CANTOR EXTENSION OF A HALF LINEARLY CYCLICALLY ORDERED GROUP

Štefan Černák
Department of Mathematics, Faculty of Civil Engineering, Technical University, Vysokoškolská 4, SK-042 02 Košice, Slovakia
e-mail: svfkm@tuke.sk

Abstract

Convergent and fundamental sequences are studied in a half linearly cyclically ordered group G with the abelian increasing part. The main result is the construction of the Cantor extension of G.

Keywords: convergent sequence, fundamental sequence, C-complete half $l c$-group, Cantor extension of a half $l c$-group.
2000 Mathematics Subject Classification: Primary 06F15; Secondary 20F60.
M. Giraudet and F. Lucas [3] introduced and investigated the notion of a half linearly ordered group (cf. also D.R. Ton [14], J. Jakubík [6], [7]). J. Jakubík [8] defined and studied the notion of a half linearly cyclically ordered group ($l c$-group) generalizing the notion of a half linearly ordered group.

The author [1] investigated the Cantor extension of an abelian lc-group. We remark that the Cantor extension of lattice ordered groups was studied by C.J. Everett [2].

Let G be a half $l c$-group such that its increasing part is abelian and its decreasing part is nonempty (thus G fails to be an $l c$-group). The notions of a convergent sequence and a fundamental sequence are defined in a natural way. If every fundamental sequence in G is convergent in G, then G is said to be C-complete.

In the present paper necessary and sufficient conditions are found under which G is C-complete. Further, we define the notion of a Cantor extension and we prove that every half $l c$-group has a Cantor extension which is uniquely determined up to isomorphisms leaving all elements of G fixed.

1. l-CYCLICALLY ORDERED SETS AND GROUPS

We recall the definitions and some results concerning l-cyclically ordered sets (cf. Novák and Novotný [10], Novák [9], Quilot [11]) and l-cyclically ordered groups (cf. Rieger [12], Świerczkowski [13], Jakubík and Pringerová [4], [5]).

Definition 1.1. Let M be a nonempty set and T a ternary relation on M such that the following conditions are satisfied:
(I) if $[x, y, z] \in T$ then $[y, x, z] \notin T$.
(II) $[x, y, z] \in T$ implies $[y, z, x] \in T$.
(III) $[x, y, z] \in T,[y, u, z] \in T$ imply $[x, u, z] \in T$.

Then T is said to be a cyclic order on M and (M, T) is called a cyclically ordered set.

Let T be a cyclic order on M satisfying the condition:
(IV) if $x, y, z \in M, x \neq y \neq z \neq x$, then either $[x, y, z] \in T$ or $[z, y, x] \in T$.

Then T is said to be an l-cyclic order on M and (M, T) is called an l cyclically ordered set.

Several terms are used in papers for the term l-cyclic order. For instance "l-cyclic order" is called "linear cyclic order" in [9], "complete cyclic order" in [11] and simply "cyclic order" in [12] and [13].

Definition 1.2. Let $(H ;+)$ be a group and $(H ; T)$ an l-cyclically ordered set such that the following condition is fulfilled:
(V) if $[x, y, z] \in T, u, v \in H$, then $[u+x+v, u+y+v, u+z+v] \in T$.

Then $(H ;+, T)$ is said to be an l-cyclically ordered group or lc-group (linearly cyclically ordered group).

We often write H or $(H ; T)$ instead of $(H ;+, T)$.
Every subgroup of an $l c$-group is considered as an $l c$-group under the induced l-cyclic order.

Example 1.3. Let $(L ; \leq)$ be a linearly ordered group $x, y, z \in L$. Define the ternary relation T_{L} on L by putting
$[x, y, z] \in T_{L}$ if $x<y<z$ or $y<z<x$ or $z<x<y$.
Then $\left(L ; T_{L}\right)$ is an $l c$-group. T_{L} is called the l-cyclic order generated by the linear order \leq on L. Hence every linearly ordered group is an $l c$-group (under the l-cyclic order generated by its linear order).

Example 1.4. Let K be the group of all reals k such that $0 \leq k<1$ with the group operation defined as the addition mod 1 . Consider the natural linear order \leq and the ternary relation T_{1} on K defined in the same way as T_{L} in 1.3. Then $\left(K ; T_{1}\right)$ is an $l c$-group.

Define the ternary relation T on the direct product $L \times K$ of groups L and K as follows: for elements $u_{1}, u_{2}, u_{3} \in L \times K, u_{1}=\left(x, k_{1}\right), u_{2}=$ $\left(y, k_{2}\right), u_{3}=\left(z, k_{3}\right)$ we put $\left[u_{1}, u_{2}, u_{3}\right] \in T$ if some of the following conditions is valid:
(i) $\left[k_{1}, k_{2}, k_{3}\right] \in T_{1}$;
(ii) $k_{1}=k_{2} \neq k_{3}$ and $x<y$;
(iii) $k_{2}=k_{3} \neq k_{1}$ and $y<z$;
(iv) $k_{3}=k_{1} \neq k_{2}$ and $z<x$;
(v) $k_{1}=k_{2}=k_{3}$ and $[x, y, z] \in T_{L}$.

Then $(L \times K ; T)$ is an $l c$-group which will be denoted by $L \otimes K$.
The notion of an isomorphism of $l c$-groups is defined in a natural way.
Theorem 1.5 (Świerczkowski [13]). Let H be an lc-group. Then there exists a linearly ordered group L such that H is isomorphic to a subgroup of $L \otimes K$.

Assume that $(H ; T)$ is an $l c$-group. By 1.5 , there exists an isomorphism f of H into $L \otimes K$. Let H_{o} be the set of all $h \in H$ such that there exists $x \in L$ with the property $f(h)=(x, 0)$. Then H_{o} is a subgroup of $H, H_{o}=\{0\}$ or $H_{o} \neq\{0\}$. Let $H_{o} \neq\{0\}, h \in H_{o}, h \neq 0$. There exists $x \in L$ such that $f(h)=(x, 0) . H_{o}$ turns out to be a linearly ordered grup if we put $h>0$ if $x>0$. The l-cyclic order $T_{H_{o}}$ on H_{o} coincides with the l-cyclic order induced by T.

