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Abstract

A method is presented for proving primality and functional com-
pleteness theorems, which makes use of the operation–relation duality.
By the result of Sierpiński, we have to investigate relations generated
by the two-element subsets of Ak only. We show how the method ap-
plies for proving SÃlupecki’s classical theorem by generating diagonal
relations from each pair of k-tuples.
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An algebra A = (A; F ), with a finite set A, is called primal if all possible
operations on A are term operations of A. Establishing primality is often
facilitated by theorems asserting that if F contains operations with some
properties, then A is primal. A natural way to prove such theorems is
to construct all operations on A as compositions of those in F . Another
way is provided by the operation–relation duality exhibited by Bodnarčuk,
Kalužnin, Kotov, Romov [3], and Geiger [6]. First, we outline their result
in a few sentences. Let A be a set and B a subset of Ak. We say that
an operation f preserves a relation R ⊆ Ak if R is a subuniverse of the
algebra (A; f)k. A set of operations on a fixed carrier set is called a clone
if it contains all projections and is closed under superposition. A non-
empty set of relations is called a closed class of relations if it is closed
under direct products, projections onto arbitrary sets of its variables and
diagonalizations. Considering the Galois connection between operations and
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relations, it turns out that the clones (which are exactly the Galois-closed
sets of operations), and the closed classes of relations (which are exactly
the Galois-closed sets of relations) mutually define each other by means of
preservation of relations by operations.

If we apply this result only for the clone of all operations, we get that
(A; F ) is primal iff F preserves exactly the relations on A constituting the
least closed class of relations; this is also a consequence of another more
general fact on quasiprimal algebras due to P.H. Krauss ([9], [10]). More
and detailed information concerning this topic can be found in [7], [11], [14],
and [15]. Related ideas were used, e. g., in [1].

First, we need some definitions. We consider a k-ary relation as a set of
unary functions r : k → A, k = {1, 2, . . . , k}. We say that a k-ary relation
D is diagonal, if there exists an equivalence relation ρD on k such that

D = {r:k → A| r(u) = r(v) if uρDv, u, v ∈ k} .

All the diagonal relations on A form the minimal closed class of relations
on A. Notice that a diagonal relation and the corresponding equivalence
relation mutually define each other, so we may use the denotation Dρ for the
diagonal relation determined by an equivalence relation ρ on k. Moreover,
to each r ∈ Ak, we assign an equivalence relation ρr on the set k as follows:

uρrv iff r(u) = r(v).

Clearly, for any diagonal relation D, we have ρD =
⋂

r∈D ρr. Now let R ⊆
Ak. By [R] we mean the underlying set of the subalgebra of Ak generated
by R.

Proposition. (Bodnarčuk-Kalužnin-Kotov-Romov [2], Geiger [6], Krauss
[9], [10]) A finite algebra A = (A; F ) is primal, iff every relation preserved
by all operations in F is diagonal.

The following Lemma 1 is a reformulation of the well known fact that the
clone OA of all operations defined on a finite set A can be generated by
binary operations (Sierpiński [12]).

Lemma 1. Given an algebra A = (A; F ), the following two conditions are
equivalent:

(i) For each R ⊆ Ak, the relation [R] is diagonal.

(ii) For each x, y ∈ Ak, the relation [x, y] is diagonal.
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We can formulate the statement of Lemma 1 without using the notion of a
diagonal relation as follows.

Lemma 1′. The following two conditions are equivalent:
(i) The algebra A = (A; F ) is primal.

(ii) For each x, y, z ∈ Ak, we have z ∈ [x, y] whenever

((∀u, v ∈ k)[x(u) = x(v) ∧ y(u) = y(v) → z(u) = z(v))].

By Lemma 1, the problem of proving a primality theorem simplifies into the
investigation of some suitably chosen matrices. We demonstrate the method
on the SÃlupecki Criterion in details. We cannot avoid using the Yablonskĭı
Lemma ([17], see also, e.g., [8]):

Lemma 2 (Yablonskĭı [8]). Let f = f(x1, . . . , xn) be an at least binary oper-
ation on A depending on x1 and x2 such that the range of f contains at least
three elements. Then there exist a, b, a2, . . . , an, b2, . . . bn ∈ A such that the
elements c1 = f(a, a2, . . . an), c2 = f(b, a2, . . . , an), and c3 = f(a, b2, . . . , bn)
are pairwise different.

We call an operation essential , if it is surjective and at least binary.

Theorem 1 (SÃlupecki [13]). Let A be a finite set with |A| > 2. If F contains
an essential operation f and all the unary operations, then the algebra A
= (A; F ) is primal.

Proof. We shall show that (ii) of Lemma 1 holds in such a way that we
proceed by induction on the number t of blocks of the equivalence relation
ρ showing, that ρ ⊇ ρx ∩ ρy implies Dρ ⊆ [x, y]. In all matrices we use
below, one row means one element r ∈ Ak. We represent each block of the
intersection of the equivalence relations corresponding to k-tuples displayed
in a matrix by one of its entries.

