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Abstract
A triple-semilattice is an algebra with three binary operations,

which is a semilattice in respect of each of them. A trice is a
triple-semilattice, satisfying so called roundabout absorption laws. In
this paper we investigate distributive trices. We prove that the only
subdirectly irreducible distributive trices are the trivial one and a two
element one. We also discuss finitely generated free distributive
trices and prove that a free distributive trice with two generators has
18 elements.
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1. Introduction

An algebra (T ;↗1,↖2, ↓3 ) of a type with three binary operations is a
triple semilattice if it is a semilattice in respect of each of the operations.
We denote orders on T by

a ≤1 b if and only if a ↗1 b = b,(1)
a ≤2 b if and only if a ↖2 b = b,(2)
a ≤3 b if and only if a ↓3 b = b.(3)
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A triple semilattice T is a trice if it satisfies the roundabout absorption laws:

((a ↗1 b) ↖2 b) ↓3 b = b,(4)

((a ↗1 b) ↓3 b) ↖2 b = b,(5)

((a ↖2 b) ↗1 b) ↓3 b = b,(6)

((a ↖2 b) ↓3 b) ↗1 b = b,(7)

((a ↓3 b) ↗1 b) ↖2 b = b,(8)

and

((a ↓3 b) ↖2 b) ↗1 b = b(9)

for all a, b ∈ T .
Trices are introduced and investigated in [2] as a generalization of lattices.
A distributive trice is a trice satisfying the following six distributive laws:

a ↗1 (b ↖2 c) = (a ↗1 b) ↖2 (a ↗1 c),(10)

a ↖2 (b ↗1 c) = (a ↖2 b) ↗1 (a ↖2 c),(11)

a ↗1 (b ↓3 c) = (a ↗1 b) ↓3 (a ↗1 c),(12)

a ↓3 (b ↗1 c) = (a ↓3 b) ↗1 (a ↓3 c),(13)

a ↖2 (b ↓3 c) = (a ↖2 b) ↓3 (a ↖2 c),(14)

and

a ↓3 (b ↖2 c) = (a ↓3 b) ↖2 (a ↓3 c)(15)

for all a, b, c ∈ T .

2. Subdirect decomposition of distributive trices

Lemma 1. A triple semilattice T having all three semilattices as chains is
a trice if and only if for all x, y ∈ T , there are ≤i and ≤j, for i, j ∈ {1, 2, 3},
such that x ≤i y and y ≤j x.

Proof. By contraposition, if for all orderings x ≤i y i ∈ {1, 2, 3} is satisfied,
than x ↗1 (x ↖2 (x ↓3 y))) = y, i.e., roundabout absorption law (9) is not
satisfied. On the other hand, if, say, x ≤1 y and y ≤2 x, then it is easy to
prove that all roundabout absorption laws for x and y are satisfied.
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Lemma 2. Let (T ;↗1,↖2, ↓3 ) be a distributive trice. Let x, y, t ∈ T . If
x ↗1 t = y ↗1 t, x ↖2 t = y ↖2 t and x ↓3 t = y ↓3 t, then x = y.

Proof. Using repeatedly the hypotheses, we have

x = x ↗1 (x ↖2 (x ↓3 t))) = x ↗1 (x ↖2 (y ↓3 t)))

= x ↗1 ((x ↖2 y) ↓3 (x ↖2 t)) = x ↗1 ((x ↖2 y) ↓3 (y ↖2 t))

= x ↗1 (y ↖2 (x ↓3 t)) = x ↗1 (y ↖2 (y ↓3 t))

= (x ↗1 y) ↖2 (x ↗1 (y ↓3 t)) = (x ↗1 y) ↖2 ((x ↗1 y) ↓3 (x ↗1 t))

= (x ↗1 y) ↖2 ((x ↗1 y) ↓3 (y ↗1 t)) = (x ↗1 y) ↖2 (y ↗1 (x ↓3 t))

= (x ↗1 y) ↖2 (y ↗1 (y ↓3 t)) = y ↗1 (x ↖2 (y ↓3 t))

= y ↗1 ((x ↖2 y) ↓3 (x ↖2 t)) = y ↗1 ((x ↖2 y) ↓3 (y ↖2 t))

= y ↗1 (y ↖2 (x ↓3 t)) = y ↗1 (y ↖2 (y ↓3 t))

= y.