2. Cantor EXtension of an abelian $l c$-GRoup

Let $(H ; T)$ be an abelian $l c$-group. A construction of a Cantor extension of H will be described (cf. [1]) and some results from [1] will be presented.

Definition 2.1. Let $\left(x_{n}\right)$ be a sequence in H and $x \in H$.
a) We say that $\left(x_{n}\right)$ converges to x (or x is a limit of $\left(x_{n}\right)$) in H and we write $x_{n} \rightarrow x\left(\right.$ or $\left.\lim x_{n}=x\right)$
(i) if card $H=2$ and there exists $n_{o} \in N$ such that $x_{n}=x$ for each $n \in N, n \geq n_{o}$,
or
(ii) if card $H>2$ and for each $\varepsilon \in H, \varepsilon \neq 0$ with the property
$[-\varepsilon, 0, \varepsilon] \in T$ there exists $n_{o} \in N$ such that $\left[-\varepsilon, x_{n}-x, \varepsilon\right] \in T$ for each $n \in N, n \geq n_{o}$.
b) The sequence $\left(x_{n}\right)$ is called fundamental in H if for each $\varepsilon \in H, \varepsilon \neq 0$ with the property $[-\varepsilon, 0, \varepsilon] \in T$ there exists $n_{o} \in N$ such that $\left[-\varepsilon, x_{n}-x_{m}, \varepsilon\right] \in T$ for each $m, n \in N, m, n \geq n_{o}$.
c) By a zero sequence we understand a sequence $\left(x_{n}\right)$ such that $x_{n} \rightarrow 0$.
d) H is called C-complete if each fundamental sequence in H is convergent in H.
The set of all fundamental (zero) sequences in H will be denoted by $F_{H}\left(E_{H}\right)$.
Definition 2.2. Let H_{1} be an abelian $l c$-group satisfying the following conditions:
(a) H_{1} is C-complete.
(b) H is a subgroup of H_{1}.
(c) Every element of H_{1} is a limit of some fundamental sequence in H.
(d) Let $\left(x_{n}\right)$ be a sequence in H such that $x_{n} \rightarrow 0$ in H. Then $x_{n} \rightarrow 0$ in H_{1}.

Then H_{1} is said to be a Cantor extension of H.
Now we consider two cases: $H_{0} \neq\{0\}$ and $H_{0}=\{0\}$.

1) Assume that $H_{o} \neq\{0\}$. Let $\left(x_{n}\right),\left(y_{n}\right) \in F_{H}$. Under the natural definition of the operation + on $F_{H},\left(x_{n}\right)+\left(y_{n}\right)=\left(x_{n}+y_{n}\right), F_{H}$ is a group and E_{H} is a subgroup of F_{H}. We form the factor group $H^{*}=F_{H} / E_{H}$. Symbol $\left(x_{n}\right)^{*}$ will denote the coset of H^{*} containing the sequence $\left(x_{n}\right) \in F_{H}$.

Suppose that $\left(x_{n}\right)^{*},\left(y_{n}\right)^{*},\left(z_{n}\right)^{*}$ are mutually distinct elements of H^{*}. Let T^{*} be the set of all triples $\left[\left(x_{n}\right)^{*},\left(y_{n}\right)^{*},\left(z_{n}\right)^{*}\right]$ of elements of H^{*} such that there exists $n_{o} \in N$ with $\left[x_{n}, y_{n}, z_{n}\right] \in T$ for each $n \in N, n \geq n_{o}$. Then $\left(H^{*}, T^{*}\right)$ is an $l c$-group.

Let φ be the mapping from H into H^{*} defined by $\varphi(x)=(x, x, \ldots)^{*}$ for each $x \in H$. Then φ is an isomorphism of the $l c$-group H into H^{*}. We identify x and $\varphi(x)$ for each $x \in H$. Then H is a subgroup of H^{*} and H^{*} is a Cantor extension of H.

If we denote $\left(x_{n}\right)^{*}=X$ and $\left(x_{n}, x_{n}, \ldots\right)^{*}=X_{n}$, then we have (cf. [1], the proof of Lemma 3.12)

$$
\begin{equation*}
X_{n} \rightarrow X \text { in } H^{*} \tag{A}
\end{equation*}
$$

Lemma 2.3 ([1], Lemma 3.9). H is C-complete if and only if H_{o} is C complete.
2) Now assume that $H_{o}=\{0\}$. Then H can be considered as a subgroup of K.

Lemma 2.4 ([1], Lemma 4.2). If H is a finite subgroup of K, then H is C-complete.

Lemma 2.5 ([1], Lemma 4.5). If H is an infinite subgroup of K, then K is a Cantor extension of H.

The following result is valid in both cases 1) and 2).
Theorem 2.6 ([1], Theorem 4.9). Let H be an abelian lc-group. Then
(i) there exists a Cantor extension of H,
(ii) if H_{1} and H_{2} are Cantor extensions of H, then there exists an isomorphism Φ from the lc-group H_{1} onto H_{2} such that $\Phi(x)=x$ for each $x \in H$.

3. Half $l c$-GROUPS

The notion of a half $l c$-group was introduced by Jakubík [8]. Now we recall the definitions and results that will be applied in the next sections.

Let $(G ;+, T)$ be a system such that $(G ;+)$ is a group and $(G ; T)$ is a cyclically ordered set. Assume that $x, y, z \in G$. Denote

$$
\begin{aligned}
& G \uparrow=\{u \in G:[x, y, z] \in T \Rightarrow[u+x, u+y, u+z] \in T\}, \\
& G \downarrow=\{u \in G:[x, y, z] \in T \Rightarrow[u+z, u+y, u+x] \in T\} .
\end{aligned}
$$

Definition 3.1. Let $(G ;+, T)$ be as above. Assume that the following conditions are fulfilled:
(1) The system T is nonempty.
(2) If $[x, y, z] \in T$, then $[x+u, y+u, z+u] \in T$ for each $u \in G$.
(3) $G=G \uparrow \cup G \downarrow$.
(4) If $[x, y, z] \in T$, then either $\{x, y, z\} \subseteq G \uparrow$ or $\{x, y, z\} \subseteq G \downarrow$.

