L, the complex product is meant, for instance

I1 ∧ I2 = {i1 ∧ i2 | i1 ∈ I1, i2 ∈ I2}, a ∨ I ′ = {a ∨ i′ | i ∈ I}.
Proposition 2.1. The (set–theoretical) intersection of an arbitrary set of
p-ideals is again a p-ideal, and for two p-ideals I1 and I2 it holds I1 ∩ I2 =
I1 ∧ I2.

The proof is evident.

The next proposition leads to a simple description of the supremum of two
p-ideals:

Proposition 2.2. Let I1 and I2 be p-ideals, then I1 ∨ I2 also is a p-ideal.

Proof. Firstly, we show that I1 ∨ I2 is an ideal: Let i1 ∈ I1, i2 ∈ I2 and
x ≤ i1 ∨ i2, then x∧ (i1 ∨ x′) ∈ I1 and x∧ (i2 ∨ x′) ∈ I2 by Theorem 1.1. By
forming the join of these elements we get

(x∧(i1∨x′))∨(x∧(i2∨x′)) = x∧((i1∨x′)∨(i2∨x′)) = x∧(i1∨ i2∨x′) = x,

hence x ∈ I1 ∨ I2 and I1 ∨ I2 is an ideal.
I1 ∨ I2 is also a p-ideal: For i1 ∈ I1, i2 ∈ I2 and arbitrary y ∈ L, we

have

y∧(i1∨i2∨y′) = y∧((i1∨y′)∨(i2∨y′)) = (y∧(i1∨y′))∨(y∧(i2∨y′)) ∈ I1∨I2,

and Theorem 1.1 yields that I1 ∨ I2 is a p-ideal.

So, if we denote the set of all p-ideals of L by I(L) and I(L)= 〈I(L);∧,∨〉,
we attain the following result:
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Theorem 2.3. Con(L) is isomorphic to I(L) (by the aforementioned
correspondence).

In the following the structure of I(L) will be studied with respect to com-
plements. For an ideal I let I∗ = {x ∈ L | ∀i ∈ I : x ≤ i′}, i.e. I∗ consists
of the lower bounds of I ′. It is evident that I∗ is an ideal and I ∧ I∗ = {0}.

Lemma 2.4. For a p-ideal I the following assertions hold:

1. I∗ = {x ∈ L | x ∧ I = {0}},
2. I∗ is a p-ideal.

Proof.

Ad 1: Since x ≤ i′ implies x ∧ i = 0, the inclusion ⊆ is true for every
ideal I. To show the converse relation, let x ∧ i = 0 for all i ∈ I. Then
also x ∧ (x ∧ (i ∨ x′)) = x ∧ (i ∨ x′) = 0, and forming the join with i′ in the
last equation leads to x ∨ i′ = i′, hence x ∈ I∗ and the proof of this part is
complete.

Ad 2: For a ∈ I∗, i ∈ I, x ∈ L we have x ∧ (i ∨ x′) ∈ I, and as a
consequence a ≤ x′ ∨ (i′ ∧ x) ∈ I ′. This implies x ∧ (a ∨ x′) ≤ i′ ∧ x ≤ i′,
hence x ∧ (a ∨ x′) ∈ I∗, and I∗ is a p-ideal by Theorem 1.1.

It can be seen easily that for p-ideals I, J it holds (I ∨ J)∗ = I∗ ∧ J∗,
whereas (I ∧ J)∗ = I∗ ∨ J∗ and I ∨ I∗ = L are not true in general (not even
for (non-complete) Boolean algebras L).

Let C(L) denote the center of L consisting of those elements which com-
mute with every element of L. The following characterization for principal
p-ideals is well-known:

Proposition 2.5. The interval [0, c] is a p-ideal if and only if c is a central
element.

It is a trivial observation that sup I exists if and only if max I∗ does. So we
infer:

Proposition 2.6. If the supremem of a p-ideal exists it is a central element.

A lattice 〈V ;∧,∨〉 with least element 0 is called pseudocomplemented, if for
every x ∈ L there exists x∗ ∈ L such that x∧x∗ = 0 and x∧y = 0 implies y ≤
x∗. x∗ then is called the pseudocomplement of x. If for every pair (x, y) ∈ V 2

there is an element x∗y such that x∧(x∗y) ≤ y and x∧z ≤ y implies z ≤ x∗y,
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then x ∗ y is called the relative pseudocomplement of x with respect to y and
the lattice is called Brouwerian. It is well known that the congruence lattice
of an OML is Brouwerian. The next proposition gives an explicit description
of the pseudocomplement and relative pseudocomplement in Con(L).

