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Abstract
It is known that congruence lattices of pseudocomplemented

semilattices are pseudocomplemented [4]. Many interesting properties
of congruences on pseudocomplemented semilattices were described
by Sankappanavar in [4], [5], [6]. Except for other results he described
congruence distributive pseudocomplemented semilattices [6] and
he characterized pseudocomplemented semilattices whose congruence
lattices are Stone, i.e. belong to the variety B1 [5].

In this paper we give a partial solution to a more general
question: Under what condition on a pseudocomplemented semilattice
its congruence lattice is element of the variety Bn (n ≥ 2)?

In the last section we widen the Sankappanavar’s result to
obtain the description of pseudocomplemented semilattices with rela-
tive Stone congruence lattices. A partial solution of the description
of pseudocomplemented semilattices with relative (Ln)-congruence
lattices (n ≥ 2) is also given.
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1. Preliminaries

A pseudocomplemented semilattice (PCS) is an algebra S = 〈S;∧, ∗, 0〉,
where 〈S;∧, 0〉 is a ∧-semilattice with 0 and ∗ is the unary operation of
pseudocomplementation defined by:

x ∧ a = 0 iff x ≤ a∗.
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0∗ is the largest element in S and is denoted by 1. An element a ∈ S is
called closed if a = a∗∗. The set of all closed elements of S is denoted B(S).
It is known that 〈B(S);+,∧, ∗, 0, 1〉 forms a Boolean algebra in which the
operation of join is defined by a+b = (a∗∧b∗)∗. To denote the join of subset
A ⊆ B(S) of closed elements we will use the symbol

∑
A.

An element d ∈ S is called dense if d∗ = 0. All dense elements form the
set denoted D(S) which is a filter in S.

The set of all congruences on PCS S is denoted Con(S). It is known
that Con(S) is an algebraic pseudocomplemented lattice [4] with ∆ and ∇
the least and the largest element, respectively.

For any pair a, b ∈ S the symbol θ(a, b) denotes the principal congruence
relation generated by a, b, i.e. the least congruence relation θ on S for which
(a, b) ∈ θ.

The congruence relation ϕ defined by:

(x, y) ∈ ϕ iff x∗ = y∗,

is called the Glivenko congruence relation.
For arbitrary filter F ⊆ S we define binary relation F̂ :

(x, y) ∈ F̂ iff x ∧ f = y ∧ f for some f ∈ F.

Clearly F̂ is a semilattice congruence relation on S. For arbitrary element
f ∈ S the interval [0, f ] ⊆ S is a PCS such that the pseudocomplement a∗[0,f ]

is equal to a∗ ∧ f . It follows that F̂ is compatible also with the operation of
pseudocomplementation and F̂ ∈ Con(S). Similarly for arbitrary element
a ∈ S we define binary relation â by

(x, y) ∈ â iff x ∧ a = y ∧ a.

Again â ∈ Con(S). One can easily verify that â = θ(a, 1) for arbitrary
a ∈ S.

The following two facts were proved by Sankappanavar in [4] and [6].

Lemma 1.1. Let S be a PCS. If ψ ∈ Con(S) then ψ = ([1]ψ)∧ ∨ (ψ ∧ ϕ).

Lemma 1.2. Let S be a PCS. The following statesments are equivalent:

(1) Con(S) is distributive,
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(2) S satisfies:

(D) ∀x∀y(x < y∗∗ ⇒ x ≤ y or y ≤ x),

(3) S satisfies:

(Dw) ∀x∀y(x∗ = y∗ ⇒ x ≤ y or y ≤ x)

and

(U′) ∀x∀y((x = x∗∗ and x < y∗∗) ⇒ x < y),

(4) Con(S) is modular.

One can easily verify the next auxiliary lemma.

Lemma 1.3. Let S be a PCS satisfying (D). Let a, b ∈ S be such that a < b
and a∗ = b∗. Then

(i) θ(a, b) = [a, b]× [a, b] ∪∆;

(ii) [1]θ∗(a, b) = [b, 1].

A (distributive) p-algebra is an algebra L = 〈L;∨,∧, ∗, 0, 1〉 where
〈L;∨,∧, 0, 1〉 is a bounded (distributive) lattice and ∗ is the unary operation
of pseudocomplementation. learly the congruence lattice of any congruence
distributive PCS is a distributive p-algebra.

