Discussiones Mathematicae General Algebra and Applications 20(2000) 219–231

CONGRUENCES ON PSEUDOCOMPLEMENTED SEMILATTICES

ZUZANA HELEYOVÁ

College of Business and Management, Technical University Technicka 2, 616 69 Brno, Czech Republic e-mail: zheleyova@iol.cz

Abstract

It is known that congruence lattices of pseudocomplemented semilattices are pseudocomplemented [4]. Many interesting properties of congruences on pseudocomplemented semilattices were described by Sankappanavar in [4], [5], [6]. Except for other results he described congruence distributive pseudocomplemented semilattices [6] and he characterized pseudocomplemented semilattices whose congruence lattices are Stone, i.e. belong to the variety \mathcal{B}_1 [5].

In this paper we give a partial solution to a more general question: Under what condition on a pseudocomplemented semilattice its congruence lattice is element of the variety \mathcal{B}_n $(n \ge 2)$?

In the last section we widen the Sankappanavar's result to obtain the description of pseudocomplemented semilattices with relative Stone congruence lattices. A partial solution of the description of pseudocomplemented semilattices with relative (L_n) -congruence lattices $(n \ge 2)$ is also given.

Keywords: pseudocomplemented semilattice, congruence lattice, p-algebra, Stone algebra, (relative) (L_n) -lattice.

1991 Mathematics Subject Classification: Primary 06D15, 06A99; Secondary 08A30

1. Preliminaries

A pseudocomplemented semilattice (PCS) is an algebra $S = \langle S; \wedge, *, 0 \rangle$, where $\langle S; \wedge, 0 \rangle$ is a \wedge -semilattice with 0 and * is the unary operation of pseudocomplementation defined by:

$$x \wedge a = 0$$
 iff $x \leq a^*$.

 0^* is the largest element in S and is denoted by 1. An element $a \in S$ is called *closed* if $a = a^{**}$. The set of all closed elements of S is denoted B(S). It is known that $\langle B(S); +, \wedge, ^*, 0, 1 \rangle$ forms a Boolean algebra in which the operation of join is defined by $a + b = (a^* \wedge b^*)^*$. To denote the join of subset $A \subseteq B(S)$ of closed elements we will use the symbol $\sum A$.

An element $d \in S$ is called *dense* if $d^* = 0$. All dense elements form the set denoted D(S) which is a filter in S.

The set of all congruences on PCS S is denoted Con(S). It is known that Con(S) is an algebraic pseudocomplemented lattice [4] with Δ and ∇ the least and the largest element, respectively.

For any pair $a, b \in S$ the symbol $\theta(a, b)$ denotes the *principal congruence* relation generated by a, b, i.e. the least congruence relation θ on S for which $(a, b) \in \theta$.

The congruence relation φ defined by:

$$(x,y) \in \varphi$$
 iff $x^* = y^*$,

is called the *Glivenko congruence relation*.

For arbitrary filter $F \subseteq S$ we define binary relation \hat{F} :

 $(x,y) \in \hat{F}$ iff $x \wedge f = y \wedge f$ for some $f \in F$.

Clearly \hat{F} is a semilattice congruence relation on S. For arbitrary element $f \in S$ the interval $[0, f] \subseteq S$ is a PCS such that the pseudocomplement $a_{[0,f]}^*$ is equal to $a^* \wedge f$. It follows that \hat{F} is compatible also with the operation of pseudocomplementation and $\hat{F} \in Con(S)$. Similarly for arbitrary element $a \in S$ we define binary relation \hat{a} by

$$(x,y) \in \hat{a}$$
 iff $x \wedge a = y \wedge a$.

Again $\hat{a} \in Con(S)$. One can easily verify that $\hat{a} = \theta(a, 1)$ for arbitrary $a \in S$.

The following two facts were proved by Sankappanavar in [4] and [6].

Lemma 1.1. Let S be a PCS. If $\psi \in Con(S)$ then $\psi = ([1]\psi)^{\wedge} \lor (\psi \land \varphi)$.

Lemma 1.2. Let S be a PCS. The following statesments are equivalent: (1) Con(S) is distributive,

- (2) S satisfies: (D) $\forall x \forall y (x < y^{**} \Rightarrow x \le y \text{ or } y \le x),$
- (3) S satisfies:

(D_w)
$$\forall x \forall y (x^* = y^* \Rightarrow x \le y \text{ or } y \le x)$$

and
(U') $\forall x \forall y ((x = x^{**} \text{ and } x < y^{**}) \Rightarrow x < y),$
(4) $Con(S)$ is modular.

One can easily verify the next auxiliary lemma.

Lemma 1.3. Let S be a PCS satisfying (D). Let $a, b \in S$ be such that a < b and $a^* = b^*$. Then

- (i) $\theta(a,b) = [a,b] \times [a,b] \cup \Delta;$
- (ii) $[1]\theta^*(a,b) = [b,1].$

A (distributive) *p*-algebra is an algebra $L = \langle L; \vee, \wedge, *, 0, 1 \rangle$ where $\langle L; \vee, \wedge, 0, 1 \rangle$ is a bounded (distributive) lattice and * is the unary operation of pseudocomplementation. learly the congruence lattice of any congruence distributive PCS is a distributive *p*-algebra.