Proposition 2.7. For p-ideals I and J, the ideal I∗ is the pseudocomplement
of I and {x ∈ L | x ∧ I ⊆ J} is the relative pseudocomplement of I with
respect to J .

Proof. Firstly we prove that I∗ is the pseudocomplement of I: Let K be
a p-ideal with I ∧K = {0}. We have to show that K ⊆ I∗. If k ∈ K, i ∈ I,
then i ∧ (k ∨ i′) ∈ K, hence i ∧ (i ∧ (k ∨ i′)) = i ∧ (k ∨ i′) = 0. Joining both
sides with i′ this implies k ≤ i′, thus k ∈ I∗ and we are done.

The relative pseudocomplement I∗J is the pseudocomplement of I in the
interval [I ∧J, L] (cf. 2.9 in [6]). Let θ denote the congruence corresponding
to I ∧J . The interval [I ∧J, L] is the congruence lattice of the quotient L/θ
and x ∧ I ⊆ J is equivalent to [x]θ ∧ [i]θ = [0]θ for all i ∈ I. By applying 1.
of Lemma 2.4 we obtain I ∗ J = {x ∈ L | x ∧ I ⊆ J}.
If I has a complement J in I(L), then Proposition 2.7 implies J = I∗.
However, not every I has a complement:

Theorem 2.8. In the congruence lattice of an OML a congruence has a
complement if and only if it stems from a principal p-ideal.

Proof. A principal p-ideal I = [0, c], c ∈ C(L), has the complement I∗ =
[0, c′]. Conversely, if I ∨ I∗ = L then i ∨ j = 1 for suitable i ∈ I, j ∈ I∗.
Because j ≤ i′, this yields j = i′, thus I = [0, i].

Since OMLs are relatively complemented, this result can also be derived by
combining Theorem 4.1 and Theorem 4.2 in [2].

3. Representation of congruence classes

In this section the interplay of congruence classes of OMLs will be inves-
tigated. For principal p-ideals the congruence classes are connected rather
simply:

Proposition 3.1. Let c ∈ C(L) and let θ denote the congruence relation
corresponding to the p-ideal I = [0, c]. Then all blocks of θ are intervals, in
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particular [a]θ = [a ∧ c′, a ∨ c]. With respect to the orthomodular structure
induced by L all these intervals are isomorphic, in particular

ϕa :

{
I → [a]θ
i 7→ (a ∧ c′) ∨ i

is an isomorphism.

Proof. Let a, b be arbitrary elements of L. bθa is equivalent to (a ∨ b) ∧
(a′ ∨ b′) ≤ c. Joining both sides with a leads to a ∨ b ≤ a ∨ c, and since
a ∨ c ∈ [a]θ, this implies a ∨ c = max [a]θ.
bθa is also equivalent to (a ∧ b) ∨ (a′ ∧ b′) ≥ c′, and similar arguments
(intersecting with a) yield a ∧ c′ = min [a]θ. Since congruence classes in
lattices are always convex subsets, we obtain [a]θ = [a ∧ c′, a ∨ c].

Now we show that ϕa is an isomorphism:

1. ϕa is well defined: ((a ∧ c′) ∨ i)θ((a ∧ 1) ∨ 0) = a.

2. ϕa is onto: bθa implies a ∧ c′ = min [a]θ = min [b]θ = b ∧ c′. Because
c ∈ C(L), we obtain b = (b∧ c′)∨ (b∧ c) = (a∧ c′)∨ i with i = b∧ c ∈ I.

3. ϕa is one-to-one: From b = (a ∧ c′) ∨ i with i ∈ I, we derive (by
intersecting both sides with c and using i ≤ c) b ∧ c = i, thus i is
uniquely determined.

4. ϕa is compatible with the operations: Let ? denote the complementation
within [a∧c′, a∨c] and ⊥ that within [0, c], i.e. z? = (a∧c′)∨(z′∧(a∨c))
and z⊥ = z′ ∧ c, respectively.