The class Bω of all distributive p-algebras is equational. K.B. Lee proved
in [3] that the lattice of all equational subclasses of Bω is a chain

B−1 ⊂ B0 ⊂ B1 ⊂ . . . ⊂ Bn ⊂ . . . ⊂ Bω

of type ω +1, where B−1,B0 and B1 denote the classes of all trivial, Boolean
and Stone algebras, respectively. Moreover, he proved that for n ≥ 1, L ∈ Bn

if and only if L satisfies the identity

(Ln) (x1∧x2∧ . . .∧xn)∗∨ (x∗1∧x2∧ . . .∧xn)∗∨ . . .∨ (x1∧x2∧ . . .∧x∗n)∗=1.

Definition 1.4 ([2]; Definition 1). Let L be a distributive p-algebra and
n ≥ 1. L is said to be an (Ln)-lattice if L ∈ Bn.
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2. Pseudocomplemented semilattices with (Ln)-congruence
lattices

In [5] H.P. Sankappanavar gave a description of those PCS S whose
congruence lattice Con(S) is Stone, i.e. satisfies (L1). The aim of this
paper is to continue in this direction and investigate the cases for which
Con(S) satisfies (Ln) for n ≥ 2.

Theorem 2.1. Let S be a PCS. If Con(S) ∈ Bn (n ≥ 1), then

(Cn) ∀xi (xi 6= x∗∗i (i = 1, . . . , n + 1) and xi 6= xj (i 6= j)) ⇒ ∧n+1
i=1 xi = 0.

Proof. For n = 1, the claim was proved by H.P. Sankappanavar in
Theorem 3.2 of [5]. Assume that n ≥ 2. Let x1, x2, . . . , xn+1 ∈ S be such
that xi 6= x∗∗i (i = 1, 2, . . . , n + 1) and xi 6= xj (i 6= j). Suppose that
w =

∧n+1
i=1 xi > 0.

Without loss of generality we can divide elements x1, x2, . . . , xn+1 into
k disjoint groups (1 ≤ k ≤ n + 1) :

{x11, x12, . . . , x1m1}, {x21, x22, . . . , x2m2}, . . . , {xk1, xk2 . . . , xkmk
}

such that m1 + m2 + . . . + mk = n + 1 and

xi1 < xi2 < . . . < ximi < x∗∗i1 (i = 1, . . . , k).

Let us denote

τi = θ(x1i, x1i+1), i = 1, 2, . . . , m1 − 1

τm1 = θ(x1m1 , x
∗∗
11),

τm1+j = θ(x2j , x2j+1), j = 1, 2, . . . ,m2 − 1

τm1+m2 = θ(x2m2 , x
∗∗
21),

. . .

τm1+m2+...+mk−1+l = θ(xkl, xkl+1), l = 1, 2 . . .mk − 1

τm1+m2+...+mk
= τn+1 = θ(xkmk

, x∗∗k1).

Let θ1 =
∨n+1

j=2 τj and θi =
∨i−1

j=1 τj ∨
∨n+1

j=i+1 τj , i = 2, 3, . . . , n.

From Lemma 1.3 follows that θ∗i ⊇ τi, i = 1, 2, . . . , n.
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Therefore, we have

θ1 ∧ θ2 ∧ . . . ∧ θn ⊇ τn+1 and (θ1 ∧ θ2 ∧ . . . ∧ θn)∗ ⊆ τ∗n+1;

θ∗1 ∧ θ2 ∧ . . . ∧ θn ⊇ τ1 and (θ∗1 ∧ θ2 ∧ . . . ∧ θn)∗ ⊆ τ∗1 ;

. . .

θ1 ∧ . . . ∧ θ∗i ∧ . . . ∧ θn ⊇ τi and (θ1 ∧ . . . ∧ θ∗i ∧ . . . ∧ θn)∗ ⊆ τ∗i ;

. . .

θ1 ∧ θ2 ∧ . . . ∧ θ∗n ⊇ τn and (θ1 ∧ θ2 ∧ . . . ∧ θ∗n)∗ ⊆ τ∗n.

From our assumption that Con(S) ∈ Bn, we obtain

τ∗n+1 ∨ τ∗1 ∨ τ∗2 ∨ . . . ∨ τ∗n =
n+1∨

i=1

τ∗i = ∇.

It implies that there exists a sequence a0 = 1, a1, a2, . . . , am = 0 ⊆ S such
that ai ≡ ai+1(αj(i)), (i = 0, 1, . . . , m − 1), where αj(i) ∈ {τ∗k : k =
1, 2, . . . , n + 1}.