The class \mathcal{B}_{ω} of all distributive *p*-algebras is equational. K.B. Lee proved in [3] that the lattice of all equational subclasses of \mathcal{B}_{ω} is a chain

$$\mathcal{B}_{-1} \subset \mathcal{B}_0 \subset \mathcal{B}_1 \subset \ldots \subset \mathcal{B}_n \subset \ldots \subset \mathcal{B}_\omega$$

of type $\omega + 1$, where $\mathcal{B}_{-1}, \mathcal{B}_0$ and \mathcal{B}_1 denote the classes of all trivial, Boolean and Stone algebras, respectively. Moreover, he proved that for $n \ge 1, L \in \mathcal{B}_n$ if and only if L satisfies the identity

$$(\mathbf{L}_n) \quad (x_1 \wedge x_2 \wedge \ldots \wedge x_n)^* \vee (x_1^* \wedge x_2 \wedge \ldots \wedge x_n)^* \vee \ldots \vee (x_1 \wedge x_2 \wedge \ldots \wedge x_n^*)^* = 1.$$

Definition 1.4 ([2]; Definition 1). Let L be a distributive p-algebra and $n \ge 1$. L is said to be an (L_n) -*lattice* if $L \in \mathcal{B}_n$.

2. Pseudocomplemented semilattices with (L_n) -congruence Lattices

In [5] H.P. Sankappanavar gave a description of those PCS S whose congruence lattice Con(S) is Stone, i.e. satisfies (L_1) . The aim of this paper is to continue in this direction and investigate the cases for which Con(S) satisfies (L_n) for $n \ge 2$.

Theorem 2.1. Let S be a PCS. If
$$Con(S) \in \mathcal{B}_n$$
 $(n \ge 1)$, then
 $(C_n) \quad \forall x_i \ (x_i \neq x_i^{**} \ (i = 1, \dots, n+1) \text{ and } x_i \neq x_j \ (i \neq j)) \Rightarrow \bigwedge_{i=1}^{n+1} x_i = 0.$

Proof. For n = 1, the claim was proved by H.P. Sankappanavar in Theorem 3.2 of [5]. Assume that $n \ge 2$. Let $x_1, x_2, \ldots, x_{n+1} \in S$ be such that $x_i \ne x_i^{**}$ $(i = 1, 2, \ldots, n+1)$ and $x_i \ne x_j$ $(i \ne j)$. Suppose that $w = \bigwedge_{i=1}^{n+1} x_i > 0$.

Without loss of generality we can divide elements $x_1, x_2, \ldots, x_{n+1}$ into k disjoint groups $(1 \le k \le n+1)$:

$$\{x_{11}, x_{12}, \ldots, x_{1m_1}\}, \{x_{21}, x_{22}, \ldots, x_{2m_2}\}, \ldots, \{x_{k1}, x_{k2}, \ldots, x_{km_k}\}$$

such that $m_1 + m_2 + ... + m_k = n + 1$ and

$$x_{i1} < x_{i2} < \ldots < x_{im_i} < x_{i1}^{**} \quad (i = 1, \ldots, k).$$

Let us denote

$$\begin{aligned} \tau_i &= \theta(x_{1i}, x_{1i+1}), \quad i = 1, 2, \dots, m_1 - 1 \\ \tau_{m_1} &= \theta(x_{1m_1}, x_{11}^{**}), \\ \tau_{m_1+j} &= \theta(x_{2j}, x_{2j+1}), \quad j = 1, 2, \dots, m_2 - 1 \\ \tau_{m_1+m_2} &= \theta(x_{2m_2}, x_{21}^{**}), \\ \dots \\ \tau_{m_1+m_2+\dots+m_{k-1}+l} &= \theta(x_{kl}, x_{kl+1}), \quad l = 1, 2 \dots m_k - 1 \\ \tau_{m_1+m_2+\dots+m_k} &= \tau_{n+1} = \theta(x_{km_k}, x_{k1}^{**}). \end{aligned}$$

Let $\theta_1 = \bigvee_{j=2}^{n+1} \tau_j$ and $\theta_i = \bigvee_{j=1}^{i-1} \tau_j \vee \bigvee_{j=i+1}^{n+1} \tau_j$, $i = 2, 3, \dots, n$. From Lemma 1.3 follows that $\theta_i^* \supseteq \tau_i$, $i = 1, 2, \dots, n$. Therefore, we have

$$\begin{array}{ll} \theta_{1} \wedge \theta_{2} \wedge \ldots \wedge \theta_{n} \supseteq \tau_{n+1} & \text{and} & (\theta_{1} \wedge \theta_{2} \wedge \ldots \wedge \theta_{n})^{*} \subseteq \tau_{n+1}^{*}; \\ \theta_{1}^{*} \wedge \theta_{2} \wedge \ldots \wedge \theta_{n} \supseteq \tau_{1} & \text{and} & (\theta_{1}^{*} \wedge \theta_{2} \wedge \ldots \wedge \theta_{n})^{*} \subseteq \tau_{1}^{*}; \\ & & \ddots \\ \theta_{1} \wedge \ldots \wedge \theta_{i}^{*} \wedge \ldots \wedge \theta_{n} \supseteq \tau_{i} & \text{and} & (\theta_{1} \wedge \ldots \wedge \theta_{i}^{*} \wedge \ldots \wedge \theta_{n})^{*} \subseteq \tau_{i}^{*}; \\ & & \ddots \\ \theta_{1} \wedge \theta_{2} \wedge \ldots \wedge \theta_{n}^{*} \supseteq \tau_{n} & \text{and} & (\theta_{1} \wedge \theta_{2} \wedge \ldots \wedge \theta_{n}^{*})^{*} \subseteq \tau_{n}^{*}. \end{array}$$

