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M. Giraudet and F. Lucas [3] introduced and investigated the notion of
a half linearly ordered group (cf. also D.R. Ton [14], J. Jakub́ık [6], [7]).
J. Jakub́ık [8] defined and studied the notion of a half linearly cyclically
ordered group (lc-group) generalizing the notion of a half linearly ordered
group.

The author [1] investigated the Cantor extension of an abelian lc-group.
We remark that the Cantor extension of lattice ordered groups was studied
by C.J. Everett [2].

Let G be a half lc-group such that its increasing part is abelian and its
decreasing part is nonempty (thus G fails to be an lc-group). The notions of
a convergent sequence and a fundamental sequence are defined in a natural
way. If every fundamental sequence in G is convergent in G, then G is said
to be C-complete.

In the present paper necessary and sufficient conditions are found under
which G is C-complete. Further, we define the notion of a Cantor exten-
sion and we prove that every half lc-group has a Cantor extension which is
uniquely determined up to isomorphisms leaving all elements of G fixed.
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1. l-cyclically ordered sets and groups

We recall the definitions and some results concerning l-cyclically ordered
sets (cf. Novák and Novotný [10], Novák [9], Quilot [11]) and l-cyclically
ordered groups (cf. Rieger [12], Świerczkowski [13], Jakub́ık and Pringerová
[4], [5]).

Definition 1.1. Let M be a nonempty set and T a ternary relation on M
such that the following conditions are satisfied:

(I) if [x, y, z] ∈ T then [y, x, z] /∈ T .

(II) [x, y, z] ∈ T implies [y, z, x] ∈ T .

(III) [x, y, z] ∈ T, [y, u, z] ∈ T imply [x, u, z] ∈ T .

Then T is said to be a cyclic order on M and (M, T ) is called a cyclically
ordered set.

Let T be a cyclic order on M satisfying the condition:

(IV) if x, y, z ∈ M, x 6= y 6= z 6= x, then either [x, y, z] ∈ T or [z, y, x] ∈ T.

Then T is said to be an l-cyclic order on M and (M,T ) is called an l-
cyclically ordered set.

Several terms are used in papers for the term l-cyclic order. For instance
”l-cyclic order” is called ”linear cyclic order” in [9], ”complete cyclic order”
in [11] and simply ”cyclic order” in [12] and [13].

Definition 1.2. Let (H; +) be a group and (H;T ) an l-cyclically ordered
set such that the following condition is fulfilled:

(V) if [x, y, z] ∈ T, u, v ∈ H, then [u + x + v, u + y + v, u + z + v] ∈ T .

Then (H; +, T ) is said to be an l-cyclically ordered group or lc-group (linearly
cyclically ordered group).

We often write H or (H; T ) instead of (H; +, T ).
Every subgroup of an lc-group is considered as an lc-group under the

induced l-cyclic order.

Example 1.3. Let (L;≤) be a linearly ordered group x, y, z ∈ L. Define
the ternary relation TL on L by putting
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[x, y, z] ∈ TL if x < y < z or y < z < x or z < x < y.

Then (L; TL) is an lc-group. TL is called the l-cyclic order generated by
the linear order ≤ on L. Hence every linearly ordered group is an lc-group
(under the l-cyclic order generated by its linear order).

Example 1.4. Let K be the group of all reals k such that 0 ≤ k < 1 with
the group operation defined as the addition mod 1. Consider the natural
linear order ≤ and the ternary relation T1 on K defined in the same way as
TL in 1.3. Then (K; T1) is an lc-group.

Define the ternary relation T on the direct product L × K of groups
L and K as follows: for elements u1, u2, u3 ∈ L × K, u1 = (x, k1), u2 =
(y, k2), u3 = (z, k3) we put [u1, u2, u3] ∈ T if some of the following conditions
is valid:

(i) [k1, k2, k3] ∈ T1;

(ii) k1 = k2 6= k3 and x < y;

(iii) k2 = k3 6= k1 and y < z;

(iv) k3 = k1 6= k2 and z < x;

(v) k1 = k2 = k3 and [x, y, z] ∈ TL.