From Lemma 1.3, we obtain

[1]τ∗1 ⊆ [x12, 1] ⊆ [
n+1∧

i=1

xi, 1] = [w, 1],

[1]τ∗2 ⊆ [x13, 1] ⊆ [w, 1],

. . .

[1]τ∗m1+m2+...+mr+j ⊆ [xr+1j+1, 1] ⊆ [w, 1] (j = 1, 2, . . . , mr+1 − 1),

. . .

[1]τ∗n+1 ⊆ [x∗∗k1, 1] ⊆ [w, 1].

Clearly a1 ≥ w and a∗m−1 ≥ w, since 1 = a0 ≡ a1(αj(0)) and a∗m−1 ≡
1(αj(m−1)), αj(m−1) ∈ {τ∗k : k = 1, 2, . . . , n + 1}. If we meet elements
a1, a2, . . . , am−1 with the element a∗m−1, we obtain a new sequence b1 =
a1 ∧ a∗m−1, b2 = a2 ∧ a∗m−1, . . . , bm−2 = am−2 ∧ a∗m−1, bm−1 = 0 such that
bi ≡ bi+1(αj(i)), (i = 1, 2, . . . , m− 2) and αj(i) ∈ {τ∗k : k = 1, 2, . . . , n + 1}.
Again b1 = a1 ∧ a∗m−1 ≥ w and b∗m−2 ≥ w. Repeating the previous step
m− 2 times we obtain y ≡ 0(αj(0)), αj(0) ∈ {τ∗k : k = 1, 2, . . . , n + 1} such
that y ≥ w. Since y∗ ≡ 1(αj(0)), y∗ ≥ w. Therefore, w ≤ y ∧ y∗ = 0 which
is a contradiction with our assumption that w =

∧n+1
i=1 xi > 0.



224 Z. Heleyová

Corollary 2.2. Let S be a PCS such that Con(S) ∈ Bn (n ≥ 1).
Then |[a]ϕ| ≤ n + 1 for arbitrary a ∈ S.

Definition 2.3. Let S be a PCS. We say that S is an (Sn)-semilattice
(n ≥ 1) iff S satisfies (Cn) and S satisfies (D). In other words, S is an (Sn)-
semilattice if and only if S is a congruence distributive pseudocomplemented
semilattice which satisfies the condition (Cn).

In the next we will often deal with non-closed elements. We find it
useful to introduce now a few notations.

N(S) = {n ∈ S : n is non− closed }, i.e.

N(S) = {n ∈ S : n 6= n∗∗};
N∗∗(S) = {n∗∗ : n ∈ N(S)};
C(S) = {c ∈ S : c ∧ n = 0; ∀n ∈ N(S)};
C∗(S) = {c∗ : c ∈ C(S)}.

One can easily verify that C(S) is an ideal in B(S) and 0 ∈ C(S). Moreover,
if c ∈ C(S) and n ∈ N(S), then c∧n∗∗ = (c∧n)∗∗ = 0. It follows that C(S)
can be defined equivalently as C(S) = {c ∈ S : c∧n∗∗ = 0; ∀n ∈ N(S)}. If
there is no danger of confusion, we will write N, N∗∗, C and C∗ instead of
N(S), N∗∗(S), C(S) and C∗(S), respectively.

Definition 2.4. Let S be a PCS and ψ ∈ Con(S). Then

Nψ = {n ∈ N : θ(n, n∗∗) ∧ ψ 6= ∆},
N∗∗

ψ = {n∗∗ : n ∈ Nψ}.

Clearly Cψ is an ideal in B(S), Nψ = Nψ∧ϕ and Nϕ = N .

3. Properties of congruences on (Sn)-semilattices

The following lemmas were inspired by [5]. The next lemma is obvious.

Lemma 3.1. Let S be a PCS. Then

ϕ =
∨
{θ(n, n∗∗) : n ∈ N(S)}.

For arbitrary A ⊆ S the symbol Au denotes the set of all upper bounds of A.

Lemma 3.2. Let S be a PCS. Then (N∗∗)u = C∗.
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Proof. Let n ∈ N and c ∈ C be arbitrary. Then c ∧ n∗∗ = 0. Therefore,
n∗∗ ≤ c∗ and C∗ ⊆ (N∗∗)u. Take arbitrary y ∈ (N∗∗)u. Clearly y ∈ B(S).
It means that y = y∗∗ ≥ n∗∗ for arbitrary n ∈ N . Thus y∗ ≤ n∗ and
y∗ ∧ n = y∗ ∧ n∗∗ = 0. It follows that y∗ ∈ C and since y is a closed element
y ∈ C∗.