From our assumption that $Con(S) \in \mathcal{B}_n$, we obtain

$$\tau_{n+1}^* \lor \tau_1^* \lor \tau_2^* \lor \ldots \lor \tau_n^* = \bigvee_{i=1}^{n+1} \tau_i^* = \nabla.$$

It implies that there exists a sequence $a_0 = 1, a_1, a_2, \ldots, a_m = 0 \subseteq S$ such that $a_i \equiv a_{i+1}(\alpha_{j(i)}), (i = 0, 1, \ldots, m - 1),$ where $\alpha_{j(i)} \in \{\tau_k^* : k = 1, 2, \ldots, n + 1\}.$

From Lemma 1.3, we obtain

$$[1]\tau_{1}^{*} \subseteq [x_{12}, 1] \subseteq [\bigwedge_{i=1}^{n+1} x_{i}, 1] = [w, 1],$$

$$[1]\tau_{2}^{*} \subseteq [x_{13}, 1] \subseteq [w, 1],$$

$$\dots$$

$$[1]\tau_{m_{1}+m_{2}+\dots+m_{r}+j}^{*} \subseteq [x_{r+1j+1}, 1] \subseteq [w, 1] \ (j = 1, 2, \dots, m_{r+1} - 1),$$

$$\dots$$

$$[1]\tau_{n+1}^{*} \subseteq [x_{k1}^{**}, 1] \subseteq [w, 1].$$

Clearly $a_1 \geq w$ and $a_{m-1}^* \geq w$, since $1 = a_0 \equiv a_1(\alpha_{j(0)})$ and $a_{m-1}^* \equiv 1(\alpha_{j(m-1)}), \alpha_{j(m-1)} \in \{\tau_k^*: k = 1, 2, \dots, n+1\}$. If we meet elements a_1, a_2, \dots, a_{m-1} with the element a_{m-1}^* , we obtain a new sequence $b_1 = a_1 \wedge a_{m-1}^*, b_2 = a_2 \wedge a_{m-1}^*, \dots, b_{m-2} = a_{m-2} \wedge a_{m-1}^*, b_{m-1} = 0$ such that $b_i \equiv b_{i+1}(\alpha_{j(i)}), \ (i = 1, 2, \dots, m-2) \text{ and } \alpha_{j(i)} \in \{\tau_k^*: k = 1, 2, \dots, n+1\}$. Again $b_1 = a_1 \wedge a_{m-1}^* \geq w$ and $b_{m-2}^* \geq w$. Repeating the previous step m-2 times we obtain $y \equiv 0(\alpha_{j(0)}), \alpha_{j(0)} \in \{\tau_k^*: k = 1, 2, \dots, n+1\}$ such that $y \geq w$. Since $y^* \equiv 1(\alpha_{j(0)}), y^* \geq w$. Therefore, $w \leq y \wedge y^* = 0$ which is a contradiction with our assumption that $w = \bigwedge_{i=1}^{n+1} x_i > 0$.

Corollary 2.2. Let S be a PCS such that $Con(S) \in \mathcal{B}_n$ $(n \ge 1)$. Then $|[a]\varphi| \le n+1$ for arbitrary $a \in S$.

Definition 2.3. Let S be a PCS. We say that S is an (S_n) -semilattice $(n \ge 1)$ iff S satisfies (C_n) and S satisfies (D). In other words, S is an (S_n) -semilattice if and only if S is a congruence distributive pseudocomplemented semilattice which satisfies the condition (C_n) .

In the next we will often deal with non-closed elements. We find it useful to introduce now a few notations.

$$N(S) = \{n \in S : n \text{ is non} - \text{closed }\}, \text{ i.e.}$$
$$N(S) = \{n \in S : n \neq n^{**}\};$$
$$N^{**}(S) = \{n^{**} : n \in N(S)\};$$
$$C(S) = \{c \in S : c \land n = 0; \forall n \in N(S)\};$$
$$C^{*}(S) = \{c^{*} : c \in C(S)\}.$$

One can easily verify that C(S) is an ideal in B(S) and $0 \in C(S)$. Moreover, if $c \in C(S)$ and $n \in N(S)$, then $c \wedge n^{**} = (c \wedge n)^{**} = 0$. It follows that C(S)can be defined equivalently as $C(S) = \{c \in S : c \wedge n^{**} = 0; \forall n \in N(S)\}$. If there is no danger of confusion, we will write N, N^{**}, C and C^* instead of $N(S), N^{**}(S), C(S)$ and $C^*(S)$, respectively.

Definition 2.4. Let S be a PCS and $\psi \in Con(S)$. Then

$$N_{\psi} = \{ n \in N : \ \theta(n, n^{**}) \land \psi \neq \Delta \},$$
$$N_{\psi}^{**} = \{ n^{**} : \ n \in N_{\psi} \}.$$

Clearly C_{ψ} is an ideal in B(S), $N_{\psi} = N_{\psi \wedge \varphi}$ and $N_{\varphi} = N$.

3. Properties of congruences on (S_n) -semilattices

The following lemmas were inspired by [5]. The next lemma is obvious.

Lemma 3.1. Let S be a PCS. Then

$$\varphi = \bigvee \{ \theta(n, n^{**}) : n \in N(S) \}.$$

For arbitrary $A \subseteq S$ the symbol A^u denotes the set of all upper bounds of A.

Lemma 3.2. Let S be a PCS. Then $(N^{**})^u = C^*$.