Then (L×K;T ) is an lc-group which will be denoted by L⊗K.
The notion of an isomorphism of lc-groups is defined in a natural way.

Theorem 1.5 (Świerczkowski [13]). Let H be an lc-group. Then there exists
a linearly ordered group L such that H is isomorphic to a subgroup of L⊗K.

Assume that (H; T ) is an lc-group. By 1.5, there exists an isomorphism
f of H into L⊗K. Let Ho be the set of all h ∈ H such that there exists x ∈ L
with the property f(h) = (x, 0). Then Ho is a subgroup of H, Ho = {0} or
Ho 6= {0}. Let Ho 6= {0}, h ∈ Ho, h 6= 0. There exists x ∈ L such that
f(h) = (x, 0). Ho turns out to be a linearly ordered grup if we put h > 0
if x > 0. The l-cyclic order THo on Ho coincides with the l-cyclic order
induced by T .

2. Cantor extension of an abelian lc-group

Let (H; T ) be an abelian lc-group. A construction of a Cantor extension
of H will be described (cf. [1]) and some results from [1] will be presented.
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Definition 2.1. Let (xn) be a sequence in H and x ∈ H.
a) We say that (xn) converges to x (or x is a limit of (xn) ) in H and we

write xn → x (or limxn = x)
(i) if card H = 2 and there exists no ∈ N such that xn = x for each
n ∈ N, n ≥ no,

or
(ii) if card H > 2 and for each ε ∈ H, ε 6= 0 with the property

[−ε, 0, ε] ∈ T there exists no ∈ N such that [−ε, xn− x, ε] ∈ T for
each n ∈ N,n ≥ no.

b) The sequence (xn) is called fundamental in H if for each ε ∈ H, ε 6= 0
with the property [−ε, 0, ε] ∈ T there exists no ∈ N such that
[−ε, xn − xm, ε] ∈ T for each m,n ∈ N, m, n ≥ no.

c) By a zero sequence we understand a sequence (xn) such that xn → 0.

d) H is called C-complete if each fundamental sequence in H is convergent
in H.

The set of all fundamental (zero) sequences in H will be denoted by FH(EH).

Definition 2.2. Let H1 be an abelian lc-group satisfying the following
conditions:

(a) H1 is C-complete.

(b) H is a subgroup of H1.

(c) Every element of H1 is a limit of some fundamental sequence in H.

(d) Let (xn) be a sequence in H such that xn → 0 in H. Then xn → 0
in H1.

Then H1 is said to be a Cantor extension of H.

Now we consider two cases: H0 6= {0} and H0 = {0}.
1) Assume that Ho 6= {0}. Let (xn), (yn) ∈ FH . Under the natural

definition of the operation + on FH , (xn) + (yn) = (xn + yn), FH is a group
and EH is a subgroup of FH . We form the factor group H∗ = FH/EH .
Symbol (xn)∗ will denote the coset of H∗ containing the sequence (xn) ∈ FH .

Suppose that (xn)∗, (yn)∗, (zn)∗ are mutually distinct elements of H∗.
Let T ∗ be the set of all triples [(xn)∗, (yn)∗, (zn)∗] of elements of H∗ such
that there exists no ∈ N with [xn, yn, zn] ∈ T for each n ∈ N,n ≥ no. Then
(H∗, T ∗) is an lc-group.
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Let ϕ be the mapping from H into H∗ defined by ϕ(x) = (x, x, . . .)∗ for each
x ∈ H. Then ϕ is an isomorphism of the lc-group H into H∗. We identify x
and ϕ(x) for each x ∈ H. Then H is a subgroup of H∗ and H∗ is a Cantor
extension of H.

If we denote (xn)∗ = X and (xn, xn, . . .)∗ = Xn, then we have (cf. [1],
the proof of Lemma 3.12)

(A) Xn → X in H∗.

Lemma 2.3 ([1], Lemma 3.9). H is C-complete if and only if Ho is C-
complete.

2) Now assume that Ho = {0}. Then H can be considered as a subgroup
of K.

