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Abstract

For n-ary hyperalgebras we study a binary operation of
exponentiation which to a given pair of n-ary hyperalgebras assigns
their power, i.e., an n-ary hyperalgebra carried by the corresponding
set of homomorphisms. We give sufficient conditions for the existence
of such a power and for a decent behaviour of the exponentiation. As
a consequence of our investigations we discover a cartesian closed sub-
category of the category of n-ary hyperalgebras and homomorphisms
between them.
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As for generality, hyperalgebras lie between relational systems and algebras.
More precisely, algebras are just the relational systems that are both partial
algebras and hyperalgebras. Exponentiation of relational systems, partial
algebras and algebras has been investigated in [9], [11] and [10], respectively.
In this note we focus on investigating exponentiation of hyperalgebras. The
results obtained generalize some of those from [10].

Hyperalgebras proved to be useful for many applications to various
branches of mathematics, especially to computer science (automata
theory). This led to a rapid development of the theory of hyperalgebras
in the last decade - see, e.g., [2], [3], [6], [7], [12], [13]. This paper is also
aimed to contribute to this development. We introduce and study a binary
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operation of exponentiation for n-ary hyperalgebras. As a consequence of the
results received we discover a cartesian closed subcategory of the category
of n-ary hyperalgebras with homomorphisms as morphisms. Let us recall
that cartesian closed categories have many applications because they pos-
sess well-behaved powers for all pairs of objects. For example, in computer
science cartesian closed categories are used as models of typed λ-calculi.

Let n be a positive integer. By an n-ary hyperalgebra we understand a
pair G = (X, p), where X is a set, the so called carrier of G, which will be de-
noted by |G|, and p : Xn → exp (X)r{∅} is a map, the so called n-ary hyper-
operation on X. Of course, n-ary hyperalgebras (X, p) can also be considered
for n = 0, in which case p is nothing else than a nonempty subset of X (so
that X itself has to be nonempty too). To avoid some nonwanted singulari-
ties, we do not consider the trivial case n = 0 for n-ary hyperalgebras in this
note. An n-ary hyperalgebra (X, p) with the property card p(x1, ..., xn) = 1
for any x1, ..., xn ∈ X is called an n-ary algebra. Binary hyperalgebras
are usually called hypergroupoids (analogously to binary algebras which are
usually called groupoids). If (X, p) is an n-ary hyperalgebra and A1, ..., An

nonempty subsets of X, then we put p(A1, ..., An) =
⋃{p(x1, ..., xn);x1 ∈

A1, ..., xn ∈ An}. Given a pair of n-ary hyperalgebras G = (X, p) and
H = (Y, q), by a homomorphism of G into H we mean any map f : X → Y
such that f(p(x1, ..., xn)) ⊆ q(f(x1), ..., f(xn)) whenever x1, ..., xn ∈ X. We
denote by Hom(G,H) the set of all homomorphisms of G into H. If f
is a bijection of X onto Y and f(p(x1, ..., xn)) = q(f(x1), ..., f(xn)) for any
x1, ..., xn ∈ X, then f is called an isomorphism of G onto H. In other words,
an isomorphism of G onto H is a bijection f : X → Y such that f is a ho-
momorphism of G into H and f−1 is a homomorphism of H into G. If there
is an isomorphism of G onto H, then we write G ∼= H and say that G and
H are isomorphic. An n-ary hyperalgebra (X, p) is called a subhyperalgebra
of an n-ary hyperalgebra (Y, q) if X ⊆ Y and p(x1, ..., xn) = q(x1, ..., xn)
for any x1, ..., xn ∈ X. By the direct product of a family of n-ary hy-
peralgebras Gi = (Xi, pi), i ∈ I, we understand the n-ary hyperalgebra∏

i∈I Gi = (
∏

i∈I Xi, p) where p(f1, ..., fn) =
∏

i∈I pi(f1(i), ..., fn(i)) for any
f1, ..., fn ∈

∏
i∈I Xi. If the set I is finite, say I = {1, ..., m}, then we write

G1× ...×Gm instead of
∏

i∈I Gi. If G is an n-ary hyperalgebra and Gi = G
for all i ∈ I, then we write GI instead of

∏
i∈I Gi.