Proof. Let $n \in N$ and $c \in C$ be arbitrary. Then $c \wedge n^{**} = 0$. Therefore, $n^{**} \leq c^*$ and $C^* \subseteq (N^{**})^u$. Take arbitrary $y \in (N^{**})^u$. Clearly $y \in B(S)$. It means that $y = y^{**} \geq n^{**}$ for arbitrary $n \in N$. Thus $y^* \leq n^*$ and $y^* \wedge n = y^* \wedge n^{**} = 0$. It follows that $y^* \in C$ and since y is a closed element $y \in C^*$.

Lemma 3.3. Let S be a PCS satisfying (D) and $X \subseteq N(S) = N$. Then $N_{((X^{**})^u)^{\wedge}} \subseteq N \setminus X$.

Proof. Suppose that $n \in X \cap N_{((X^{**})^u)^{\wedge}}$. Then there exist $n \leq n_1 < m_1 \leq n^{**}$ such that $n_1 \wedge f = m_1 \wedge f$ and $f \in (X^{**})^u$. Since $n \in X$, it follows that $f \geq n^{**}$. Thus $n_1 \wedge f = n_1 = m_1 = m_1 \wedge f$ contrary to our assumption $n_1 < m_1$. Therefore, $N_{((X^{**})^u)^{\wedge}} \cap X = \emptyset$ and $N_{((X^{**})^u)^{\wedge}} \subseteq N \setminus X$.

Lemma 3.4. Let S be a PCS satisfying (D) and $\beta \in Con(S)$ be such that $\beta \subseteq \varphi$. Then $((N_{\beta}^{**})^u)^{\wedge} \subseteq \beta^*$.

Proof. Let $(x, y) \in \beta \land ((N_{\beta}^{**})^{u})^{\land}$. Without loss of generality we can assume that $x < y \leq x^{**}$. Then $x \land f = y \land f$ for some $f \in (N_{\beta}^{**})^{u}$. Since $(x, y) \in \beta$, we obtain that $\theta(x, x^{**}) \land \beta \neq \Delta$ and $x \in N_{\beta}$. It implies that $f \geq x^{**} \geq y > x$ and $x \land f = x = y = y \land f$ contrary to our assumption x < y. So, we can conclude that $((N_{\beta}^{**})^{u})^{\land} \subseteq \beta^{*}$.

Corollary 3.5. Let S be a PCS satisfying (D). Then $\varphi^* = ((N^{**})^u)^{\wedge} = (C^*)^{\wedge}$.

Lemma 3.6. Let S be an (S_n) -semilattice $(n \ge 1)$. Let $\psi \in Con(S)$ be such that $|[1]\psi \cap N| \ge n$. Then $\psi^* = \Delta$.

Proof. Two cases can occur: $|[1]\psi \cap N| \ge n+1$ or $|[1]\psi \cap N| = n$. In the first case $\psi = \nabla$ since S is an (S_n) -semilattice. Thus $\psi^* = \Delta$.

In the second case we first claim that $\varphi \subseteq \psi$. If $N \subseteq [1]\psi$ then it is true. Assume that $N \subsetneq [1]\psi$. Let $[1]\psi \cap N = \{n_i : i = 1, ..., n\}$. Let $s \in N \setminus [1]\psi$. Since $\bigwedge_{i=1}^n n_i \equiv 1(\psi)$ and S is an (S_n) -semilattice, we obtain that $s \wedge \bigwedge_{i=1}^n n_i = 0 \equiv s(\psi)$. Therefore, $s \equiv s^{**}(\psi)$ for arbitrary $s \in N$ and $\varphi \subseteq \psi$.

To complete the proof it suffices to show that also $\varphi^* \subseteq \psi$. Let $f \in (N^{**})^u$. Then $f \geq n_i^{**}$ for any $n_i \in [1]\psi \cap N$. It implies that $(N^{**})^u \subseteq [1]\psi$. Thus $\varphi^* = ((N^{**})^u)^{\wedge} \subseteq ([1]\psi)^{\wedge} \subseteq \psi$. Hence $\varphi \lor \varphi^* \subseteq \psi$. Therefore, we obtain $\psi^* \subseteq (\varphi \lor \varphi^*)^* = \varphi^* \land \varphi^{**} = \Delta$ proving the lemma. **Definition 3.7** Let S be a PCS satisfying (D) and $A \subseteq C$. Then we define

$$d_C(A) = \{ c \in C : c \land a = 0, a \in A \}.$$

Lemma 3.8. Let S be a PCS satisfying (D) and $I \subseteq C$ be an ideal in B(S). Then $(N^{**} \cup I \cup d_C(I))^u = \{1\}.$

Proof. Let $f \in (N^{**} \cup I \cup d_C(I))^u$. Then

$$f \ge n^{**} \ (n^{**} \in N^{**}) \quad \text{and} \quad f^* \land n^{**} = 0;$$

$$f \ge a \ (a \in I) \qquad \text{and} \quad f^* \land a = 0;$$

$$f \ge c \ (c \in d_C(I)) \qquad \text{and} \quad f^* \land c = 0.$$

From $f^* \wedge n^{**} = 0$ follows $f^* \in C$. Since $f^* \wedge a = 0$ for all $a \in I$, it follows $f^* \in d_C(I)$. Since $f^* \wedge c = 0$ for all $c \in d_C(I)$, we obtain that also $f^* \wedge f^* = f^* = 0$. Hence, f is a dense element. $f \in (N^{**})^u$ implies that f is closed. So we can conclude f = 1 proving the lemma.