Lemma 2.4 ([1], Lemma 4.2). If H is a finite subgroup of K, then H is
C-complete.

Lemma 2.5 ([1], Lemma 4.5). If H is an infinite subgroup of K, then K
is a Cantor extension of H.

The following result is valid in both cases 1) and 2).

Theorem 2.6 ([1], Theorem 4.9). Let H be an abelian lc-group. Then

(i) there exists a Cantor extension of H,

(ii) if H1 and H2 are Cantor extensions of H, then there exists an isomor-
phism Φ from the lc-group H1 onto H2 such that Φ(x) = x for each
x ∈ H.

3. Half lc-groups

The notion of a half lc-group was introduced by Jakub́ık [8]. Now we recall
the definitions and results that will be applied in the next sections.

Let (G; +, T ) be a system such that (G; +) is a group and (G; T ) is a
cyclically ordered set. Assume that x, y, z ∈ G. Denote

G↑= {u ∈ G : [x, y, z] ∈ T ⇒ [u + x, u + y, u + z] ∈ T},
G↓= {u ∈ G : [x, y, z] ∈ T ⇒ [u + z, u + y, u + x] ∈ T}.
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Definition 3.1. Let (G; +, T ) be as above. Assume that the following
conditions are fulfilled:

(1) The system T is nonempty.

(2) If [x, y, z] ∈ T, then [x + u, y + u, z + u] ∈ T for each u ∈ G.

(3) G = G↑ ∪G↓.
(4) If [x, y, z] ∈ T, then either {x, y, z} ⊆ G↑ or {x, y, z} j G↓.

Then (G; +, T ) is said to be a half cyclically ordered group.
Let (G; +, T ) be a half cyclically ordered group. The definition implies

that G↑ is a cyclically ordered group. If G↑ is an lc-group then (G; +, T ) is
called a half lc-group (half linearly cyclically ordered group).
There are elements x, y, z ∈ G with [x, y, z] ∈ T . This is an immediate
consequence of (1).

Again, we often write G or (G; T ) instead of (G; +, T ).
In the next, let G be a half lc-group. G ↑ (G ↓) is called the increasing
(decreasing, resp.) part of G.

A subgroup G′ of G is said to be a half lc-subgroup of G if the induced
l-cyclic order on G′ is nonempty.

Each lc-group G with card G ≥ 3 is a half lc-group (with G ↑= G and
G ↓= ∅). Every linearly ordered group is an lc-group. Hence every half
linearly ordered group (for the definition cf. [3]) is a half lc-group.

The notion of an isomorphism of half lc-groups is defined in a natural
way.

From the definition 3.1 it follows (cf. [8]):

(i) If x, y ∈ G↓, then x + y ∈ G↑;
(ii) If x ∈ G↑, y ∈ G↓, then x + y ∈ G↓ and y + x ∈ G↓.

4. Cantor extension of a half lc-group

In what follows, we assume that (G,T ) is a half lc-group such that G ↑ is
abelian and G↓6= ∅. Hence G is neither abelian group nor lc-group.

We will use the notation G↑= H and G↓= H ′.
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Definition 4.1. Let (xn) be a sequence in G and x ∈ G.

a) We say that (xn) converges to x (or x is a limit of (xn)) in G and we
write xn → x (or limxn = x) if for each ε ∈ G, ε 6= 0 with the property
[−ε, 0, ε] ∈ T there exists no ∈ N such that [−ε, xn − x, ε] ∈ T and
[−ε,−x + xn, ε] ∈ T for each n ∈ N,n ≥ no.

b) The sequence (xn) is said to be fundamental if for each ε ∈ G, ε 6= 0
with [−ε, 0, ε] ∈ T there exists no ∈ N such that [−ε, xn − xm, ε] ∈ T
and [−ε,−xm + xn, ε] ∈ T for each m,n ∈ N, m, n ≥ no.

c) If xn → 0 in G, then (xn) is called a zero sequence in G.

d) G is said to be C-complete if every fundamental sequence in G is
convergent in G.