Lemma 3.3. Let S be a PCS satisfying (D) and X ⊆ N(S) = N . Then
N((X∗∗)u)∧ ⊆ N \X.

Proof. Suppose that n ∈ X ∩N((X∗∗)u)∧ . Then there exist n ≤ n1 < m1 ≤
n∗∗ such that n1 ∧ f = m1 ∧ f and f ∈ (X∗∗)u. Since n ∈ X, it follows that
f ≥ n∗∗. Thus n1 ∧ f = n1 = m1 = m1 ∧ f contrary to our assumption
n1 < m1. Therefore, N((X∗∗)u)∧ ∩X = ∅ and N((X∗∗)u)∧ ⊆ N \X.

Lemma 3.4. Let S be a PCS satisfying (D) and β ∈ Con(S) be such that
β ⊆ ϕ. Then ((N∗∗

β )u)∧ ⊆ β∗.

Proof. Let (x, y) ∈ β ∧ ((N∗∗
β )u)∧. Without loss of generality we can

assume that x < y ≤ x∗∗. Then x ∧ f = y ∧ f for some f ∈ (N∗∗
β )u. Since

(x, y) ∈ β, we obtain that θ(x, x∗∗) ∧ β 6= ∆ and x ∈ Nβ. It implies that
f ≥ x∗∗ ≥ y > x and x ∧ f = x = y = y ∧ f contrary to our assumption
x < y. So, we can conclude that ((N∗∗

β )u)∧ ⊆ β∗.

Corollary 3.5. Let S be a PCS satisfying (D). Then ϕ∗ = ((N∗∗)u)∧ =
(C∗)∧.

Lemma 3.6. Let S be an (Sn)-semilattice (n ≥ 1). Let ψ ∈ Con(S) be such
that |[1]ψ ∩N | ≥ n. Then ψ∗ = ∆.

Proof. Two cases can occur: |[1]ψ ∩N | ≥ n + 1 or |[1]ψ ∩N | = n. In the
first case ψ = ∇ since S is an (Sn)-semilattice. Thus ψ∗ = ∆.

In the second case we first claim that ϕ ⊆ ψ. If N ⊆ [1]ψ then it is
true. Assume that N ⊆6 [1]ψ. Let [1]ψ ∩ N = {ni : i = 1, . . . , n}. Let
s ∈ N r[1]ψ. Since

∧n
i=1 ni ≡ 1(ψ) and S is an (Sn)-semilattice, we obtain

that s ∧∧n
i=1 ni = 0 ≡ s(ψ). Therefore, s ≡ s∗∗(ψ) for arbitrary s ∈ N and

ϕ ⊆ ψ.
To complete the proof it suffices to show that also ϕ∗ ⊆ ψ. Let f ∈

(N∗∗)u. Then f ≥ n∗∗i for any ni ∈ [1]ψ ∩N . It implies that (N∗∗)u ⊆ [1]ψ.
Thus ϕ∗ = ((N∗∗)u)∧ ⊆ ([1]ψ)∧ ⊆ ψ. Hence ϕ ∨ ϕ∗ ⊆ ψ. Therefore, we
obtain ψ∗ ⊆ (ϕ ∨ ϕ∗)∗ = ϕ∗ ∧ ϕ∗∗ = ∆ proving the lemma.
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Definition 3.7 Let S be a PCS satisfying (D) and A ⊆ C. Then we define

dC(A) = {c ∈ C : c ∧ a = 0, a ∈ A}.

Lemma 3.8. Let S be a PCS satisfying (D) and I ⊆ C be an ideal in B(S).
Then (N∗∗ ∪ I ∪ dC(I))u = {1}.
Proof. Let f ∈ (N∗∗ ∪ I ∪ dC(I))u. Then

f ≥ n∗∗ (n∗∗ ∈ N∗∗) and f∗ ∧ n∗∗ = 0;

f ≥ a (a ∈ I) and f∗ ∧ a = 0;

f ≥ c (c ∈ dC(I)) and f∗ ∧ c = 0.

From f∗ ∧ n∗∗ = 0 follows f∗ ∈ C. Since f∗ ∧ a = 0 for all a ∈ I, it
follows f∗ ∈ dC(I). Since f∗ ∧ c = 0 for all c ∈ dC(I), we obtain that also
f∗ ∧ f∗ = f∗ = 0. Hence, f is a dense element. f ∈ (N∗∗)u implies that f
is closed. So we can conclude f = 1 proving the lemma.