By taking $I = \{0\}$, we immediately obtain

Corollary 3.9. Let S be a PCS satisfying (D). Then $\{N^{**} \cup C\}^u = \{1\}$.

Lemma 3.10. Let S be a PCS satisfying (D) and $F \subseteq S$ be a Boolean filter, i.e. $F \subseteq B(S)$. Then $F \subseteq ((N^{**} \setminus N_{\hat{F}}^{**}) \cup d_C(C_{\hat{F}}))^u$.

Proof. Let $f \in F$ be such that $f \notin (N^{**} \setminus N_{\hat{F}}^{**})^u$. Thus $f \not\geq n^{**}$ for some $n^{**} \in N^{**} \setminus N_{\hat{F}}^{**}$. Then $f \wedge n^{**} < n^{**}$ and, since Con(S) is distributive, two possibilities may occure.

First suppose that $f \wedge n^{**} \leq n < n^{**}$. Since $f \equiv 1(\hat{F}), f \wedge n^{**} \equiv n^{**}(\hat{F})$, we obtain that $n \equiv n^{**}(\hat{F})$. Hence, $\theta(n, n^{**}) \wedge \hat{F} \neq \Delta$. Therefore, $n \in N_{\hat{F}}, n^{**} \in N_{\hat{F}}^{**}$ contrary to assumption $n^{**} \in N^{**} \setminus N_{\hat{F}}^{**}$. Now suppose that $n \leq f \wedge n^{**} < n^{**}$. Since $f \equiv 1(\hat{F}), f \wedge n^{**} \equiv n^{**}(\hat{F})$, we again obtain that $\theta(n, n^{**}) \wedge \hat{F} \neq \Delta$. Therefore, $n \in N_{\hat{F}}, n^{**} \in N_{\hat{F}}^{**}$ contrary to assumption $n^{**} \in N_{\hat{F}}^{**}$ contrary to assumption $n^{**} \in N_{\hat{F}}^{**}$. Thus $F \subseteq (N^{**} \setminus N_{\hat{F}}^{**})^u$.

Let $f \in F$ and $y \in d_C(C_{\hat{F}})$. Since $f^* \wedge f = 0 \wedge f$, we have $f^* \equiv 0(\hat{F})$ and also $f^* \wedge y \equiv 0(\hat{F})$. Thus, $f^* \wedge y \in C_{\hat{F}}$. From this, we get $(f^* \wedge y) \wedge y =$ $f^* \wedge y = 0$. Hence, $y \leq f^{**} = f$ proving that $F \subseteq d_C(C_{\hat{F}})^u$. So we can conclude that $F \subseteq ((N^{**} \setminus N_{\hat{F}}^{**}) \cup d_C(C_{\hat{F}}))^u$.

Lemma 3.11. Let S be a PCS satisfying (D) and let $F \subseteq S$ be a Boolean filter. Then $((N_{\hat{F}}^{**} \cup C_{\hat{F}})^u)^{\wedge} \subseteq (\hat{F})^*$.

Proof. Let $(x, y) \in \hat{F} \land ((N_{\hat{F}}^{**} \cup C_{\hat{F}})^u)^{\land}, x < y$. It means that $x \land f = y \land f$ for some $f \in F$ and $x \land h = y \land h$ for some $h \in (N_{\hat{F}}^{**} \cup C_{\hat{F}})^u$. Therefore, $x^{**} \land f = y^{**} \land f$ and $x^{**} \land h^{**} = y^{**} \land h^{**}$. Since $x^{**}, y^{**}, f, h^{**} \in B(S)$, it follows that $x^{**} \land (f + h^{**}) = y^{**} \land (f + h^{**})$. Since $f \in F \subseteq ((N^{**} \setminus N_{\hat{F}}^{**}) \cup d_C(C_{\hat{F}}))^u$ and $h^{**} \in (N_{\hat{F}}^{**} \cup C_{\hat{F}})^u$, from the two previous lemmas we obtain that $f + h^{**} \in \{(N^{**} \setminus N_{\hat{F}}^{**}) \cup d_C(C_{\hat{F}}) \cup N_{\hat{F}}^{**} \cup C_{\hat{F}}\}^u = (N^{**} \cup C_{\hat{F}} \cup d_C(C_{\hat{F}}))^u = \{1\}$. Thus, we see that $x^{**} = y^{**}$. Since $(x, y) \in \hat{F}, x < y$ and $x^* = y^*$ we obtain that $\theta(x, x^{**}) \land \hat{F} \neq \Delta$ and $x \in N_{\hat{F}}$. Therefore, $h \ge x^{**} \ge y > x$ and $x \land h = x = y = y \land h$ which is a contradiction with our assumption x < y. Thus the lemma is proved.

Theorem 3.12. Let S be an (S_n) -semilattice $(n \ge 1)$ such that B(S) is a complete Boolean algebra. Then Con(S) is an (L_n) -lattice.