Definition 4.2. Let G1 be a half lc-group with the following properties:

(α) G1 is C-complete;

(β) G is a half lc-subgroup of G1;

(γ) Every element of G1 is a limit of some fundamental sequence in G;

(δ) Let (xn) be a sequence in G such that xn → 0 in G. Then xn → 0 in
G1.

Then G1 is said to be a Cantor extension of G.

We prove that G has a Cantor extension and this is uniquely determined
up to isomorphisms leaving all elements of G fixed.

Denote by F (E) the set of all fundamental (zero) sequences in G. Sym-
bols FH and EH have the same meaning as in the section 2.

The following two lemmas are easy to prove.

Lemma 4.3. Let (xn) be a sequence in G. Then xn → x in G if and only
if xn − x → 0 and −x + xn → 0 in G.

For a fixed element no ∈ N and a sequence (xn) in G we apply the
notation xo

n = xno+n−1 for each n ∈ N .
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Lemma 4.4. Let (xn) be a sequence in G.

(i) (xn) ∈ E if and only if there exists no ∈ N such that (xo
n) is a sequence

in H and (xo
n) ∈ EH .

(ii) Let x ∈ G such that xn → x in G. Then there exists no ∈ N such that
either (xo

n) is a sequence in H (and then x ∈ H) or (xo
n) is a sequence

in H ′ (and then x ∈ H ′).

(iii) Let (xn) ∈ F . Then there exists no ∈ N such that either (xo
n) is a

sequence in H (and then (xo
n) ∈ FH) or (xo

n) is a sequence in H ′.

Let (xn) be a sequence in H, x ∈ H. Then

(iv) xn → x in H if and only if xn → x in G.

Let ε ∈ G, ε 6= 0. If [−ε, 0, ε] ∈ T, then ε ∈ H. Thus we have:

Lemma 4.5. EH ⊆ E and FH ⊆ F.

Let a be a fixed element of H ′. Every element of H ′ can be expressed
in the form a + x for some x ∈ H.

Lemma 4.6. Let (xn) be a sequence in H, x ∈ H. Then

(i) xn → x in H if and only if a + xn → a + x in G.

(ii) xn → x in H if and only if a + xn + a → a + x + a in H.

(iii) (xn) ∈ FH if and only if some of the following conditions is satisfied
(a + xn) ∈ F, (a + xn + a) ∈ FH , (−a + xn + a) ∈ FH .

Proof. (i) and (ii) are easy to verification.
(iii): Let (xn) ∈ FH . We intend to show that (a + xn) ∈ F . Assume

that ε ∈ G, ε 6= 0, [−ε, 0, ε] ∈ T . Then ε ∈ H and so −a− ε + a ∈ H. Since
(xn) ∈ FH , [−a + ε + a, 0,−a− ε + a] ∈ T implies that there exists no ∈ N
such that [−a+ε+a, xn−xm,−a−ε+a] ∈ T for each m,n ∈ N,m, n > no.
Therefore [−ε, a + xn − (a + xm), ε] ∈ T . From [−ε,−xm + xn, ε] ∈ T it
follows that [−ε,−(a+xm)+a+xn, ε] ∈ T . We conclude that (a+xn) ∈ F .

The converse and remaining cases are similar.
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Lemma 4.7. G is C-complete if and only if H is C-complete.

Proof. Let G be C-complete and let (xn) ∈ FH . In view of Lemma 4.5,
we get (xn) ∈ F . Hence there exists x ∈ G with xn → x in G. Applying
Lemma 4.4 (ii) and Lemma 4.4 (iv), we obtain x ∈ H and xn → x in H.
Hence H is C-complete.

Let H be C-complete and let (xn) ∈ F . From Lemma 4.4 (iii), we infer
that there exists no ∈ N such that either (xo

n) ∈ FH or (xo
n) ∈ H ′. Assume

that (xo
n) ∈ FH . Then xo

n → x in H. With respect to Lemma 4.4 (iv),
xo

n → x in G. This yields that xn → x in G. Assume that (xo
n) ∈ H ′. There

exists (ho
n) ∈ H with xo

n = a + ho
n for each n ∈ N . Since (a + ho

n) ∈ F ,
Lemma 4.6 (iii) implies that (ho

n) ∈ FH . Hence, ho
n → h in H and by Lemma

4.6 (i) a + ho
n → a + h in G. We conclude now that xn → a + h in G and

the proof is complete.