Then $(G ;+, T)$ is said to be a half cyclically ordered group.
Let $(G ;+, T)$ be a half cyclically ordered group. The definition implies that $G \uparrow$ is a cyclically ordered group. If $G \uparrow$ is an $l c$-group then $(G ;+, T)$ is called a half lc-group (half linearly cyclically ordered group).
There are elements $x, y, z \in G$ with $[x, y, z] \in T$. This is an immediate consequence of (1).

Again, we often write G or $(G ; T)$ instead of $(G ;+, T)$.
In the next, let G be a half $l c$-group. $G \uparrow(G \downarrow)$ is called the increasing (decreasing, resp.) part of G.

A subgroup G^{\prime} of G is said to be a half lc-subgroup of G if the induced l-cyclic order on G^{\prime} is nonempty.

Each $l c$-group G with card $G \geq 3$ is a half $l c$-group (with $G \uparrow=G$ and $G \downarrow=\emptyset$). Every linearly ordered group is an $l c$-group. Hence every half linearly ordered group (for the definition cf. [3]) is a half $l c$-group.

The notion of an isomorphism of half $l c$-groups is defined in a natural way.

From the definition 3.1 it follows (cf. [8]):
(i) If $x, y \in G \downarrow$, then $x+y \in G \uparrow$;
(ii) If $x \in G \uparrow, y \in G \downarrow$, then $x+y \in G \downarrow$ and $y+x \in G \downarrow$.

4. Cantor Extension of a half $l c$-GROUP

In what follows, we assume that (G, T) is a half $l c$-group such that $G \uparrow$ is abelian and $G \downarrow \neq \emptyset$. Hence G is neither abelian group nor $l c$-group.

We will use the notation $G \uparrow=H$ and $G \downarrow=H^{\prime}$.

Definition 4.1. Let $\left(x_{n}\right)$ be a sequence in G and $x \in G$.
a) We say that $\left(x_{n}\right)$ converges to x (or x is a limit of $\left.\left(x_{n}\right)\right)$ in G and we write $x_{n} \rightarrow x$ (or $\left.\lim x_{n}=x\right)$ if for each $\varepsilon \in G, \varepsilon \neq 0$ with the property $[-\varepsilon, 0, \varepsilon] \in T$ there exists $n_{o} \in N$ such that $\left[-\varepsilon, x_{n}-x, \varepsilon\right] \in T$ and $\left[-\varepsilon,-x+x_{n}, \varepsilon\right] \in T$ for each $n \in N, n \geq n_{o}$.
b) The sequence $\left(x_{n}\right)$ is said to be fundamental if for each $\varepsilon \in G, \varepsilon \neq 0$ with $[-\varepsilon, 0, \varepsilon] \in T$ there exists $n_{o} \in N$ such that $\left[-\varepsilon, x_{n}-x_{m}, \varepsilon\right] \in T$ and $\left[-\varepsilon,-x_{m}+x_{n}, \varepsilon\right] \in T$ for each $m, n \in N, m, n \geq n_{o}$.
c) If $x_{n} \rightarrow 0$ in G, then $\left(x_{n}\right)$ is called a zero sequence in G.
d) G is said to be C-complete if every fundamental sequence in G is convergent in G.

Definition 4.2. Let G_{1} be a half $l c$-group with the following properties:
(α) G_{1} is C-complete;
(β) G is a half $l c$-subgroup of G_{1};
(γ) Every element of G_{1} is a limit of some fundamental sequence in G;
(δ) Let $\left(x_{n}\right)$ be a sequence in G such that $x_{n} \rightarrow 0$ in G. Then $x_{n} \rightarrow 0$ in G_{1}.

Then G_{1} is said to be a Cantor extension of G.
We prove that G has a Cantor extension and this is uniquely determined up to isomorphisms leaving all elements of G fixed.

Denote by $F(E)$ the set of all fundamental (zero) sequences in G. Symbols F_{H} and E_{H} have the same meaning as in the section 2.

The following two lemmas are easy to prove.

Lemma 4.3. Let $\left(x_{n}\right)$ be a sequence in G. Then $x_{n} \rightarrow x$ in G if and only if $x_{n}-x \rightarrow 0$ and $-x+x_{n} \rightarrow 0$ in G.

For a fixed element $n_{o} \in N$ and a sequence $\left(x_{n}\right)$ in G we apply the notation $x_{n}^{o}=x_{n o+n-1}$ for each $n \in N$.

Lemma 4.4. Let $\left(x_{n}\right)$ be a sequence in G.
(i) $\left(x_{n}\right) \in E$ if and only if there exists $n_{o} \in N$ such that $\left(x_{n}^{o}\right)$ is a sequence in H and $\left(x_{n}^{o}\right) \in E_{H}$.
(ii) Let $x \in G$ such that $x_{n} \rightarrow x$ in G. Then there exists $n_{o} \in N$ such that either $\left(x_{n}^{o}\right)$ is a sequence in H (and then $x \in H$) or $\left(x_{n}^{o}\right)$ is a sequence in H^{\prime} (and then $x \in H^{\prime}$).
(iii) Let $\left(x_{n}\right) \in F$. Then there exists $n_{o} \in N$ such that either $\left(x_{n}^{o}\right)$ is a sequence in H (and then $\left(x_{n}^{o}\right) \in F_{H}$) or $\left(x_{n}^{o}\right)$ is a sequence in H^{\prime}.

Let $\left(x_{n}\right)$ be a sequence in $H, x \in H$. Then
(iv) $x_{n} \rightarrow x$ in H if and only if $x_{n} \rightarrow x$ in G.

Let $\varepsilon \in G, \varepsilon \neq 0$. If $[-\varepsilon, 0, \varepsilon] \in T$, then $\varepsilon \in H$. Thus we have:
Lemma 4.5. $E_{H} \subseteq E$ and $F_{H} \subseteq F$.
Let a be a fixed element of H^{\prime}. Every element of H^{\prime} can be expressed in the form $a+x$ for some $x \in H$.