Proof. For n = 1 the claim follows from [5] (see Theorem 3.27). Assume that $n \ge 2$. Let $\theta_1, \theta_2, \ldots, \theta_n$ be arbitrary elements of Con(S). For the sake of simplicity let us denote

$$\alpha_0 = \theta_1 \wedge \theta_2 \wedge \ldots \wedge \theta_n,$$

$$\alpha_1 = \theta_1^* \wedge \theta_2 \wedge \ldots \wedge \theta_n,$$

$$\ldots$$

$$\alpha_i = \theta_1 \wedge \ldots \wedge \theta_i^* \wedge \ldots \wedge \theta_n,$$

$$\ldots$$

$$\alpha_n = \theta_1 \wedge \theta_2 \wedge \ldots \wedge \theta_n^*.$$

We want to prove that $\alpha_0^* \vee \alpha_1^* \vee \ldots \vee \alpha_n^* = \nabla$. From Lemma 1.1, follows that $\alpha_i^* = (\alpha_i \wedge \varphi)^* \wedge (([1]\alpha_i)^{\wedge})^*$ $(i = 0, 1, \ldots, n)$. Three possibilities may occur:

- (1) $[1]\alpha_i \cap N \neq \emptyset$ for $i = 0, 1, \ldots, n$;
- (2) $[1]\alpha_i \subseteq B(S)$ for i = 0, 1, ..., n;
- (3) There exist $I, J \subseteq \{0, 1, ..., n\}$ such that $I \neq \emptyset \neq J$, $I \cap J = \emptyset$, $I \cup J = \{0, 1, ..., n\}$ and $[1]\alpha_i \subseteq B(S)$ for $i \in I$ and $[1]\alpha_j \cap N \neq \emptyset$ for $j \in J$.

Ad (1): Suppose that $n_i \in [1]\alpha_i \cap N$ (i = 0, 1, ..., n). It means that $\theta(n_i, 1) \subseteq \alpha_i$. Since $\alpha_i \wedge \alpha_j = \Delta$ for $i, j \in \{0, 1, ..., n\}, i \neq j$, we obtain

that $\theta(n_i, 1) \subseteq \alpha_i^*$ for arbitrary $j \neq i$. It follows that

$$\alpha_0^* \lor \alpha_1^* \lor \ldots \lor \alpha_n^* \supseteq \bigvee_{i=0}^n \theta(n_i, 1).$$

Let $\bigvee_{i=0}^{n} \theta(n_i, 1) = \theta$. Then $n_i \equiv 1(\theta)$ (i = 0, 1, ..., n) and therefore $\bigwedge_{i=0}^{n} n_i \equiv 1(\theta)$. Since α_i (i = 0, 1, ..., n) are pairwise disjoint, congruences n_i (i = 0, 1, ..., n) are pairwise different nonclosed elements. From the assumption that S is an (S_n) -semilattice we obtain $\bigwedge_{i=0}^{n} n_i = 0 \equiv 1(\theta)$ hence $\alpha_0^* \vee \alpha_1^* \vee ... \vee \alpha_n^* = \nabla$.

Ad (2): Suppose that $[1]\alpha_i \subseteq B(S)$ for $i = 0, 1, \ldots, n$. From Lemma 3.4 and Lemma 3.11 follows that $\alpha_i^* \supseteq ((N_{\alpha_i \wedge \varphi}^{**})^u)^{\wedge} \wedge ((N_{([1]\alpha_i)^{\wedge}}^{**} \cup C_{([1]\alpha_i)^{\wedge}})^u)^{\wedge}$, $i = 0, 1, \ldots, n$. Let $\sum N_{\alpha_i \wedge \varphi}^{**} = a_i$, $\sum N_{([1]\alpha_i)^{\wedge}}^{**} = b_i$, $\sum C_{([1]\alpha_i)^{\wedge}} = c_i$, $(i = 0, 1, \ldots, n)$. Since $([1]\alpha_i)^{\wedge} \subseteq \alpha_i$ and $N_{\alpha_i \wedge \varphi}^{**} = N_{\alpha_i}^{**}$, we have $a_i = \sum N_{\alpha_i}^{**} \ge \sum N_{([1]\alpha_i)^{\wedge}}^{**} = b_i$ $(i = 0, 1, \ldots, n)$. Hence, $\alpha_i^* \supseteq \hat{a}_i \wedge (b_i + c_i)^{\wedge} = \theta(a_i, 1) \wedge \theta(b_i + c_i, 1) \supseteq \theta(a_i + b_i + c_i, 1) = \theta(a_i + c_i, 1) = \theta(\Lambda_{i=0}^n (a_i + c_i), 1)$. We claim that $a_i \wedge c_j = 0$ for arbitrary $i, j \in \{0, 1, \ldots, n\}$.

From the assumption that B(S) is a complete Boolean algebra, it follows that B(S) satisfies the join infinite distributive identity and its dual meet infinite distributive identity. Let $\sum N^{**} = m$. Since $c \wedge n^{**} = 0$ for arbitrary $c \in C, n \in N$, we obtain that $m = \sum N^{**} \leq c^*$ and therefore $c \leq m^*$ for arbitrary $c \in C$. Thus $\sum C \leq m^*$. It follows that $a_i \wedge c_j = \sum N^{**}_{\alpha_i} \wedge$ $\sum C_{([1]\alpha_j)^{\wedge}} \leq \sum N^{**} \wedge \sum C \leq m \wedge m^* = 0$. Thus we obtain that $\bigwedge_{i=0}^n (a_i + c_i) = \bigwedge_{i=0}^n a_i + \bigwedge_{j=0}^n c_j$.