By taking I = {0}, we immediately obtain

Corollary 3.9. Let S be a PCS satisfying (D). Then {N∗∗ ∪ C}u = {1}.

Lemma 3.10. Let S be a PCS satisfying (D) and F ⊆ S be a Boolean filter,
i.e. F ⊆ B(S). Then F ⊆ ((N∗∗ \N∗∗

F̂
) ∪ dC(CF̂ ))u.

Proof. Let f ∈ F be such that f /∈ (N∗∗ \N∗∗
F̂

)u. Thus f 6≥ n∗∗ for some
n∗∗ ∈ N∗∗ \N∗∗

F̂
. Then f ∧ n∗∗ < n∗∗ and, since Con(S) is distributive, two

possibilities may occure.
First suppose that f ∧ n∗∗ ≤ n < n∗∗. Since f ≡ 1(F̂ ), f ∧ n∗∗ ≡

n∗∗(F̂ ), we obtain that n ≡ n∗∗(F̂ ). Hence, θ(n, n∗∗) ∧ F̂ 6= ∆. Therefore,
n ∈ NF̂ , n∗∗ ∈ N∗∗

F̂
contrary to assumption n∗∗ ∈ N∗∗ \N∗∗

F̂
. Now suppose

that n ≤ f ∧ n∗∗ < n∗∗. Since f ≡ 1(F̂ ), f ∧ n∗∗ ≡ n∗∗(F̂ ), we again
obtain that θ(n, n∗∗) ∧ F̂ 6= ∆. Therefore, n ∈ NF̂ , n∗∗ ∈ N∗∗

F̂
contrary to

assumption n∗∗ ∈ N∗∗ \N∗∗
F̂

. Thus F ⊆ (N∗∗ \N∗∗
F̂

)u.

Let f ∈ F and y ∈ dC(CF̂ ). Since f∗ ∧ f = 0 ∧ f, we have f∗ ≡ 0(F̂ )
and also f∗ ∧ y ≡ 0(F̂ ). Thus, f∗ ∧ y ∈ CF̂ . From this, we get (f∗ ∧ y)∧ y =
f∗ ∧ y = 0. Hence, y ≤ f∗∗ = f proving that F ⊆ dC(CF̂ )u. So we can
conclude that F ⊆ ((N∗∗ \N∗∗

F̂
) ∪ dC(CF̂ ))u.

Lemma 3.11. Let S be a PCS satisfying (D) and let F ⊆ S be a Boolean
filter. Then ((N∗∗

F̂
∪ CF̂ )u)∧ ⊆ (F̂ )∗.
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Proof. Let (x, y) ∈ F̂ ∧ ((N∗∗
F̂
∪CF̂ )u)∧, x < y. It means that x∧f = y∧f

for some f ∈F and x∧h=y∧h for some h∈(N∗∗
F̂
∪CF̂ )u. Therefore, x∗∗∧ f

= y∗∗ ∧ f and x∗∗ ∧ h∗∗ = y∗∗ ∧ h∗∗. Since x∗∗, y∗∗, f, h∗∗ ∈ B(S), it follows
that x∗∗∧(f +h∗∗) = y∗∗∧(f +h∗∗). Since f ∈ F ⊆ ((N∗∗\N∗∗

F̂
)∪dC(CF̂ ))u

and h∗∗ ∈ (N∗∗
F̂
∪ CF̂ )u, from the two previous lemmas we obtain that

f+h∗∗ ∈ {(N∗∗\N∗∗
F̂

)∪dC(CF̂ )∪N∗∗
F̂
∪CF̂ }u = (N∗∗∪CF̂ ∪dC(CF̂ ))u = {1}.

Thus, we see that x∗∗ = y∗∗. Since (x, y) ∈ F̂ , x < y and x∗ = y∗ we obtain
that θ(x, x∗∗) ∧ F̂ 6= ∆ and x ∈ NF̂ . Therefore, h ≥ x∗∗ ≥ y > x and
x ∧ h = x = y = y ∧ h which is a contradiction with our assumption x < y.
Thus the lemma is proved.

Theorem 3.12. Let S be an (Sn)-semilattice (n ≥ 1) such that B(S) is a
complete Boolean algebra. Then Con(S) is an (Ln)-lattice.