Lemma 4.6. Let $\left(x_{n}\right)$ be a sequence in $H, x \in H$. Then
(i) $x_{n} \rightarrow x$ in H if and only if $a+x_{n} \rightarrow a+x$ in G.
(ii) $x_{n} \rightarrow x$ in H if and only if $a+x_{n}+a \rightarrow a+x+a$ in H.
(iii) $\left(x_{n}\right) \in F_{H}$ if and only if some of the following conditions is satisfied $\left(a+x_{n}\right) \in F,\left(a+x_{n}+a\right) \in F_{H},\left(-a+x_{n}+a\right) \in F_{H}$.

Proof. (i) and (ii) are easy to verification.
(iii): Let $\left(x_{n}\right) \in F_{H}$. We intend to show that $\left(a+x_{n}\right) \in F$. Assume that $\varepsilon \in G, \varepsilon \neq 0,[-\varepsilon, 0, \varepsilon] \in T$. Then $\varepsilon \in H$ and so $-a-\varepsilon+a \in H$. Since $\left(x_{n}\right) \in F_{H},[-a+\varepsilon+a, 0,-a-\varepsilon+a] \in T$ implies that there exists $n_{o} \in N$ such that $\left[-a+\varepsilon+a, x_{n}-x_{m},-a-\varepsilon+a\right] \in T$ for each $m, n \in N, m, n \geqslant n_{o}$. Therefore $\left[-\varepsilon, a+x_{n}-\left(a+x_{m}\right), \varepsilon\right] \in T$. From $\left[-\varepsilon,-x_{m}+x_{n}, \varepsilon\right] \in T$ it follows that $\left[-\varepsilon,-\left(a+x_{m}\right)+a+x_{n}, \varepsilon\right] \in T$. We conclude that $\left(a+x_{n}\right) \in F$.

The converse and remaining cases are similar.

Lemma 4.7. G is C-complete if and only if H is C-complete.
Proof. Let G be C-complete and let $\left(x_{n}\right) \in F_{H}$. In view of Lemma 4.5, we get $\left(x_{n}\right) \in F$. Hence there exists $x \in G$ with $x_{n} \rightarrow x$ in G. Applying Lemma 4.4 (ii) and Lemma 4.4 (iv), we obtain $x \in H$ and $x_{n} \rightarrow x$ in H. Hence H is C-complete.

Let H be C-complete and let $\left(x_{n}\right) \in F$. From Lemma 4.4 (iii), we infer that there exists $n_{o} \in N$ such that either $\left(x_{n}^{o}\right) \in F_{H}$ or $\left(x_{n}^{o}\right) \in H^{\prime}$. Assume that $\left(x_{n}^{o}\right) \in F_{H}$. Then $x_{n}^{o} \rightarrow x$ in H. With respect to Lemma 4.4 (iv), $x_{n}^{o} \rightarrow x$ in G. This yields that $x_{n} \rightarrow x$ in G. Assume that $\left(x_{n}^{o}\right) \in H^{\prime}$. There exists $\left(h_{n}^{o}\right) \in H$ with $x_{n}^{o}=a+h_{n}^{o}$ for each $n \in N$. Since $\left(a+h_{n}^{o}\right) \in F$, Lemma 4.6 (iii) implies that $\left(h_{n}^{o}\right) \in F_{H}$. Hence, $h_{n}^{o} \rightarrow h$ in H and by Lemma 4.6 (i) $a+h_{n}^{o} \rightarrow a+h$ in G. We conclude now that $x_{n} \rightarrow a+h$ in G and the proof is complete.

The following result is an immediate consequence of Lemmas 4.6 and 4.7.
Lemma 4.8. Let G be a subgroup of a half lc-group G_{1}. Then G_{1} is a Cantor extension of G if and only if $G_{1} \uparrow$ is a Cantor extension of H.

Investigating a Cantor extension of G, two cases are distinguished: $H_{o} \neq$ $\{0\}$ and $H_{o}=\{0\}\left(H_{o}\right.$ is as in the section 2$)$.

$$
\text { 5. THE CASE } H_{o} \neq\{0\}
$$

In the whole section we suppose that $H_{o} \neq\{0\}$. Since H_{o} is infinite, G is infinite as well.

We form the sets

$$
\begin{align*}
& a+H^{*}=\left\{a+\left(x_{n}\right)^{*}:\left(x_{n}\right)^{*} \in H^{*}\right\} \tag{B}\\
& C_{h}(G)=H^{*} \cup\left(a+H^{*}\right)
\end{align*}
$$

Assume that $\left(x_{n}\right) \in F_{H}$. With respect to Lemma 4.6 (iii), we get $(a+$ $\left.x_{n}+a\right) \in F_{H}$ and $\left(-a+x_{n}+a\right) \in F_{H}$.

We intend to define a group operation + and a ternary relation T^{h} on $C_{h}(G)$. Let $\left(x_{n}\right)^{*},\left(y_{n}\right)^{*},\left(z_{n}\right)^{*} \in H^{*}$.

The operation + on $C_{h}(G)$ is defined to coincide with the operation + on H^{*} defined in the section 2, i.e., we put

$$
\left(x_{n}\right)^{*}+\left(y_{n}\right)^{*}=\left(x_{n}+y_{n}\right)^{*}
$$

Further, we put

$$
\begin{gathered}
\left(a+\left(x_{n}\right)^{*}\right)+\left(a+\left(y_{n}\right)^{*}\right)=\left(a+x_{n}+a+y_{n}\right)^{*} \\
\left(x_{n}\right)^{*}+\left(a+\left(y_{n}\right)^{*}\right)=a+\left(-a+x_{n}+a+y_{n}\right)^{*} \\
\left(a+\left(x_{n}\right)^{*}\right)+\left(y_{n}\right)^{*}=a+\left(x_{n}+y_{n}\right)^{*}
\end{gathered}
$$

We define the ternary relation T^{h} on $C_{h}(G)$ in such a way that T^{h} coincides with T^{*} on H^{*}.

Further, we put

$$
\left[a+\left(x_{n}\right)^{*}, a+\left(y_{n}\right)^{*}, a+\left(z_{n}\right)^{*}\right] \in T^{h} \text { if }\left[\left(z_{n}\right)^{*},\left(y_{n}\right)^{*},\left(x_{n}\right)^{*}\right] \in T^{*}
$$

If p, q and r are distinct elements of $C_{h}(G)$ such that $[p, q, r] \in T^{h}$, then either $\{p, q, r\} \subseteq H^{*}$ or $\{p, q, r\} \subseteq a+H^{*}$.