Definition 1. An n-ary hyperalgebra (X, p) is called medial if for any
n× n-matrix A = (xij), i, j = 1, ..., n, over X the inclusion
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p(p(x11, ..., x1n), ..., p(xn1, ..., xnn)) ⊆ p(x1, ..., xn)

is satisfied whenever xj ∈ p(x1j , ..., xnj) for all j = 1, ..., n.

Remark 1. For n-ary algebras the introduced mediality coincides with the
mediality dealt with in [10]. Medial groupoids are studied in [4].

Some examples of medial n-ary algebras can be found in [10]. Here we give
an example of a medial hypergroupoid which is not a groupoid in general
(of course, a hypergroupoid (X, ∗) is medial if and only if for any elements
x, y, z, t ∈ X we have (x∗y)∗ (z ∗ t) ⊆ u∗v whenever u ∈ x∗z and v ∈ y ∗ t).

Example 1. Let (X,≤) be a partially ordered set with a least element
0 and let A be the set of all atoms of (X,≤). For any x, y ∈ X put
x ∗ y = {z ∈ X; z < x, z < y and z ∈ A ∪ {0}} whenever x 6= 0 6= y,
and x ∗ y = {0} whenever x = 0 or y = 0. Then (X, ∗) is a medial hyper-
groupoid because clearly (x∗y)∗ (z ∗ t) = u∗v = {0} whenever x, y, z, t ∈ X
and u ∈ x ∗ z, v ∈ y ∗ t.

Theorem 1. Let G = (X, p), H = (Y, q) be n-ary hyperalgebras. If G
is medial, then there is a subhyperalgebra of the direct product GY whose
carrier is Hom(H,G).

Proof. Let GY = (XY , r). Then for any f1, ..., fn ∈ XY we have
r(f1, ..., fn) = {f ∈ XY ; ∀y ∈ Y : f(y) ∈ p(f1(y), ..., fn(y))}. Let f1, ..., fn ∈
Hom(H,G) and let f ∈ r(f1, ..., fn) be an arbitrary element. For any
elements y1, ..., yn ∈ Y we have

f(q(y1, ..., yn)) = {f(y); y ∈ q(y1, ..., yn)}
⊆ p(f1(q(y1, ..., yn)), ..., fn(q(y1, ..., yn)))

⊆ p(p(f1(y1), ..., f1(yn)), ..., p(fn(y1), ..., fn(yn)))

⊆ p(f(y1), ..., f(yn)).

Hence f ∈ Hom(H,G), which proves the statement.

Definition 2. Let G = (X, p), H = (Y, q) be n-ary hyperalgebras and let
G be medial. The subhyperalgebra of the direct product GY from Theorem
1 is called the power of G and H and denoted by GH .
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The direct product of a family of medial n-ary hyperalgebras is also a
medial n-ary hyperalgebra. Thus, if G is a medial n-ary hyperalgebra, then
the power GH is medial for any n-ary hyperalgebra H. Let G,H, K be n-ary
hyperalgebras. If G and H are medial, then there clearly holds the second
exponential law (G×H)K ∼= GK ×HK , but the first one (GH)K ∼= GH×K

is not satisfied in general. In what follows we will deal with the
problem of the validity of the first exponential law for exponentiation of
n-ary hyperalgebras.

An n-ary hyperalgebra (X, p) is said to be idempotent if, whenever
x ∈ X and xi = x for all i = 1, ..., n, we have x ∈ p(x1, ..., xn).

Theorem 2. Let G, H, K be n-ary hyperalgebras and let G be medial
and H, K be idempotent. Then there exists an injective homomorphism
ϕ : GH×K → (GH)K given by (ϕ(f)(z))(y) = f(y, z) whenever f ∈
Hom(H ×K,G), z ∈ |K| and y ∈ |H|.