Then (ϕa(i))? = (a∧c′)∨ (i′∧ (a′∨c)∧ (a∨c)) = (a∧c′)∨ (i′∧c) =
ϕa(i⊥), for all i ∈ I.

Obviously ϕa(x)∨ϕa(y) = ϕa(x∨y), and together with the compat-
ibilty of ϕa with complementation this implies ϕa(x)∧ϕa(y) = ϕa(x∧y).

Remarks.

• The mapping ϕ̃a :





I → [a]θ

i 7→ (a ∨ c) ∧ i′
is a dual isomorphism.

• The inverse of ϕa, ϕ−1
a : [a]θ → [0, c] is given by ϕ−1

a (x) = x ∧ c.

• The congruence θ corresponding to the p-ideal [0, c] can be characterized
as follows: aθb if and only if a ∨ c = b ∨ c, or equivalently, if and only
if a ∧ c′ = b ∧ c′.
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Next we study general p-ideals. The representation of congruence classes
turns out to be slightly more complicated in this case.

Proposition 3.2. Let θ be a congruence relation on L and I the correspond-
ing p-ideal. Then for all a ∈ L

[a]θ = (a ∨ I) ∧ I ′

= (a ∧ I ′) ∨ I.

Proof. We work out the proof for the representation [a]θ = (a ∨ I) ∧ I ′

only – the other can be proven similarly.
Ad⊇: For i, j ∈ I we have ((a ∨ i) ∧ j′)θ((a ∨ 0) ∧ 1) = a.
Ad⊆: Let bθa, by applying the orthomodular law twice we obtain

b = (a∨ b)∧ (b∨ (a′ ∧ b′)) = (a∨ ((a∨ b)∧ a′))∧ (b∨ (a′ ∧ b′)) ∈ (a∨ I)∧ I ′,

since ((a ∨ b) ∧ a′)θ((a ∨ a) ∧ a′) = 0 and (b ∨ (a′ ∧ b′))θ(b ∨ (b′ ∧ b′)) = 1.

Remark. In Boolean algebras the simple representation [a]θ = a4I is
possible. For orthomodular lattices only the inclusion [a]θ ⊇ a4I remains
valid as can be seen from the following example: Let L = MO2, the smallest
OML which is not a Boolean algebra, with generating elements a and b, and
let θ denote the all relation, i.e. I = L. Then a4I = {0, a, a′, 1} 6= [a]θ. So,
even for principal congruences the assertion is not true.

The next proposition describes the p-ideal starting with an arbitrary block:

Proposition 3.3. Let θ be a congruence relation and I the corresponding
p-ideal, then for all a ∈ L

I = [a]θ4[a]θ

holds.

Proof.
Ad⊇: aθb implies a4b ∈ I by definition of θ via I (cf. section 1).
Ad⊆: Let i ∈ I, then b = a ∨ i ∈ [a]θ and (b4i)θ(b40) = b, so

b4i ∈ [a]θ. Now from b4(b4i) = b4(b∧ i′) = b∧ (i∨ b′) = i, it follows that
i ∈ [a]θ4[a]θ.

As an application of these representations, we characterize those (closed)
intervals which are blocks of some congruence.
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Proposition 3.4. Let a, b ∈ L with a ≤ b. The interval [a, b] is a block of a
congruence if and only if b ∧ a′ ∈ C(L).

Proof. If [a, b] is a block of θ, then due to Proposition 3.3 the corresponding
p-ideal is [a, b]4[a, b] = [0, b ∧ a′], and b ∧ a′ ∈ C(L) by Proposition 2.5.

If b ∧ a′ = c ∈ C(L), then we derive a ∧ c′ = a and a ∨ c = b, hence
[a, b] = [a ∧ c′, a ∨ c] is a block (cf. Proposition 3.1).

4. Congruence regularity, uniformity and permutability

In universal algebra a variety V is called congruence regular if for every
algebra A = 〈A, Ω〉 ∈ V and θ, ψ ∈ Con(A) the equation [a]θ = [b]ψ for some
a, b ∈ A implies θ = ψ, i.e. every congruence class determines the congruence
uniquely. A variety V is called congruence uniform if for every congruence of
an algebra of V all congruence classes have the same cardinality. Moreover,
V is called arithmetical if the congruence lattice of every algebra of V is
distributive and all congruences permute, i.e. θ ◦ ψ = ψ ◦ θ holds for all
congruences θ and ψ, where ◦ denotes the relational composite.