We claim that $\bigwedge_{j=0}^{n} c_j = 0$. Take arbitrary $i, j \in \{0, 1, \ldots, n\}$ such that $i \neq j$. Then $c_i \wedge c_j = \sum C_{([1]\alpha_i)^{\wedge}} \wedge \sum C_{([1]\alpha_j)^{\wedge}} = \sum \{d \wedge e : d \in C_{([1]\alpha_i)^{\wedge}}$ and $e \in C_{([1]\alpha_j)^{\wedge}} \}$. Since $([1]\alpha_i)^{\wedge} \wedge ([1]\alpha_j)^{\wedge} = \Delta$, we have $d \wedge e = 0$ for arbitrary $d \in C_{([1]\alpha_i)^{\wedge}}$ and $e \in C_{([1]\alpha_j)^{\wedge}}$. Hence, $c_i \wedge c_j = 0$.

Next we will prove that $\bigwedge_{i=0}^{n} a_i = 0$. Using the fact that B(S) satisfies both the join and meet infinite distributive identities we obtain that $\bigwedge_{i=0}^{n} a_i = \bigwedge_{i=0}^{n} \sum N_{\alpha_i}^{**} = \sum \{\bigwedge_{i=0}^{n} n_i^{**} : n_i^{**} \in N_{\alpha_i}^{**}\}$. Take arbitrary (n + 1)-tuple $(n_i^{**} : n_i^{**} \in N_{\alpha_i}^{**}, i = 0, 1, \dots, n)$. Clearly some elements n_i^{**} $(i = 0, 1, \dots, n)$ may coincide. Suppose that $n_i^{**} = m^{**}$ for $i \in I \subseteq \{0, 1, \dots, n\}$. It means that there exist elements r_i, s_i such that $r_i < s_i, r_i^{**} = s_i^{**} = m^{**}$ and $(r_i, s_i) \in \alpha_i$ for $i \in I$. Since α_i are pairwise disjoin congruences, it follows that $\theta(r_i, s_i)$ $(i \in I)$ are also pairwise disjoint congruences. Thus $|I| \leq |[m^{**}]\varphi \cap N| \leq n$.

228

From the previous consideration follows that $\bigwedge_{i=0}^{n} n_i^{**} = \bigwedge_{j=1}^{k} m_j^{**}$ where $m_j^{**} \neq m_l^{**}$ for $j \neq l$; $n_i^{**} = m_j^{**}$ for $i \in I_j \subset \{0, 1, \ldots, n\}$, $j = 1, 2, \ldots, k$; $I_j \cap I_l = \emptyset$ for $j \neq l$; $\bigcup_{j=1}^{k} I_j = \{0, 1, \ldots, n\}$ and $|[m_j^{**}]\varphi \cap N| \geq |I_j|, j = 1, 2, \ldots, k$; Thus, we can write $\bigwedge_{j=1}^{k} m_j^{**} = \bigwedge_{j=1}^{k} (\bigwedge \{s^{**} : s \in [m_j^{**}]\varphi \cap N\}) = \bigwedge_{j=1}^{k} (\bigwedge \{s : s \in [m_j^{**}]\varphi \cap N\})^{**} = (\bigwedge_{j=1}^{k} (\bigwedge \{s : s \in [m_j^{**}]\varphi \cap N\}))^{**}$. From $|[m_j^{**}]\varphi \cap N| \geq |I_j|$ $(j = 1, 2, \ldots, k)$ and $\bigcup_{j=1}^{k} I_j = \{0, 1, \ldots, n\}$, it follows that $\bigwedge_{j=1}^{k} (\bigwedge \{s : s \in [m_j^{**}]\varphi \cap N\})$ is meet of at least (n + 1) different nonclosed elements. Hence, $\bigwedge_{j=1}^{k} (\bigwedge \{s : s \in [m_j^{**}]\varphi \cap N\}) = 0$. Thus we obtain $\bigwedge_{i=0}^{n} a_i = \sum \{\bigwedge_{i=0}^{n} n_i^{**} : n_i^{**} \in N_{\alpha_i}^{**}\} = 0$ which implies $\bigvee_{i=0}^{n} \alpha_i^{*} \supseteq \theta(0, 1) = \nabla$ and $Con(S) \in \mathcal{B}_n$.

Ad (3): Suppose that $[1]\alpha_i \subseteq B(S)$ for $i \in I$ and $[1]\alpha_j \cap N \neq \emptyset$ for $j \in J$ where $I \neq \emptyset \neq J$, $I \cap J \neq \emptyset$ and $I \cup J = \{0, 1, \ldots, n\}$. Using the previous part of the proof we obtain that $\bigvee_{i \in I} \alpha_i^* \supseteq \theta(\bigwedge_{i \in I} a_i, 1)$, where $a_i = \sum N_{\alpha_i \wedge \varphi}^{**}, i \in I$. Let $m_j \in [1]\alpha_j \cap N$ for $j \in J$. Then $\theta(m_j, 1) \wedge \alpha_i = \Delta$ and $\alpha_i^* \supseteq \theta(m_j, 1)$ for arbitrary $i \in I$ and $j \in J$. It follows that $\bigvee_{i \in I} \alpha_i^* \supseteq \theta(\bigwedge_{i \in I} a_i, 1) \lor \bigvee_{j \in J} \theta(m_j, 1) = \theta(\bigwedge_{i \in I} a_i, 1) \lor \theta(\bigwedge_{j \in J} m_j, 1) = \theta(\bigwedge_{i \in I} a_i \land \bigwedge_{j \in J} m_j, 1)$. Next we will prove that $\bigwedge_{i \in I} a_i \land \bigwedge_{j \in J} m_j^{**} = 0$. Since $\bigwedge_{i \in I} a_i = \sum_{i \in I} \bigwedge_{i \in I} m_i^{**} :$ $n_i^{**} \in N_{\alpha_i}^{**}\}$, we can write $\bigwedge_{i \in I} a_i \land \bigwedge_{j \in J} m_j^{**} = \sum_{i \in I} \bigwedge_{i \in I} n_i^{**} \in N_{\alpha_i}^{**}$ ($j \in J$). Repeating the same consideration as in the part (2) of this proof we obtain that $\bigwedge_{i \in I} n_i^{**} \land \bigwedge_{j \in J} m_j^{**} = 0$ for arbitrary |I|-tuple $(n_i^{**} : n_i^{**} \in N_{\alpha_i}^{**} i \in I)$. Therefore, $\bigwedge_{i \in I} a_i \land \bigwedge_{j \in J} m_j \le \bigwedge_{i \in I} a_i \land \bigwedge_{j \in J} m_j^{**} = 0$ and $\bigvee_{i=0}^n \alpha_i^* \supseteq$ $\bigvee_{i \in I} \alpha_i^* \supseteq \theta(0, 1) = \nabla$, hence $Con(S) \in \mathcal{B}_n$.