Proof. Let G = (X, p), H = (Y, q), K = (Z, r), H × K = (Y × Z, s),
GH = (Hom(H, G), t), GH×K = (Hom(H × K,G), u) and (GH)K =
(Hom(K,GH), v). Let f ∈ Hom(H×K,G) be an arbitrary element. Clearly,
ϕ(f) maps K into Hom(H, G) because for any z ∈ Z we have ϕ(f)(z) = f ◦
(idY , cz), where idY : Y → Y is the identity map and cz ∈ Hom(H, K) is the
constant map with the value z. Let z1, ..., zn ∈ Z and w ∈ ϕ(f)(r(z1, ..., zn)).
Then w = ϕ(f)(z) for some z ∈ r(z1, ..., zn). For any y ∈ Y we have w(y) =
(ϕ(f)(z))(y) = f(y, z) ∈ f(q(y, ..., y)× r(z1, ..., zn)) = f(s((y, z1), ..., (y, zn))
⊆ p(f(y, z1), ..., f(y, zn)) = p((ϕ(f)(z1))(y), ..., (ϕ(f)(zn))(y)). Hence w ∈
t(ϕ(f)(z1), ..., ϕ(f)(zn)). Therefore ϕ(f)(r(z1, ..., zn)) ⊆ t(ϕ(f)(z1), ...,
ϕ(f)(zn)) and thus ϕ(f) ∈ Hom(K, GH). We have shown that ϕ maps
Hom(H ×K, G) into Hom(K, GH). To show that ϕ is a homomorphism, let
f1, ..., fn ∈ Hom(H × K, G) and w ∈ ϕ(u(f1, ..., fn)) be arbitrary
elements. Then w = ϕ(f) for some f ∈ u(f1, ..., fn). For any y ∈ Y and
any z ∈ Z we have w(z)(y) = (ϕ(f)(z))(y) = f(y, z) ∈ p(f1(y, z), ..., fn(y, z))
= p((ϕ(f1)(z))(y), ..., (ϕ(fn)(z))(y)). Hence w(z) ∈ t(ϕ(f1)(z), ..., ϕ(fn)(z))
for any z ∈ Z. Consequently, w ∈ v(ϕ(f1), ..., ϕ(fn)). It follows that
ϕ(u(f1, ..., fn)) ⊆ v(ϕ(f1), ..., ϕ(fn)), thus ϕ ∈ Hom(GH×K , (GH)K). As
ϕ is clearly injective, the proof is complete.

Definition 3. An n-ary hyperalgebra (X, p) is called diagonal if for any
n× n-matrix A = (xij), i, j = 1, ..., n, over X the inclusion
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p(p(x11, ..., x1n), ..., p(xn1, ..., xnn)) ⊆ p(x11, ..., xnn)

is valid.

Remark 2. For n-ary algebras the introduced diagonality coincides with
the diagonality from [10]. Idempotent and diagonal n-ary algebras are
investigated in [5].

Obviously, the hypergroupoid from Example 1 is diagonal. Some
examples of diagonal n-ary algebras can also be found in [10].

Lemma 1. Let G, H be n-ary hyperalgebras, let G be medial, and let
e : |H| × Hom(H, G) → |G| be the map given by e(y, f) = f(y) whenever
y ∈ |H| and f ∈ Hom(H, G). If G is diagonal, then e ∈ Hom(H ×GH , G).

Proof. Let G = (X, p), H = (Y, q), GH = (Hom(H,G), r) and H × GH

= (Y×Hom(H, G), s). Let G be diagonal and let (y1, f1), ..., (yn, fn) ∈ Y×
Hom(H,G) be arbitrary elements. Then we have e(s((y1, f1), ..., (yn, fn))) =
e(q(y1, ..., yn) × r(f1, ..., fn)) = {f(y); y ∈ q(y1, ..., yn), f ∈ r(f1, ..., fn)} =⋃{f(q(y1, ..., yn)); f ∈ r(f1, ..., fn)} ⊆ p(f1(q(y1, ..., yn)), ..., fn(q(y1, ..., yn)))
⊆ p(p(f1(y1), ..., f1(yn)), ..., p(fn(y1), ..., fn(yn))) ⊆ p(f1(y1), ..., fn(yn)) =
p(e(y1, f1), ..., e(yn, fn)). Therefore e ∈ Hom(H ×GH , G).