The following result is an immediate consequence of Lemmas 4.6 and 4.7.

Lemma 4.8. Let G be a subgroup of a half lc-group G1. Then G1 is a
Cantor extension of G if and only if G1 ↑ is a Cantor extension of H.

Investigating a Cantor extension of G, two cases are distinguished: Ho 6=
{0} and Ho = {0} (Ho is as in the section 2).

5. The case Ho 6= {0}

In the whole section we suppose that Ho 6= {0}. Since Ho is infinite, G is
infinite as well.

We form the sets

(B)
a + H∗ = {a + (xn)∗ : (xn)∗ ∈ H∗},
Ch(G) = H∗ ∪ (a + H∗).

Assume that (xn) ∈ FH . With respect to Lemma 4.6 (iii), we get (a +
xn + a) ∈ FH and (−a + xn + a) ∈ FH .

We intend to define a group operation + and a ternary relation T h on
Ch(G). Let (xn)∗, (yn)∗, (zn)∗ ∈ H∗.

The operation + on Ch(G) is defined to coincide with the operation +
on H∗ defined in the section 2, i.e., we put

(xn)∗ + (yn)∗ = (xn + yn)∗.

Further, we put
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(a + (xn)∗) + (a + (yn)∗) = (a + xn + a + yn)∗,

(xn)∗ + (a + (yn)∗) = a + (−a + xn + a + yn)∗,

(a + (xn)∗) + (yn)∗ = a + (xn + yn)∗.

We define the ternary relation T h on Ch(G) in such a way that T h coincides
with T ∗ on H∗.

Further, we put

[a + (xn)∗, a + (yn)∗, a + (zn)∗] ∈ T h if [(zn)∗, (yn)∗, (xn)∗] ∈ T ∗.

If p, q and r are distinct elements of Ch(G) such that [p, q, r] ∈ T h, then
either {p, q, r} ⊆ H∗ or {p, q, r} ⊆ a + H∗.

Lemma 5.1. (Ch(G);+) is a group.

Proof. First, we verify that the operation + is associative. Only three
cases are considered. The remaining cases are similar.
((a + (xn)∗) + (a + (yn)∗)) + (a + (zn)∗) = (a + xn + a + yn)∗+ (a + (zn)∗) =
a + (−a + a + xn + a + yn + a + zn)∗ = a + (xn + a + yn + a + zn)∗,

(a+(xn)∗)+((a+(yn)∗)+(a+(zn)∗)) = (a+(x∗n))+(a+yn +a+zn)∗ =
a + (xn + a + yn + a + zn)∗.

Hence,
((a+(xn)∗)+(a+(yn)∗))+(a+zn)∗) = (a+(xn)∗)+((a+(yn)∗)+(a+(zn)∗)).
((a+(xn)∗)+(a+(yn)∗))+(zn)∗ = (a+xn +a+yn)∗+(zn)∗ = (a+xn +a+
yn + zn)∗, (a+(x∗n)+ ((a+(yn)∗)+ (zn)∗) = (a+(xn)∗)+ (a+(yn + zn)∗) =
(a + xn + a + yn + zn)∗.

Thus, ((a+(xn)∗)+(a+(yn)∗))+(zn)∗ = (a+(xn)∗)+((a+(yn)∗)+(zn)∗).
((xn)∗+(yn)∗)+(a+(zn)∗) = (xn +yn)∗+(a+(zn)∗) = a+(−a+xn +yn +
a + zn)∗, (xn)∗ + ((yn)∗ + (a + (zn)∗)) = (x∗n + (a + (−a + yn + a + zn)∗) =
a + (−a + xn + a− a + yn + a + zn)∗ = a + (−a + xn + yn + a + zn)∗.