Let x, y ∈ Ak. Let f be n-ary. Case t = 1 is trivial by using unary con-
stant operations only. Now we treat the case t = 2. If ρ is a two-block equiv-
alence relation with ρ ⊇ ρx ∩ ρy having one block in common with ρx ∩ ρy,
then there exist two-block equivalence relations ρ′, ρ′′ with ρ′ ⊇ ρx and
ρ′′ ⊇ ρy such that C ′ and C ′′ are blocks of ρd′ and ρd′′ respectively and the
blocks of ρ are C ′∩C ′′ and C ′ ∩ C ′′. We choose a, b, a2, . . . , an, b2, . . . bn ∈ A
in such a way that c1 = f(a, a2, . . . an), c2 = f(b, a2, . . . , an), and c3 =
f(a, b2, . . . , bn) are pairwise different (the existence of which is guaranteed
by Yablonskĭı Lemma). Let f(b, b2, . . . , bn) = c4. We shall display a matrix,
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the rows of which are suitably chosen elements of Ak. The first row is an
element of the diagonal relation Dρ′ , the others except for the final one under
the line are elements of the diagonal relation Dρ′′ . The values of f when f
is applied to the columns are in the bottom line.

(3)

b a a b
a2 a2 b2 b2
...

...
...

...
an an bn bn

c2 c1 c3 c4

Now, if c1 6= c4, then a unary operation ϕ for which ϕ(c1) = d0 ∈ A and
ϕ(c2) = ϕ(c3) = ϕ(c4) = d1 ∈ A with d0 6= d1 is enough to produce an
element z of Dρ with ρz = ρ. With the help of the unary operations, we
can generate each element of the diagonal relation Dρ. However, if c1 = c4,
then we have only to rearrange the matrix in the following way:

(4)

a b b a
a2 a2 b2 b2
...

...
...

...
an an bn bn

c1 c2 c4 c3.

Now, c2 6= c1, c3, c4, therefore a unary operation ϕ ∈ F for which ϕ(c1) =
ϕ(c3) = ϕ(c4) = d0 ∈ A and ϕ(c2) = d1 with d0 6= d1 ∈ A does the job. It
is easy to check, that if ρ does not have common block with ρx ∩ ρy, then
C =

⋃j
i=1(C

′
i ∩ C ′′

i ) holds for any of the blocks of ρ and by induction on
j (using matrices (3) and (4) without their second column) case t = 2 is
complete.

Let t > 2. By Lemma 1′, it is enough to show that ρ ⊇ ρx ∩ ρy implies
Dρ ⊆ [x, y] for ρ = ρz with some z ∈ Ak. Then ρ has at most |A| blocks;
therefore t ≤ |A|. We have already chosen a, b, a2, . . . , an, b2, . . . bn ∈ A
in such a way that c1 = f(a, a2, . . . an), c2 = f(b, a2, . . . , an), and c3 =
f(a, b2, . . . , bn) are pairwise different (Yablonskĭı Lemma). For 4 ≤ k ≤ t,
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let ck be such elements of A that c1, . . . , ct are pairwise different and select
elements di,k ∈ A such that f(d1,k, . . . , dn,k) = ck. Let ρ′ and ρ′′ (t−1)-block
equivalence relations on k , both having t− 3 same blocks in common with
ρ and satisfying ρ′ ⊇ ρx ∩ ρy and ρ′′ ⊇ ρx ∩ ρy. Obviously, Dρ′ , Dρ′′ ⊆ [x, y]
because of the induction hypothesis. We shall display a matrix again, the
rows of which are suitably chosen elements of Ak. The first row is an element
of the diagonal relation Dρ′ , the others except for the final one under the
line are elements of the diagonal relation Dρ′′ . The values of f are in the
bottom line.

b a a d1,4 . . . d1,t

a2 a2 b2 d2,4 . . . d2,t
...

...
...

...
...

...
an an bn dn,4 . . . dn,t

c2 c1 c3 c4 . . . ct.

We can see in the last row (where the values of f are situated) that with
the help of the unary operations we can produce each element of the t-block
diagonal relation Dρ.

There is an improvement of the SÃlupecki Criterion by Yablonskĭı (see, e.g.
[8]): if we omit the injective unary operations from F , then (A; F ) is still
primal. Even though every one of the previous steps needs some reconsid-
eration, this case can also be completed by the method facilitated by the
Proposition and Lemma 1.

An algebra A= (A; F ) is called functionally complete if all possible
operations on the base set A are polynomials of A. Proving functional
completeness for (A; F ) is the same as proving primality for the algebra
(A;F ∪ F0) where F0 is the set of all constant operations on A.

The above type matrices can be analyzed easily not only in case of
the SÃlupecki Criterion but also in case of other primality and functional
completeness results. We proved e.g. the functional completeness of the
ternary discriminator [14], the dual discriminator (for |A| ≥ 3) [5], the n-ary
(n ≥ 3) near-projections [3] as well as the primality theorem of Foster [4]
this way.
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