Lemma 5.1. $\left(C_{h}(G) ;+\right)$ is a group.
Proof. First, we verify that the operation + is associative. Only three cases are considered. The remaining cases are similar.

$$
\begin{aligned}
& \left(\left(a+\left(x_{n}\right)^{*}\right)+\left(a+\left(y_{n}\right)^{*}\right)\right)+\left(a+\left(z_{n}\right)^{*}\right)=\left(a+x_{n}+a+y_{n}\right)^{*}+\left(a+\left(z_{n}\right)^{*}\right)= \\
& a+\left(-a+a+x_{n}+a+y_{n}+a+z_{n}\right)^{*}=a+\left(x_{n}+a+y_{n}+a+z_{n}\right)^{*} \\
& \quad\left(a+\left(x_{n}\right)^{*}\right)+\left(\left(a+\left(y_{n}\right)^{*}\right)+\left(a+\left(z_{n}\right)^{*}\right)\right)=\left(a+\left(x_{n}^{*}\right)\right)+\left(a+y_{n}+a+z_{n}\right)^{*}=
\end{aligned}
$$

$$
a+\left(x_{n}+a+y_{n}+a+z_{n}\right)^{*}
$$

Hence,
$\left.\left(\left(a+\left(x_{n}\right)^{*}\right)+\left(a+\left(y_{n}\right)^{*}\right)\right)+\left(a+z_{n}\right)^{*}\right)=\left(a+\left(x_{n}\right)^{*}\right)+\left(\left(a+\left(y_{n}\right)^{*}\right)+\left(a+\left(z_{n}\right)^{*}\right)\right)$. $\left(\left(a+\left(x_{n}\right)^{*}\right)+\left(a+\left(y_{n}\right)^{*}\right)\right)+\left(z_{n}\right)^{*}=\left(a+x_{n}+a+y_{n}\right)^{*}+\left(z_{n}\right)^{*}=\left(a+x_{n}+a+\right.$ $\left.y_{n}+z_{n}\right)^{*},\left(a+\left(x_{n}^{*}\right)+\left(\left(a+\left(y_{n}\right)^{*}\right)+\left(z_{n}\right)^{*}\right)=\left(a+\left(x_{n}\right)^{*}\right)+\left(a+\left(y_{n}+z_{n}\right)^{*}\right)=\right.$ $\left(a+x_{n}+a+y_{n}+z_{n}\right)^{*}$.

Thus, $\left(\left(a+\left(x_{n}\right)^{*}\right)+\left(a+\left(y_{n}\right)^{*}\right)\right)+\left(z_{n}\right)^{*}=\left(a+\left(x_{n}\right)^{*}\right)+\left(\left(a+\left(y_{n}\right)^{*}\right)+\left(z_{n}\right)^{*}\right)$. $\left(\left(x_{n}\right)^{*}+\left(y_{n}\right)^{*}\right)+\left(a+\left(z_{n}\right)^{*}\right)=\left(x_{n}+y_{n}\right)^{*}+\left(a+\left(z_{n}\right)^{*}\right)=a+\left(-a+x_{n}+y_{n}+\right.$ $\left.a+z_{n}\right)^{*},\left(x_{n}\right)^{*}+\left(\left(y_{n}\right)^{*}+\left(a+\left(z_{n}\right)^{*}\right)\right)=\left(x_{n}^{*}+\left(a+\left(-a+y_{n}+a+z_{n}\right)^{*}\right)=\right.$ $a+\left(-a+x_{n}+a-a+y_{n}+a+z_{n}\right)^{*}=a+\left(-a+x_{n}+y_{n}+a+z_{n}\right)^{*}$.

Therefore, $\left(\left(x_{n}\right)^{*}+\left(y_{n}\right)^{*}\right)+\left(a+\left(z_{n}\right)^{*}\right)=\left(x_{n}\right)^{*}+\left(\left(y_{n}\right)^{*}+\left(a+\left(z_{n}\right)^{*}\right)\right)$.
Now, we show that every element of $C_{h}(G)$ has an inverse in $C_{h}(G)$. It suffices to consider elements of $a+H^{*}$. Assume that $a+\left(x_{n}\right)^{*} \in a+H^{*}$. Then $a+\left(-a-x_{n}-a\right)^{*} \in a+H^{*}$ and it is the inverse to $a+\left(x_{n}\right)^{*}$ in $C_{h}(G)$.

Lemma 5.2. Let $\left(x_{n}\right)^{*},\left(y_{n}\right)^{*},\left(z_{n}\right)^{*} \in H^{*}$. Then $\left[\left(x_{n}\right)^{*},\left(y_{n}\right)^{*},\left(z_{n}\right)^{*}\right] \in T^{*}$ if and only if some of the following conditions is satisfied:
(i) $\left[\left(-a+z_{n}+a\right)^{*},\left(-a+y_{n}+a\right)^{*},\left(-a+x_{n}+a\right)^{*}\right] \in T^{*}$,
(ii) $\left[\left(a+z_{n}+a\right)^{*},\left(a+y_{n}+a\right)^{*},\left(a+x_{n}+a\right)^{*}\right] \in T^{*}$.

Proof. (i): Assume that $\left[\left(x_{n}\right)^{*},\left(y_{n}\right)^{*},\left(z_{n}\right)^{*}\right] \in T^{*}$. Hence there exists $n_{o} \in N$ such that $\left[x_{n}, y_{n}, z_{n}\right] \in T$ for each $n \in N, n \geq n_{o}$. This yields that $\left[-a+z_{n}+a,-a+y_{n}+a,-a+x_{n}+a\right] \in T$ for each $n \in N, n \geq n_{o}$. According to Lemma 4.6 (iii), we have $\left(-a+z_{n}+a\right),\left(-a+y_{n}+a\right),\left(-a+x_{n}+a\right) \in F_{H}$. We conclude that $\left[\left(-a+z_{n}+a\right)^{*},\left(-a+y_{n}+a\right)^{*},\left(-a+x_{n}+a\right)^{*}\right] \in T^{*}$.