Let (T ;↗1,↖2, ↓3 ) be a distributive trice, and let p ∈ T be a fixed element.
We define relations on T by

x θ1 y if and only if x ↗1 p = y ↗1 p,(16)

x θ2 y if and only if x ↖2 p = y ↖2 p,(17)

and

x θ3 y if and only if x ↓3 p = y ↓3 p.(18)

Lemma 3. The relations θ1, θ2 and θ3 defined by (16)–(18) are
congruences on the distributive trice.

Proof. It is obvious that every θi, for i ∈ {1, 2, 3} is an equivalence
relation. Moreover, it is compatible with all operations. Let x θ1 y and
z θ1 t. Then x ↗1 p = y ↗1 p and z ↗1 p = t ↗1 p. And then
(x ↗1 p) ↖2 (z ↗1 p) = (y ↗1 p) ↖2 (t ↗1 p). By distributivity,
(x ↖2 z) ↗1 p = (y ↖2 t) ↗1 p, i.e., (x ↖2 z) θ1 (y ↖2 t). Similary, we get
(x ↓3 z) θ1 (y ↓3 t). Hence, θ1 is a congruence on the trice. For θ2 and
θ3 , we can prove it in a similar way.
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Lemma 4. The relation θi is the identity relation if and only if p is the
bottom element in the (T ;≤i), for all i ∈ {1, 2, 3}.
Proof. If p is the bottom element in (T,≤1), then p ≤1 x for all x ∈ T .
Hence, x θ1 y if and only if x = x ↗1 p = y ↗1 p = y. That is, θ1 = ∆.

On the other hand, if there exists x ∈ T such that ¬(p ≤1 x), then
(p ↗1 x) 6= x. As (p ↗1 x) ↗1 p = x ↗1 p, we get (p ↗1 x) θ1 x. Then,
θ1 6= ∆. For θ2 and θ3 , we can prove the statements in a similar way.

Lemma 5. If p is not the bottom element of any of semilattices of the dis-
tributive trice T , then not all of θ1, θ2 and θ3 are equal.

Proof. Suppose that all the congruences are equal. Let x <1 p. Then,
x θ1 p. As congruences are the same, x θ2 p and x θ3 p. Hence x ≤2 p and
x ≤3 p, and thus ((x ↗1 p) ↖2 p) ↓3 p = p, and finally from our assumption
we obtain p = x, a contradiction.

Lemma 6. There are no subdirectly irreducible distributive trices with more
than three elements.

Proof. Suppose that T is a subdirectly irreducible distributive trice with
four or more elements. Then, there is an element, say p ∈ T , which is not the
bottom element in any of the semilattices. This element determines three
congruences θ1, θ2 and θ3, defined by formulas (16) – (18). Those relations
are all distinct from the identity relation by Lemma 4, and at least two of
them are not equal by Lemma 5. Using Lemma 2 we easily prove that

θ1 ∩ θ2 ∩ θ3 = ∆.

By the well known theorem on congruence lattice of subdirectly irreducible
algebras (see e.g. [1], p. 57. Thm. 8.4), we have that T is not subdirectly
irreducible.

Lemma 7. There are no subdirectly irreducible distributive trices with three
elements.

Proof. There is only one (up to the isomorphism and the order of opera-
tions) distributive trice with three elements (T ;↗1,↖2, ↓3 ), diagrams of its
semilattices given in Figure 1. It is not subdirectly irreducible. Indeed, con-
gruences of this trice, besides ∆ and ∇, are {{a, b}, {c}}, and {{a}, {b, c}},
that is, congruence lattice is the four element boolean algebra. Thus, this
trice is not subdirectly irreducible.
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By lemmas 1 – 7, we have:

Theorem 1. The only subdirectly irreducible distributive trices are, up to
the isomorphism and the order of operations, the two element one, given in
Figure 2, and the trivial one.
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Figure 2

Theorem 2. Every non-trivial distributive trice is isomorphic to a subdirect
product of two element trices.

Proof. This is a consequence of previous theorem and the Birkhoff theorem
on subdirect products.

An obvious corrolary is that every distributive trice is a subtrice of the direct
product of two element trices.