Corollary 3.13. Let S be a PCS such that B(S) is a complete Boolean algebra. For arbitrary $n \ge 1$ the following statesments are equivalent:

- (i) Con(S) is an (L_n) -lattice,
- (ii) S is an (S_n) -semilattice.

4. Pseudocomplemented semilattices with relative (L_n) -congruence lattices

Definition 4.1 ([2], Definition 2). Let L be a distributive lattice. L is said to be a *relative* (L_n) -*lattice* if every interval [a, b] in L is an (L_n) -lattice.

Lemma 4.2 ([2], Theorem 2). Let L be a distributive lattice with 1. The following conditions are equivalent:

- (i) L is a relative (L_n) -lattice,
- (ii) for every $a \in L$, [a, 1] is an (L_n) -lattice.

Lemma 4.3. Let S be a PCS. Then S is an (S_n) -semilattice $(n \ge 1)$ iff the quotient semilattice S/θ is an (S_n) -semilattice for arbitrary $\theta \in Con(S)$.

Proof. Let S be a PCS. Suppose that S is an (S_n) -semilattice for some $n \ge 1$. We claim that for arbitrary $\theta \in Con(S)$ the following is true: if $[a]\theta \in N(S/\theta)$ then $[a]\theta \subseteq N(S)$.

Suppose that $[a]\theta \neq ([a]\theta)^{**} = [a^{**}]\theta$ and there exists $x \in [a]\theta$ such that $x = x^{**}$. Then $[a]\theta = [x]\theta = [x^{**}]\theta = ([x]\theta)^{**} = ([a]\theta)^{**}$ which is a contradiction to our assumption.

Let $[x_1]\theta, [x_2]\theta, \ldots, [x_{n+1}]\theta \in S/\theta$ be such that $[x_i]\theta \neq [x_i^{**}]\theta$ $i = 1, \ldots, n+1$ and $[x_i]\theta \neq [x_j]\theta$, $i \neq j$. From the previous part of proof follows that x_i $(i = 1, \ldots, n+1)$ are pairwise distinct non-closed elements from S. Since S is an (S_n) -semilattice we obtain $\bigwedge_{i=1}^{n+1} [x_i]\theta = \left[\bigwedge_{i=1}^{n+1} x_i\right]\theta = [0]\theta$. Thus S/θ satisfies the condition (C_n) .

Since $Con(S/\theta) \cong [\theta, \nabla] \subseteq Con(S)$ the congruence distributivity of S implies that the condition (D) is satisfied also in the quotient semilattice S/θ . The sufficient condition is obvious.

From the previous result and from Theorem 3.28 of [5], we immediately obtain

Corollary 4.4. Let S be a PCS. The following statesments are equivalent:

- (i) Con(S) is a relative Stone lattice,
- (ii) S satisfies (C_1) and for arbitrary congruence $\theta \in Con(S)$ the quotient PCS S/θ satisfies:

$$(S_{2(\theta)})$$
 (a) if $A \subseteq N^{**}(S/\theta)$, then $\sum A$ exists;
(b) if $K \subseteq C(S/\theta)$, then $\sum K$ exists.

Corollary 4.5. Let S be a PCS such that the Boolean algebra $B(S|\theta)$ is complete for arbitrary congruence $\theta \in Con(S)$. For arbitrary $n \ge 1$ the following statesments are equivalent:

(i) Con(S) is an (L_n) -lattice,

- (ii) Con(S) is a relative (L_n) -lattice,
- (iii) S is an (S_n) -semilattice.

References

- [1] G. Grätzer, General Lattice Theory, Birkhäuser-Verlag, Basel 1978.
- [2] M. Haviar and T. Katriňák, Semi-discrete lattices with (L_n) -congruence lattices, Contribution to General Algebra 7 (1991), 189–195.
- [3] K.B. Lee, Equational classes of distributive pseudo-complemented lattices, Canad. J. Math. 22 (1970), 881–891.
- [4] H.P. Sankappanavar, Congruence lattices of pseudocomplemented semilattices, Algebra Universalis 9 (1979), 304–316.
- [5] H.P. Sankappanavar, On pseudocomplemented semilattices with Stone congruence lattices, Math. Slovaca 29 (1979), 381–395.
- [6] H.P. Sankappanavar, On pseudocomplemented semilattices whose congruence lattices are distributive, (preprint).

Received 27 October 1998 Revised 1 October 1999