Therefore, ((xn)∗ + (yn)∗) + (a + (zn)∗) = (xn)∗ + ((yn)∗ + (a + (zn)∗)).
Now, we show that every element of Ch(G) has an inverse in Ch(G). It

suffices to consider elements of a + H∗. Assume that a + (xn)∗ ∈ a + H∗.
Then a+(−a−xn−a)∗ ∈ a+H∗ and it is the inverse to a+(xn)∗ in Ch(G).

Lemma 5.2. Let (xn)∗, (yn)∗, (zn)∗ ∈ H∗. Then [(xn)∗, (yn)∗, (zn)∗] ∈ T ∗

if and only if some of the following conditions is satisfied:
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(i) [(−a + zn + a)∗, (−a + yn + a)∗, (−a + xn + a)∗] ∈ T ∗,

(ii) [(a + zn + a)∗, (a + yn + a)∗, (a + xn + a)∗] ∈ T ∗.

Proof. (i): Assume that [(xn)∗, (yn)∗, (zn)∗] ∈ T ∗. Hence there exists
no ∈ N such that [xn, yn, zn] ∈ T for each n ∈ N, n ≥ no. This yields that
[−a+zn+a,−a+yn+a,−a+xn+a] ∈ T for each n ∈ N, n ≥ no. According
to Lemma 4.6 (iii), we have (−a+zn +a), (−a+yn +a), (−a+xn +a) ∈ FH .
We conclude that [(−a + zn + a)∗, (−a + yn + a)∗, (−a + xn + a)∗] ∈ T ∗.

The converse and (ii) are similar.

Lemma 5.3. Let (xn)∗, (yn)∗, (zn)∗, (un)∗ ∈ H∗.

(i) If [(xn)∗, (yn)∗, zn)∗] ∈ T ∗, then [(xn)∗ + (un)∗, (yn)∗ + (un)∗, (zn)∗ +
(un)∗] ∈ T ∗ and [(xn)∗ + (a + (un)∗), (yn)∗ + (a + (un)∗), (zn)∗ +
(a + (un)∗)] ∈ T h.

(ii) If [a + (xn)∗, a + (yn)∗, a + (zn)∗] ∈ T h, then [(a + (xn)∗) + (un)∗,
(a+(yn)∗)+(un)∗, (a+(zn)∗)+(un)∗] ∈ T h and [(a+(xn)∗)+(a+(un)∗),
(a + (yn)∗) + (a + (un)∗), (a + (zn)∗) + (a + (un)∗)] ∈ T ∗.

Proof. (i): Assume that [(xn)∗, (yn)∗, (zn)∗] ∈ T ∗. The first part of the
assertion follows from the fact that H∗ is an lc-group. Now, we prove the
second part. From Lemma 5.2 (i), we infer that [(−a+ zn +a)∗, (−a+ yn +
a)∗, (−a + xn + a)∗] ∈ T ∗. Then [(−a + zn + a)∗ + (un)∗, (−a + yn + a)∗ +
(un)∗, (−a + xn + a)∗ + (un)∗) ∈ T ∗, [(−a + zn + a + un)∗, (−a + yn + a +
un)∗, (−a+xn +a+un)∗] ∈ T ∗. Hence [a+(−a+xn +a+un)∗, a+(−a+
yn +a+un)∗, a+(−a+zn +a+un)∗] ∈ T h, i.e., [(xn)∗+(a+(un)∗), (yn)∗+
(a + (un)∗), (zn)∗ + (a + (un)∗) ∈ T h.

The proof of (ii) is analogous.

Lemma 5.4. Let (xn)∗, (yn)∗, (zn)∗, (un)∗ ∈ H∗.

(i) If [(xn)∗, (yn)∗, (zn)∗] ∈ T ∗, then [(un)∗ + (xn)∗, (un)∗ + (yn)∗, (un)∗ +
(zn)∗] ∈ T ∗ and [(a + (un)∗) + (zn)∗, (a + (un)∗) + (yn)∗, (a + (un)∗) +
(xn)∗] ∈ T h.