The converse and (ii) are similar.
Lemma 5.3. Let $\left(x_{n}\right)^{*},\left(y_{n}\right)^{*},\left(z_{n}\right)^{*},\left(u_{n}\right)^{*} \in H^{*}$.
(i) If $\left.\left[\left(x_{n}\right)^{*},\left(y_{n}\right)^{*}, z_{n}\right)^{*}\right] \in T^{*}$, then $\left[\left(x_{n}\right)^{*}+\left(u_{n}\right)^{*},\left(y_{n}\right)^{*}+\left(u_{n}\right)^{*},\left(z_{n}\right)^{*}+\right.$ $\left.\left(u_{n}\right)^{*}\right] \in T^{*}$ and $\left[\left(x_{n}\right)^{*}+\left(a+\left(u_{n}\right)^{*}\right),\left(y_{n}\right)^{*}+\left(a+\left(u_{n}\right)^{*}\right),\left(z_{n}\right)^{*}+\right.$ $\left.\left(a+\left(u_{n}\right)^{*}\right)\right] \in T^{h}$.
(ii) If $\left[a+\left(x_{n}\right)^{*}, a+\left(y_{n}\right)^{*}, a+\left(z_{n}\right)^{*}\right] \in T^{h}$, then $\left[\left(a+\left(x_{n}\right)^{*}\right)+\left(u_{n}\right)^{*}\right.$, $\left.\left(a+\left(y_{n}\right)^{*}\right)+\left(u_{n}\right)^{*},\left(a+\left(z_{n}\right)^{*}\right)+\left(u_{n}\right)^{*}\right] \in T^{h}$ and $\left[\left(a+\left(x_{n}\right)^{*}\right)+\left(a+\left(u_{n}\right)^{*}\right)\right.$, $\left.\left(a+\left(y_{n}\right)^{*}\right)+\left(a+\left(u_{n}\right)^{*}\right),\left(a+\left(z_{n}\right)^{*}\right)+\left(a+\left(u_{n}\right)^{*}\right)\right] \in T^{*}$.

Proof. (i): Assume that $\left[\left(x_{n}\right)^{*},\left(y_{n}\right)^{*},\left(z_{n}\right)^{*}\right] \in T^{*}$. The first part of the assertion follows from the fact that H^{*} is an $l c$-group. Now, we prove the second part. From Lemma 5.2 (i), we infer that $\left[\left(-a+z_{n}+a\right)^{*},\left(-a+y_{n}+\right.\right.$ $\left.a)^{*},\left(-a+x_{n}+a\right)^{*}\right] \in T^{*}$. Then $\left[\left(-a+z_{n}+a\right)^{*}+\left(u_{n}\right)^{*},\left(-a+y_{n}+a\right)^{*}+\right.$ $\left.\left(u_{n}\right)^{*},\left(-a+x_{n}+a\right)^{*}+\left(u_{n}\right)^{*}\right) \in T^{*},\left[\left(-a+z_{n}+a+u_{n}\right)^{*},\left(-a+y_{n}+a+\right.\right.$ $\left.\left.u_{n}\right)^{*},\left(-a+x_{n}+a+u_{n}\right)^{*}\right] \in T^{*}$. Hence $\left[a+\left(-a+x_{n}+a+u_{n}\right)^{*}, a+(-a+\right.$ $\left.\left.y_{n}+a+u_{n}\right)^{*}, a+\left(-a+z_{n}+a+u_{n}\right)^{*}\right] \in T^{h}$, i.e., $\left[\left(x_{n}\right)^{*}+\left(a+\left(u_{n}\right)^{*}\right),\left(y_{n}\right)^{*}+\right.$ $\left(a+\left(u_{n}\right)^{*}\right),\left(z_{n}\right)^{*}+\left(a+\left(u_{n}\right)^{*}\right) \in T^{h}$.

The proof of (ii) is analogous.
Lemma 5.4. Let $\left(x_{n}\right)^{*},\left(y_{n}\right)^{*},\left(z_{n}\right)^{*},\left(u_{n}\right)^{*} \in H^{*}$.
(i) If $\left[\left(x_{n}\right)^{*},\left(y_{n}\right)^{*},\left(z_{n}\right)^{*}\right] \in T^{*}$, then $\left[\left(u_{n}\right)^{*}+\left(x_{n}\right)^{*},\left(u_{n}\right)^{*}+\left(y_{n}\right)^{*},\left(u_{n}\right)^{*}+\right.$ $\left.\left(z_{n}\right)^{*}\right] \in T^{*}$ and $\left[\left(a+\left(u_{n}\right)^{*}\right)+\left(z_{n}\right)^{*},\left(a+\left(u_{n}\right)^{*}\right)+\left(y_{n}\right)^{*},\left(a+\left(u_{n}\right)^{*}\right)+\right.$ $\left.\left(x_{n}\right)^{*}\right] \in T^{h}$.
(ii) If $\left[a+\left(x_{n}\right)^{*}, a+\left(y_{n}\right)^{*}, a+\left(z_{n}\right)^{*}\right] \in T^{h}$, then $\left[\left(u_{n}\right)^{*}+\left(a+\left(x_{n}\right)^{*}\right),\left(u_{n}\right)^{*}+\right.$ $\left.\left(a+\left(y_{n}\right)^{*}\right),\left(u_{n}\right)^{*}+\left(a+\left(z_{n}\right)^{*}\right)\right] \in T^{h}$ and $\left[\left(a+\left(u_{n}\right)^{*}\right)+\left(a+\left(z_{n}\right)^{*}\right),(a+\right.$ $\left.\left.\left(u_{n}\right)^{*}\right)+\left(a+\left(y_{n}\right)^{*}\right),\left(a+\left(u_{n}\right)^{*}\right)+\left(a+\left(x_{n}\right)^{*}\right)\right] \in T^{*}$.