The first exponential law has an important category-theoretical meaning
- it is a characteristic property of the so-called cartesian closed categories.
Therefore we will now study n-ary hyperalgebras from the categorical point
of view. For the categorical terminology used see, e.g., [1]. All categories
are considered to be constructs, i.e., concrete categories of structured sets
and structure-compatible maps. We denote by Haln the category of n-ary
hyperalgebras as objects and homomorphisms as morphisms. Of course,
Haln is transportable and direct products of n-ary hyperalgebras are con-
crete products in Haln. It is also evident that Haln is well-fibred, i.e., it is
fibre-small and for each object with at most one element the corresponding
fibre has exactly one element. Further, we denote by IHaln and MDHaln
the full subcategories of Haln whose objects are precisely the idempotent
n-ary hyperalgebras and the n-ary hyperalgebras that are both medial and
diagonal, respectively. Of course, both IHaln and MDHaln are productive
in Haln, and in IHaln all constant maps are morphisms. Finally, we put
IMDHaln = IHaln ∩MDHaln.

Given a category C and a C-object G, we denote by |G| the underlying
set of G, and given a pair G, H of C-objects, we denote by MorC(G,H) the
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set of all C-morphisms from G to H. In [8] the following generalization of
the cartesian closedness is given:

Definition 4. Let C be a category with finite concrete products and D, E
be full isomorphism closed subcategories of C. Let E be finitely productive
in C. We say that E is exponential for D in C provided that for any two
objects G ∈ D and H ∈ E there exists an object GH ∈ D ∩ E with |GH | =
MorC(H, G) such that

(i) for any E-object K and any f ∈ MorC(H ×K, G) the map f∗ : K →
GH given by f∗(z)(y) = f(y, z) whenever z ∈ |K| and y ∈ |H| fulfils
f∗ ∈ MorC(K,GH),

(ii) the (so-called evaluation) map e : H×GH → G given by e(y, f) = f(y)
whenever y ∈ |H| and f ∈ MorC(H, G) fulfils e ∈ MorC(H ×GH , G).

Let us note that the conjunction of the conditions (i) and (ii) from Definition
4 means that the pair (GH , e), where e : H×GH → G is the evaluation map,
is a co-universal arrow for G with respect to the functor H ×− : E → C.

If a category C is exponential for itself in itself, then C is cartesian closed,
i.e., the functor H × − : C → C has a right adjoint for each object H ∈ C
(and vice versa whenever in C all constant maps are morphisms). Especially,
if E is exponential for D in C and if also D is finitely productive in C, then
D ∩ E is cartesian closed.

The objects GH from Definition 4 are called function spaces. In [8] it is
shown that function spaces fulfil the first exponential law (GH)K ∼= GH×K

(where ∼= denotes the isomorphism in C), and that they are unique up to the
isomorphisms that are (carried by) identity maps - hence unique whenever
C is transportable.

Theorem 3. IHaln is an exponential category for MDHaln in Haln for
any positive integer n.

Proof. From Theorem 2 and Lemma 1 it follows that the corresponding
function spaces are given by powers.

Corollary 1. IMDHaln is a cartesian closed category for any positive
integer n.
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[11] J. Šlapal, Cartesian closedness in categories of partial algebras, Math.
Pannon. 7 (1996), 273–279.

[12] T. Vougiouklis, (ed.) Algebraic Hyperstructures and Applications, Proceedings
of the Fourth International Congress, held at “Demokritos” University of
Trace, Xánthi, 1990, World Sci. Publ. Co., Teaneck, NY, 1991.

[13] M. Stefanescu, (ed.), Algebraic Hyperstructures and Applications, Proceedings
of the Fifth International Congress held at “Al. I Cuza” University, Iasi,
1993, Hadronic Press, Palm Harbor, FL, 1994.

Received 16 March 1999

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