Proof. For n = 1 the claim follows from [5] (see Theorem 3.27). Assume
that n ≥ 2. Let θ1, θ2, . . . , θn be arbitrary elements of Con(S). For the sake
of simplicity let us denote

α0 = θ1 ∧ θ2 ∧ . . . ∧ θn,

α1 = θ∗1 ∧ θ2 ∧ . . . ∧ θn,

. . .

αi = θ1 ∧ . . . ∧ θ∗i ∧ . . . ∧ θn,

. . .

αn = θ1 ∧ θ2 ∧ . . . ∧ θ∗n.

We want to prove that α∗0 ∨ α∗1 ∨ . . . ∨ α∗n = ∇. From Lemma 1.1, follows
that α∗i = (αi ∧ ϕ)∗ ∧ (([1]αi)∧)∗ (i = 0, 1, . . . , n). Three possibilities may
occur:

(1) [1]αi ∩N 6= ∅ for i = 0, 1, . . . , n;

(2) [1]αi ⊆ B(S) for i = 0, 1, . . . , n;

(3) There exist I, J ⊆ {0, 1, . . . , n} such that I 6= ∅ 6= J, I ∩ J = ∅,
I ∪J = {0, 1, . . . , n} and [1]αi ⊆ B(S) for i ∈ I and [1]αj ∩N 6= ∅ for
j ∈ J.

Ad (1): Suppose that ni ∈ [1]αi ∩ N (i = 0, 1, . . . , n). It means that
θ(ni, 1) ⊆ αi. Since αi ∧ αj = ∆ for i, j ∈ {0, 1, . . . , n}, i 6= j, we obtain
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that θ(ni, 1) ⊆ α∗j for arbitrary j 6= i. It follows that

α∗0 ∨ α∗1 ∨ . . . ∨ α∗n ⊇
n∨

i=0

θ(ni, 1).

Let
∨n

i=0 θ(ni, 1) = θ. Then ni ≡ 1(θ) (i = 0, 1, . . . , n) and therefore∧n
i=0 ni ≡ 1(θ). Since αi (i = 0, 1, . . . , n) are pairwise disjoint,

congruences ni (i = 0, 1, . . . , n) are pairwise different nonclosed
elements. From the assumption that S is an (Sn)-semilattice we
obtain

∧n
i=0 ni = 0 ≡ 1(θ) hence α∗0 ∨ α∗1 ∨ . . . ∨ α∗n = ∇.

Ad (2): Suppose that [1]αi ⊆ B(S) for i = 0, 1, . . . , n. From
Lemma 3.4 and Lemma 3.11 follows that α∗i ⊇ ((N∗∗

αi∧ϕ)u)∧ ∧ ((N∗∗
([1]αi)∧ ∪

C([1]αi)∧)u)∧, i = 0, 1, . . . , n. Let
∑

N∗∗
αi∧ϕ = ai,

∑
N∗∗

([1]αi)∧ = bi,∑
C([1]αi)∧ = ci, (i = 0, 1, . . . , n). Since ([1]αi)∧ ⊆ αi and N∗∗

αi∧ϕ = N∗∗
αi

,
we have ai =

∑
N∗∗

αi
≥ ∑

N∗∗
([1]αi)∧ = bi (i = 0, 1, . . . , n). Hence, α∗i ⊇

âi ∧ (bi + ci)∧ = θ(ai, 1) ∧ θ(bi + ci, 1) ⊇ θ(ai + bi + ci, 1) = θ(ai + ci, 1)
(i = 0, 1, . . . , n). Therefore, we have

∨n
i=0 α∗i ⊇ ∨n

i=0 θ(ai + ci, 1) =
θ(

∧n
i=0(ai + ci), 1). We claim that ai ∧ cj =0 for arbitrary i, j∈{0, 1, . . . , n}.
From the assumption that B(S) is a complete Boolean algebra, it follows

that B(S) satisfies the join infinite distributive identity and its dual meet
infinite distributive identity. Let