Proof. (i) Assume that $\left[\left(x_{n}\right)^{*},\left(y_{n}\right)^{*},\left(z_{n}\right)^{*}\right] \in T^{*}$. The first assertion holds because of the fact that H^{*} is an $l c$-group. Now, we prove the second assertion. The assumption implies that $\left[\left(u_{n}\right)^{*}+\left(x_{n}\right)^{*},\left(u_{n}\right)^{*}+\left(y_{n}\right)^{*},\left(u_{n}\right)^{*}+\right.$ $\left.\left(z_{n}\right)^{*}\right] \in T^{*}$ and so $\left[\left(u_{n}+x_{n}\right)^{*},\left(u_{n}+y_{n}\right)^{*},\left(u_{n}+z_{n}\right)^{*}\right] \in T^{*}$. Whence $[a+$ $\left.\left(u_{n}+z_{n}\right)^{*}, a+\left(u_{n}+y_{n}\right)^{*}, a+\left(u_{n}+x_{n}\right)^{*}\right] \in T^{h}$. Thus $\left[\left(a+\left(u_{n}\right)^{*}\right)+\left(z_{n}\right)^{*},(a+\right.$ $\left.\left.\left(u_{n}\right)^{*}\right)+\left(y_{n}\right)^{*},\left(a+\left(u_{n}\right)^{*}\right)+\left(x_{n}\right)^{*}\right] \in T^{h}$.

To prove (ii), we proceed in a similar way.
From Lemma 5.4 and (B), we infer the validity of the following result:
Lemma 5.5. $C_{h}(G) \uparrow=H^{*}, C_{h}(G) \downarrow=a+H^{*} \operatorname{and} C_{h}(G)=C_{h}(G) \uparrow \cup C_{h}(G) \downarrow$.

Since T is nonempty, T^{h} is nonempty as well. Then Lemmas 5.1, 5.3 and 5.5 yield:

Lemma 5.6. $\left(C_{h}(G),+, T^{h}\right)$ is a half lc-group.
Let $x \in H$. Define the mapping ψ from G into $C_{h}(G)$ by

$$
\psi(x)=(x, x, \ldots)^{*}, \psi(a+x)=a+\psi(x)
$$

Then ψ is an isomorphism of the half $l c$-group G into $C_{h}(G)$. In the next, we identify x and $\psi(x)$ for each $x \in H$. Then G is a half $l c$-subgroup of $C_{h}(G)$. Since H^{*} is a Cantor extension of H, from Lemma 4.8, we conclude.

Theorem 5.7. $C_{h}(G)$ is a Cantor extension of G.
Remark that it is easy to verify that (A) implies $X_{n} \rightarrow X$ and $a+X_{n} \rightarrow$ $a+X$ in G.

Theorem 5.8. Let G_{1} and G_{2} be Cantor extensions of G. Then there exists an isomorphism f from the half lc-group G_{1}, onto G_{2} such that $f(x)=x$ for each $x \in G$.

Proof. With respect to $4.8, G_{1} \uparrow$ and $G_{2} \uparrow$ are Cantor extension of H. By Theorem 2.6, there exists an isomorphism ϕ from $G_{1} \uparrow$ onto $G_{2} \uparrow$ with $\phi(x)=x$ for any $x \in H$.

Choose an arbitrary element $z \in G_{1} \uparrow$. The mapping $f: G_{1} \rightarrow G_{2}$ defined by $f(z)=\phi(z)$ and $f(a+z)=a+\phi(z)$ is an isomorphism of the half $l c$-group G_{1} onto G_{2} and $f(a+x)=a+\phi(x)=a+x$ for each $x \in H$.

A half $l c$-group $C_{h}(G)$ corresponds to an element $a \in H^{\prime}$. Let $a^{\prime} \in H^{\prime}$, $a^{\prime} \neq a$. Then the half $l c$-group $\left(C_{h}^{\prime}(G) ;+^{\prime}, T^{\prime}\right)$ corresponding to a^{\prime} can be constructed formally in the same way (,$+ T_{h}$ and a are replaced by $+^{\prime}, T^{\prime}$ and a^{\prime}, respectively). Therefore, the operations + and $+^{\prime}$ (relations T^{h} and T^{\prime}) coincide on G and H^{*}. From Theorems 5.7 and 5.8, it follows that $C_{h}(G)$ and $C_{h}^{\prime}(G)$ are isomorphic half $l c$-groups. Moreover, we have:

Lemma 5.9. A half lc-group $C_{h}(G)=C_{h}^{\prime}(G)$.
Proof. For each $\left(x_{n}\right)^{*} \in H^{*}$ we get $a+\left(x_{n}\right)^{*}=a^{\prime}+^{\prime}\left(-a^{\prime}+a+x_{n}\right)^{*}$. Hence, $a+H^{*} \subseteq a^{\prime}+^{\prime} H^{*}$. Analogously, we get $a^{\prime}+^{\prime} H^{*} \subseteq a+H^{\prime}$. Therefore, the set $C_{h}(G)=C_{h}^{\prime}(G)$.

Evidently, that relations T^{h} and T^{\prime} coincide. Now we show that group operations + on $C_{h}(G)$ and $+^{\prime}$ on $C_{h}^{\prime}(G)$ coincide.

Let $\left(x_{n}\right)^{*},\left(y_{n}\right)^{*} \in H^{*}$. Then
$\left.\left(a+\left(x_{n}\right)^{*}\right)+\left(a+y_{n}\right)^{*}\right)=\left(a+x_{n}+a+y_{n}\right)^{*}=\left(a^{\prime}-a^{\prime}+a+x_{n}+a^{\prime}-a^{\prime}+a+y_{n}\right)^{*}=$ $\left(a^{\prime}+^{\prime}\left(-a^{\prime}+a+x_{n}\right)^{*}\right)+^{\prime}\left(a^{\prime}+^{\prime}\left(-a^{\prime}+a+y_{n}\right)^{*}\right)$;
$\left(x_{n}\right)^{*}+\left(a+\left(y_{n}\right)^{*}\right)=a+\left(-a+x_{n}+a+y_{n}\right)^{*}=a^{\prime}+^{\prime}\left(-a^{\prime}+a-a+x_{n}+a+y_{n}\right)^{*}=$ $a^{\prime}+^{\prime}\left(-a^{\prime}+x_{n}+a^{\prime}-a^{\prime}+a+y_{n}\right)^{*}=\left(x_{n}\right)^{*}+^{\prime}\left(a^{\prime}+^{\prime}\left(-a^{\prime}+a+y_{n}\right)^{*}\right)$;
$\left(a+\left(x_{n}\right)^{*}\right)+\left(y_{n}\right)^{*}=a+\left(x_{n}+y_{n}\right)^{*}=a^{\prime}+^{\prime}\left(-a^{\prime}+a+x_{n}+y_{n}\right)^{*}=$ $\left.a^{\prime}+^{\prime}\left(\left(-a^{\prime}+a+x_{n}\right)^{*}\right)+\left(y_{n}\right)^{*}\right)$.
6. The case $H_{o}=\{0\}$

In this section, we assume that $H_{o}=\{0\}$. Then H can be considered as a subgroup of K.