Example 1. In the sequel, we give representation of the three element
distributive trice in Figure 1, as a subdirect product of two element trices.

Proof. Let T1 = {a, b} and T2 = {c, d}, with a ≤1 b, a ≤2 b, b ≤3 a, c ≤1 d,
d ≤2 c and d ≤3 c. The direct product has four elements {ac, bc, ad, bd}. The
mentioned three element trice is isomorphic with the subtrice {ac, bc, bd}.
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3. Free distributive trices

In the sequel we consider free distributive trices.
Obviously, free distributive trice with one generator is the one element

trivial trice. Now, consider n generators, x1,... xn. Every element of a free
distributive trice can be written in the form F1 ↓3 F2 ↓3 ... ↓3 Fm, where
every Fi(i ∈ {1, 2, ...m}) is of the form: g1 ↖2 g2 ↖2 ... ↖2 gk, and every
gj(j ∈ {1, 2, ...k}) is of the form: xi1 ↗1 xi2 ↗1 ... ↗1 xil , where all xs

appearing in the mentioned expression, are generators. We can easily prove,
by using distributive laws, that every element of a free distributive trice have
a representation of that form. And obviously, some elements have several
different representations.

By the previous considerations, the following theorem is evident:

Theorem 3. Every free distributive trice with a finite set of generators is
finite.

Proof. Let n be the number of generators. Let G be the set of all
elements of the form: xi1 ↗1 xi2 ↗1 ... ↗1 xil , where all xs appearing
in the mentioned expressions are generators. Then, the cardinality of G
is not greater than 2n − 1. Let F be the set of all elements of the form:
g1 ↖2 g2 ↖2 ... ↖2 gk, where gi ∈ G, for all i ∈ {1, ..., k}. Then, the
cardinality of F is not greater than 22n−1 − 1. As every element of a free
distributive trice can be written in the form F1 ↓3 F2 ↓3 ... ↓3 Fm, with
Fi ∈ F , the order of free distributive trice with n generators is not greater
than 222n−1−1 − 1. There is some possibility of overlapping. But, this
completes the proof.

Example 2. Free distributive trice with two generators has 18 elements.

We effectively construct a free distributive trice with two generators x and
y. The notations in the sequel is taken from the proof of the previous
theorem. Now, the set G is {x, y, x ↗1 y}. From x ↖2 y ↖2 (x ↗1 y)
= (x ↖2 y ↖2 x) ↗1 (x ↖2 y ↖2 y) = x ↖2 y, it follows that the set F
is {x, y, x ↗1 y, x ↖2 y, x ↖2 (x ↗1 y), y ↖2 (x ↗1 y)}. In a similar
way, we can deduce that the free distributive trice with two generators has
18 elements.
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All different elements of that trice are represented by the following terms:

1© = x, 2© = y, 3© = x ↗1 y,

4© = x ↖2 y = x ↖2 y ↖2 (x ↗1 y), 5© = x ↖2 (x ↗1 y),

6© = y ↖2 (x ↗1 y), 7© = x ↓3 y, 8© = x ↓3 (x ↗1 y),

9© = x ↓3 (x ↖2 y), 10© = y ↓3 (x ↗1 y), 11© = y ↓3 (x ↖2 y),

12© = x ↓3 (y ↖2 (x ↗1 y)), 13© = y ↓3 (x ↖2 (x ↗1 y)),

14© = (x ↖2 y) ↓3 (x ↗1 y) = (x ↖2 (x ↗1 y)) ↓3 (y ↖2 (x ↗1 y)),

15© = (x ↗1 y) ↓3 (x ↖2 (x ↗1 y)), 16© = (x ↗1 y) ↓3 (y ↖2 (x ↗1 y)),

17© = (x ↖2 y) ↓3 (x ↖2 (x ↗1 y)), 18© = (x ↖2 y) ↓3 (y ↖2 (x ↗1 y)).

Diagrams of the free distributive trice with two generators are presented
by Figures 3.1–3.3. The orders in each of the semilattices of the trice are
represented by arrows. 3©, 4© and 7© are the top elements in the orders
≤1, ≤2 and ≤3, respectively.
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Figure 3 – 1 The order ≤1
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Figure 3 – 2 The order ≤2
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Figure 3 – 3 The order ≤3
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