(ii) If [a+(xn)∗, a+(yn)∗, a+(zn)∗] ∈ T h, then [(un)∗+(a+(xn)∗), (un)∗+
(a+(yn)∗), (un)∗+(a+(zn)∗)] ∈ T h and [(a+(un)∗)+(a+(zn)∗), (a+
(un)∗) + (a + (yn)∗), (a + (un)∗) + (a + (xn)∗)] ∈ T ∗.
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Proof. (i) Assume that [(xn)∗, (yn)∗, (zn)∗] ∈ T ∗. The first assertion holds
because of the fact that H∗ is an lc-group. Now, we prove the second
assertion. The assumption implies that [(un)∗+(xn)∗, (un)∗+(yn)∗, (un)∗+
(zn)∗] ∈ T ∗ and so [(un + xn)∗, (un + yn)∗, (un + zn)∗] ∈ T ∗. Whence [a +
(un+zn)∗, a+(un+yn)∗, a+(un+xn)∗] ∈ T h. Thus [(a+(un)∗)+(zn)∗, (a+
(un)∗) + (yn)∗, (a + (un)∗) + (xn)∗] ∈ T h.

To prove (ii), we proceed in a similar way.

From Lemma 5.4 and (B), we infer the validity of the following result:

Lemma 5.5. Ch(G)↑=H∗, Ch(G)↓=a+H∗ and Ch(G)=Ch(G)↑ ∪Ch(G)↓ .

Since T is nonempty, T h is nonempty as well. Then Lemmas 5.1, 5.3
and 5.5 yield:

Lemma 5.6. (Ch(G), +, T h) is a half lc-group.

Let x ∈ H. Define the mapping ψ from G into Ch(G) by

ψ(x) = (x, x, . . .)∗, ψ(a + x) = a + ψ(x).

Then ψ is an isomorphism of the half lc-group G into Ch(G). In the next,
we identify x and ψ(x) for each x ∈ H. Then G is a half lc-subgroup of
Ch(G). Since H∗ is a Cantor extension of H, from Lemma 4.8, we conclude.

Theorem 5.7. Ch(G) is a Cantor extension of G.

Remark that it is easy to verify that (A) implies Xn → X and a+Xn →
a + X in G.

Theorem 5.8. Let G1 and G2 be Cantor extensions of G. Then there exists
an isomorphism f from the half lc-group G1, onto G2 such that f(x) = x
for each x ∈ G.

Proof. With respect to 4.8, G1 ↑ and G2 ↑ are Cantor extension of H.
By Theorem 2.6, there exists an isomorphism φ from G1 ↑ onto G2 ↑ with
φ(x) = x for any x ∈ H.

Choose an arbitrary element z ∈ G1 ↑. The mapping f : G1 → G2

defined by f(z) = φ(z) and f(a + z) = a + φ(z) is an isomorphism of the
half lc-group G1 onto G2 and f(a+x) = a+φ(x) = a+x for each x ∈ H.
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A half lc-group Ch(G) corresponds to an element a ∈ H ′. Let a′ ∈ H ′,
a′ 6= a. Then the half lc-group (C ′

h(G);+′, T ′) corresponding to a′ can be
constructed formally in the same way (+, Th and a are replaced by +′, T ′

and a′, respectively). Therefore, the operations + and +′ (relations T h and
T ′) coincide on G and H∗. From Theorems 5.7 and 5.8, it follows that Ch(G)
and C ′

h(G) are isomorphic half lc-groups. Moreover, we have:

Lemma 5.9. A half lc-group Ch(G) = C ′
h(G).

Proof. For each (xn)∗ ∈ H∗ we get a + (xn)∗ = a′ +′ (−a′ + a + xn)∗.
Hence, a+H∗ ⊆ a′+′H∗. Analogously, we get a′+′H∗ ⊆ a+H ′. Therefore,
the set Ch(G) = C ′

h(G).
Evidently, that relations T h and T ′ coincide. Now we show that group

operations + on Ch(G) and +′ on C ′
h(G) coincide.