Assume that G is a finite half $l c$-group. Then H is a finite $l c$-group. With respect to Lemmas 2.4 and 4.7, we obtain:

Lemma 6.1. Let G be a finite half lc-group. Then G is C-complete.

Now, assume that G is an infinite half $l c$-group. Then H is an infinite $l c$-group.

Let a be a fixed element of H^{\prime}. We denote

$$
\begin{gathered}
a+K=\{a+x: x \in K\} ; \\
C_{h}(G)=K \cup(a+K) .
\end{gathered}
$$

We will define a group operation + and a ternary relation T^{h} on $C_{h}(G)$.

Let $x, y, z \in K$. From Lemma 2.5, we infer that there are fundamental sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ in G such that $\lim x_{n}=x, \lim y_{n}=y$ in K.

The operation $x+y$ on $C_{h}(G)$ coincides with $x+y$ on K.
Further, we put

$$
\begin{gathered}
(a+x)+(a+y)=\lim \left(a+x_{n}+a+y_{n}\right), \\
x+(a+y)=a+\lim \left(-a+x_{n}+a+y_{n}\right), \\
(a+x)+y=a+\lim \left(x_{n}+y_{n}\right) .
\end{gathered}
$$

Limits are taken into account in K. The operation + is correctly defined.
The ternary relation T^{h} on $C_{h}(G)$ is defined in the following way:

$$
T^{h} \text { coincides with } T_{1} \text { on } K .
$$

Further, we put

$$
[a+x, a+y, a+z] \in T^{h} \operatorname{if}[x, y, z] \in T_{1}
$$

if $p, q, r \in C_{h}(G), \quad[p, q, r] \in T^{h}$, then either $\{p, q, r\} \subseteq K$ or $\{p, q, r\} \subseteq$ $a+K$.

It is a routine to verify that the following assertion is true:
Lemma 6.2. $\left(C_{h}(G),+, T^{h}\right)$ is a half lc-group, $C_{h}(G) \uparrow=K, C_{h}(G) \downarrow=$ $a+K$.

From Lemmas 2.5 and 4.7, it follows:
Lemma 6.3. Let G be an infinite half lc-group. Then $C_{h}(G)$ is a Cantor extension of G.

Let a^{\prime} and $C_{h}^{\prime}(G)$ be as in the Section 5.
Remark 6.4. It is easy to verify that Theorem 5.8 and Lemma 5.9 are valid also in the case $H_{o}=\{0\}$.

From Lemmas 4.7, 2.5 and Theorem 2.6, we obtain:
Lemma 6.5. Let G be an infinite half lc-group. Then G is C-complete if and only if H is isomorphic to K.

Let G be an arbitrary l c-group as in the section 4 (neither $H_{o} \neq\{0\}$ nor $H_{o}=\{0\}$ is supposed). From Lemmas 6.1, 6.5 and 2.3, we conclude:

Theorem 6.6. Let G be a half lc-group such that H is abelian and $H^{\prime} \neq \emptyset$. Then G is C-complete if and only if some of the following conditions is fulfilled:
(i) G is finite;
(ii) H is isomorphic to K;
(iii) $H_{o} \neq\{0\}$ and H_{o} is C-complete.

By summarizing Theorem 5.7, Lemma 6.3, Theorem 5.8, and Remark 6.4 we get:

Theorem 6.7. Let G be a half lc-group such that H is abelian and $H^{\prime} \neq \emptyset$. Then
(i) There exists a Cantor extension of G.
(ii) If G_{1} and G_{2} are Cantor extensions of G, then there exists an isomorphism from the half lc-group G_{1} onto G_{2} leaving all elements of G fixed.

References

[1] Š. Černák, Cantor extension of an abelian cyclically ordered group, Math. Slovaca 39 (1989), 31-41.
[2] C.J. Everett, Sequence completion of lattice moduls, Duke Math. J. 11 (1944), 109-119.
[3] M. Giraudet and F. Lucas, Groupe à moitié ordonnés, Fund. Math. 139 (1991), 75-89.
[4] J. Jakubík and G. Pringerová, Representations of cyclically ordered groups, Časopis pěst. Mat. 113 (1988), 184-196.
[5] J. Jakubík and G. Pringerová, Radical classes of cyclically ordered groups, Math. Slovaca 38 (1988), 255-268.
[6] J. Jakubík, On half lattice ordered groups, Czechoslovak Math. J. 46 (1996), 745-767.
[7] J. Jakubík, Lexicographic products of half linearly ordered groups, Czechoslovak Math. J. 51 (2001), 127-138.
[8] J. Jakubík, On half cyclically ordered groups, Czechoslovak Math. J. (to appear).
[9] V. Novák, Cuts in cyclically ordered sets, Czechoslovak Math. J. 34 (1984), 322-333.
[10] V. Novák and M. Novotný, On representations of cyclically ordered sets, Czechoslovak Math. J. 39 (1989), 127-132.
[11] A. Quilot, Cyclic orders, European J. Combin. 10 (1989), 477-488.
[12] L. Rieger, On ordered and cyclically ordered groups I., II.,III., Věstník Král. Česke spol. Nauk (Czech) 1946, 1-31; 1947, 1-33; 1948, 1-26.
[13] S. Świerczkowski, On cyclically ordered groups, Fund. Math. 47 (1959), 161-166.
[14] D.R. Ton, Torsion classes and torsion prime selectors of hl-groups, Math. Slovaca 50 (2000), 31-40.

Received 7 June 1999
Revised 30 April 1996