∑
N∗∗ = m. Since c∧n∗∗ = 0 for arbitrary

c ∈ C, n ∈ N, we obtain that m =
∑

N∗∗ ≤ c∗ and therefore c ≤ m∗ for
arbitrary c ∈ C. Thus

∑
C ≤ m∗. It follows that ai ∧ cj =

∑
N∗∗

αi
∧∑

C([1]αj)∧ ≤
∑

N∗∗ ∧∑
C ≤ m ∧m∗ = 0. Thus we obtain that

∧n
i=0(ai +

ci) =
∧n

i=0 ai +
∧n

j=0 cj .
We claim that

∧n
j=0 cj = 0. Take arbitrary i, j ∈ {0, 1, . . . , n} such

that i 6= j. Then ci ∧ cj =
∑

C([1]αi)∧ ∧
∑

C([1]αj)∧ =
∑{d ∧ e : d ∈

C([1]αi)∧ and e ∈ C([1]αj)∧}. Since ([1]αi)∧ ∧ ([1]αj)∧ = ∆, we have d∧ e = 0
for arbitrary d ∈ C([1]αi)∧ and e ∈ C([1]αj)∧ . Hence, ci ∧ cj = 0.

Next we will prove that
∧n

i=0 ai = 0. Using the fact that B(S) satisfies
both the join and meet infinite distributive identities we
obtain that

∧n
i=0 ai =

∧n
i=0

∑
N∗∗

αi
=

∑{∧n
i=0 n∗∗i : n∗∗i ∈ N∗∗

αi
}. Take

arbitrary (n + 1)-tuple (n∗∗i : n∗∗i ∈ N∗∗
αi

, i = 0, 1, . . . , n). Clearly some
elements n∗∗i (i = 0, 1, . . . , n) may coincide. Suppose that n∗∗i = m∗∗ for
i ∈ I ⊆ {0, 1, . . . , n}. It means that there exist elements ri, si such that
ri < si, r∗∗i = s∗∗i = m∗∗ and (ri, si) ∈ αi for i ∈ I. Since αi are pairwise
disjoin congruences, it follows that θ(ri, si) (i ∈ I) are also pairwise disjoint
congruences. Thus |I| ≤ |[m∗∗]ϕ ∩N | ≤ n.
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From the previous consideration follows that
∧n

i=0 n∗∗i =
∧k

j=1 m∗∗
j where

m∗∗
j 6= m∗∗

l for j 6= l; n∗∗i = m∗∗
j for i ∈ Ij ⊂ {0, 1, . . . , n}, j = 1, 2, . . . , k;

Ij ∩ Il = ∅ for j 6= l;
⋃k

j=1 Ij = {0, 1, . . . , n} and |[m∗∗
j ]ϕ∩N | ≥ |Ij |, j = 1,

2, . . . , k. Thus, we can write
∧k

j=1 m∗∗
j =

∧k
j=1(

∧{s∗∗ : s ∈ [m∗∗
j ]ϕ ∩ N})

=
∧k

j=1(
∧{s : s ∈ [m∗∗

j ]ϕ ∩ N})∗∗ = (
∧k

j=1(
∧{s : s ∈ [m∗∗

j ]ϕ ∩ N}))∗∗.
From |[m∗∗

j ]ϕ ∩ N | ≥ |Ij | (j = 1, 2, . . . , k) and
⋃k

j=1 Ij = {0, 1, . . . , n}, it
follows that

∧k
j=1(

∧{s : s ∈ [m∗∗
j ]ϕ ∩ N}) is meet of at least (n + 1)

different nonclosed elements. Hence,
∧k

j=1(
∧{s : s ∈ [m∗∗

j ]ϕ ∩ N}) = 0.
Thus we obtain

∧n
i=0 ai =

∑{∧n
i=0 n∗∗i : n∗∗i ∈ N∗∗

αi
} = 0 which implies∨n

i=0 α∗i ⊇ θ(0, 1) = ∇ and Con(S) ∈ Bn.
Ad (3): Suppose that [1]αi ⊆ B(S) for i ∈ I and [1]αj ∩N 6= ∅ for j ∈ J

where I 6= ∅ 6= J, I∩J 6= ∅ and I∪J = {0, 1, . . . , n}. Using the previous part
of the proof we obtain that

∨
i∈I α∗i ⊇θ(

∧
i∈I ai, 1), where ai =

∑
N∗∗

αi∧ϕ, i∈I.
Let mj ∈ [1]αj ∩ N for j ∈ J . Then θ(mj , 1) ∧ αi = ∆ and α∗i ⊇ θ(mj , 1)
for arbitrary i ∈ I and j ∈ J . It follows that

∨
i∈I α∗i ⊇ θ(

∧
i∈I ai, 1) ∨∨

j∈J θ(mj , 1) = θ(
∧

i∈I ai, 1)∨θ(
∧

j∈J mj , 1) = θ(
∧

i∈I ai∧
∧

j∈J mj , 1). Next
we will prove that

∧
i∈I ai ∧

∧
j∈J m∗∗

j = 0. Since
∧

i∈I ai =
∑{∧i∈I n∗∗i :

n∗∗i ∈ N∗∗
αi
}, we can write

∧
i∈I ai ∧

∧
j∈J m∗∗

j =
∑{∧i∈I n∗∗i ∧ ∧

j∈J m∗∗
j :

n∗∗i ∈ N∗∗
αi
}. Since mj < m∗∗

j and mj ∈ [1]αj , obviously m∗∗
j ∈ N∗∗

αj
(j ∈ J).