Theorem 3.6 in [4] shows that OMLs are congruence regular and congru-
ence permutable (cf. also [2], Theorem 4.2). These results and congruence
uniformity can also be obtained easily by using the representations of the
congruence classes derived in section 3.

Proposition 3.3 delivers a formula for the p-ideal (and hence the whole
congruence is determined) by means of an arbitrary congruence class. From
this we infer:

Theorem 4.1. The variety of orthomodular lattices is congruence regular.

In the following we denote the cardinality of a set M by |M |.
Theorem 4.2. The variety of orthomodular lattices is congruence uniform.

Proof. Let θ be a congruence of an OML L and let I be the corresponding
p-ideal. We distinguish two cases:

1. I is finite: Then I is a principal ideal [0, c] with c ∈ C(L) and according
to Proposition 3.1 all congruence classes are isomorphic in this case and
hence have the same cardinality.

2. I is infinite: For a ∈ L we have [a]θ = (a∨ I)∧ I ′, hence |[a]θ| ≤ |I|2 =
|I|. Conversely, because of I = [a]θ4[a]θ we obtain |I| ≤ |[a]θ|2 = |[a]θ|,
which all together implies |[a]θ| = |I|.
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Theorem 4.3. The variety of orthomodular lattices is arithmetical.

Proof. Lattices are congruence distributive, therefore only congruence per-
mutability has to be shown. This is equivalent to θ∨ψ = θ ◦ψ for arbitrary
congruences θ and ψ of an OML L. Let in general Iφ be the p-ideal corre-
sponding to the congruence φ.
Since θ ∨ ψ ⊇ θ ◦ ψ always holds, the reverse relation has to be established:
If (x, y) ∈ θ∨ψ, i.e. y ∈ [x](θ∨ψ), then, by Proposition 3.2, there exist i, j ∈
Iθ∨ψ such that y = (x∨i)∧j′. Because Iθ∨ψ = Iθ∨Iψ holds (Proposition 2.2),
i = i1 ∨ i2, j = j1 ∨ j2 for suitable i1, j1 ∈ Iθ, i2, j2 ∈ Iψ. Substituting this
for i and j and simplifying modulo ψ and θ we obtain

y = (x∨ i1∨ i2)∧ (j′1∧j′2)ψ(x∨ i1∨0)∧ (j′1∧1) = (x∨ i1)∧j′1θ(x∨0)∧1 = x,

thus (x, y) ∈ θ ◦ ψ and θ ∨ ψ ⊆ θ ◦ ψ.

As far as congruences are concerned, astonishingly enough, OMLs behave
very similar to Boolean algebras.

We want to emphasize that without assuming the validity of the ortho-
modular law the results adduced above are not true. Algebras satisfying
all axioms mentioned in section 1 except the orthomodular law are called
ortholattices.

For instance O6, the smallest ortholattice which is not orthomodular,
is neither congruence regular nor congruence uniform: Let a, b with a < b
be generating elements of O6. If we consider the principal congruence θ =
θ(a, b), then [0]θ = {0} = [0]ω (ω the identity), and |[a]θ| = |{a, b}| > |[0]θ|.

Finally we give an example of an ortholattice whose congruences do not
permute: Let L denote the eight–element ortholattice {0, a, b, c, a′, b′, c′, 1}
with a < b < c, then (a, c) ∈ θ(a, b) ◦ θ(b, c) but (a, c) 6∈ θ(b, c) ◦ θ(a, b).

References

[1] L. Beran, Orthomodular Lattices, D. Reidel Publishing Company, Dordrecht-
Boston 1985.

[2] R.P. Dilworth, The structure of relatively complemented lattices, Ann. of
Math. 51 (1950), 348–359.

[3] P.D. Finch, Congruence relations on orthomodular lattices, J. Austral. Math.
Soc. 6 (1966), 46–54.

[4] J. Hashimoto, Congruence relations and congruence classes in lattices, Osaka
Math. J. 15 (1963), 71–86.



66 G. Dorfer

[5] G. Kalmbach, Orthomodular Lattices, Academic Press, London 1983.
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