Let (xn)∗, (yn)∗ ∈ H∗. Then
(a+(xn)∗)+(a+yn)∗) = (a+xn+a+yn)∗ = (a′−a′+a+xn+a′−a′+a+yn)∗ =
(a′ +′ (−a′ + a + xn)∗) +′ (a′ +′ (−a′ + a + yn)∗);
(xn)∗+(a+(yn)∗) = a+(−a+xn+a+yn)∗ = a′+′(−a′+a−a+xn+a+yn)∗ =
a′ +′ (−a′ + xn + a′ − a′ + a + yn)∗ = (xn)∗ +′ (a′ +′ (−a′ + a + yn)∗);
(a + (xn)∗) + (yn)∗ = a + (xn + yn)∗ = a′ +′ (−a′ + a + xn + yn)∗ =
a′ +′ ((−a′ + a + xn)∗) + (yn)∗).

6. The case Ho = {0}

In this section, we assume that Ho = {0}. Then H can be considered as a
subgroup of K.

Assume that G is a finite half lc-group. Then H is a finite lc-group.
With respect to Lemmas 2.4 and 4.7, we obtain:

Lemma 6.1. Let G be a finite half lc-group. Then G is C-complete.

Now, assume that G is an infinite half lc-group. Then H is an infinite
lc-group.

Let a be a fixed element of H ′. We denote

a + K = {a + x : x ∈ K};
Ch(G) = K ∪ (a + K).

We will define a group operation + and a ternary relation T h on Ch(G).
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Let x, y, z ∈ K. From Lemma 2.5, we infer that there are fundamental
sequences (xn) and (yn) in G such that lim xn = x, lim yn = y in K.

The operation x + y on Ch(G) coincides with x + y on K.
Further, we put

(a + x) + (a + y) = lim(a + xn + a + yn),

x + (a + y) = a + lim(−a + xn + a + yn),

(a + x) + y = a + lim(xn + yn).

Limits are taken into account in K. The operation + is correctly defined.
The ternary relation T h on Ch(G) is defined in the following way:

T h coincides with T1 on K.

Further, we put

[a + x, a + y, a + z] ∈ T hif[x, y, z] ∈ T1,

if p, q, r ∈ Ch(G), [p, q, r] ∈ T h, then either {p, q, r} ⊆ K or {p, q, r} ⊆
a + K.

It is a routine to verify that the following assertion is true:

Lemma 6.2. (Ch(G), +, T h) is a half lc-group, Ch(G) ↑= K, Ch(G) ↓=
a + K.

From Lemmas 2.5 and 4.7, it follows:

Lemma 6.3. Let G be an infinite half lc-group.Then Ch(G) is a Cantor
extension of G.

Let a′ and C ′
h(G) be as in the Section 5.

Remark 6.4. It is easy to verify that Theorem 5.8 and Lemma 5.9 are valid
also in the case Ho = {0}.

From Lemmas 4.7, 2.5 and Theorem 2.6, we obtain:

Lemma 6.5. Let G be an infinite half lc-group. Then G is C-complete if
and only if H is isomorphic to K.

Let G be an arbitrary lc-group as in the section 4 (neither Ho 6= {0}
nor Ho = {0} is supposed). From Lemmas 6.1, 6.5 and 2.3, we conclude:
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Theorem 6.6. Let G be a half lc-group such that H is abelian and H ′ 6= ∅.
Then G is C-complete if and only if some of the following conditions is
fulfilled:

(i) G is finite;

(ii) H is isomorphic to K;

(iii) Ho 6= {0} and Ho is C-complete.

By summarizing Theorem 5.7, Lemma 6.3, Theorem 5.8, and Remark 6.4
we get:

Theorem 6.7. Let G be a half lc-group such that H is abelian and H ′ 6= ∅.
Then

(i) There exists a Cantor extension of G.

(ii) If G1 and G2 are Cantor extensions of G, then there exists an
isomorphism from the half lc-group G1 onto G2 leaving all elements
of G fixed.
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[13] S. Świerczkowski, On cyclically ordered groups, Fund. Math. 47 (1959),
161–166.

[14] D.R. Ton, Torsion classes and torsion prime selectors of hl-groups, Math.
Slovaca 50 (2000), 31–40.

Received 7 June 1999
Revised 30 April 1996

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