Repeating the same consideration as in the part (2) of this proof we obtain
that

∧
i∈I n∗∗i ∧ ∧

j∈J m∗∗
j = 0 for arbitrary |I|-tuple (n∗∗i : n∗∗i ∈N∗∗

αi
i ∈ I).

Therefore,
∧

i∈I ai ∧
∧

j∈J mj ≤ ∧
i∈I ai ∧

∧
j∈J m∗∗

j = 0 and
∨n

i=0 α∗i ⊇∨
i∈I α∗i ⊇ θ(0, 1) = ∇, hence Con(S) ∈ Bn.

Corollary 3.13. Let S be a PCS such that B(S) is a complete Boolean
algebra. For arbitrary n ≥ 1 the following statesments are equivalent:

(i) Con(S) is an (Ln)-lattice,

(ii) S is an (Sn)-semilattice.

4. Pseudocomplemented semilattices with relative
(Ln)-congruence lattices

Definition 4.1 ([2], Definition 2). Let L be a distributive lattice. L is said
to be a relative (Ln)-lattice if every interval [a, b] in L is an (Ln)-lattice.
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Lemma 4.2 ([2], Theorem 2). Let L be a distributive lattice with 1. The
following conditions are equivalent:

(i) L is a relative (Ln)-lattice,

(ii) for every a ∈ L, [a, 1] is an (Ln)-lattice.

Lemma 4.3. Let S be a PCS. Then S is an (Sn)-semilattice (n ≥ 1) iff the
quotient semilattice S/θ is an (Sn)-semilattice for arbitrary θ ∈ Con(S).

Proof. Let S be a PCS. Suppose that S is an (Sn)-semilattice for some
n ≥ 1. We claim that for arbitrary θ ∈ Con(S) the following is true: if
[a]θ ∈ N(S/θ) then [a]θ ⊆ N(S).

Suppose that [a]θ 6= ([a]θ)∗∗ = [a∗∗]θ and there exists x ∈ [a]θ such
that x = x∗∗. Then [a]θ = [x]θ = [x∗∗]θ = ([x]θ)∗∗ = ([a]θ)∗∗ which is a
contradiction to our assumption.

Let [x1]θ, [x2]θ, . . . , [xn+1]θ ∈ S/θ be such that [xi]θ 6= [x∗∗i ]θ i =
1, . . . , n+1 and [xi]θ 6= [xj ]θ, i 6= j. From the previous part of proof follows
that xi (i = 1, . . . , n + 1) are pairwise distinct non-closed elements from S.
Since S is an (Sn)-semilattice we obtain

∧n+1
i=1 [xi]θ =

[∧n+1
i=1 xi

]
θ = [0]θ.

Thus S/θ satisfies the condition (Cn).
Since Con(S/θ) ∼= [θ,∇] ⊆ Con(S) the congruence distributivity of S

implies that the condition (D) is satisfied also in the quotient semilattice
S/θ. The sufficient condition is obvious.

From the previous result and from Theorem 3.28 of [5], we immediately
obtain

Corollary 4.4. Let S be a PCS. The following statesments are equivalent:

(i) Con(S) is a relative Stone lattice,

(ii) S satisfies (C1) and for arbitrary congruence θ ∈ Con(S) the quotient
PCS S/θ satisfies:

(a) if A ⊆ N∗∗(S/θ), then
∑

A exists;
(S2(θ))

(b) if K ⊆ C(S/θ), then
∑

K exists.

Corollary 4.5. Let S be a PCS such that the Boolean algebra B(S/θ) is
complete for arbitrary congruence θ ∈ Con(S). For arbitrary n ≥ 1 the
following statesments are equivalent:

(i) Con(S) is an (Ln)-lattice,
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(ii) Con(S) is a relative (Ln)-lattice,

(iii) S is an (Sn)-semilattice.
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