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Abstract

It is known that congruence lattices of pseudocomplemented
semilattices are pseudocomplemented [4]. Many interesting properties
of congruences on pseudocomplemented semilattices were described
by Sankappanavar in [4], [5], [6]. Except for other results he described
congruence distributive pseudocomplemented semilattices [6] and
he characterized pseudocomplemented semilattices whose congruence
lattices are Stone, i.e. belong to the variety By [5].

In this paper we give a partial solution to a more general
question: Under what condition on a pseudocomplemented semilattice
its congruence lattice is element of the variety B, (n > 2)?

In the last section we widen the Sankappanavar’s result to
obtain the description of pseudocomplemented semilattices with rela-
tive Stone congruence lattices. A partial solution of the description
of pseudocomplemented semilattices with relative (L, )-congruence
lattices (n > 2) is also given.
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1. PRELIMINARIES

A pseudocomplemented semilattice (PCS) is an algebra S = (S;A,*,0),
where (S;A,0) is a A-semilattice with 0 and * is the unary operation of
pseudocomplementation defined by:

zAa=0iff x <a*.
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0* is the largest element in S and is denoted by 1. An element a € S is
called closed if a = a**. The set of all closed elements of S is denoted B(S).
It is known that (B(S);+,A,*,0,1) forms a Boolean algebra in which the
operation of join is defined by a+b = (a* Ab*)*. To denote the join of subset
A C B(S) of closed elements we will use the symbol } A.

An element d € S is called dense if d* = 0. All dense elements form the
set denoted D(S) which is a filter in S.

The set of all congruences on PCS S is denoted Con(S). It is known
that Con(9S) is an algebraic pseudocomplemented lattice [4] with A and V
the least and the largest element, respectively.

For any pair a,b € S the symbol 6(a, b) denotes the principal congruence
relation generated by a, b, i.e. the least congruence relation 6 on S for which
(a,b) € 6.

The congruence relation ¢ defined by:

(z,y) € @ iff 2% =y,

is called the Glivenko congruence relation.
For arbitrary filter F' C S we define binary relation F :

(z,y) € Fiff A f =y A f for some f € F.

Clearly Fis a semilattice congruence relation on .S. For arbitrary element
f € S the interval [0, f] C S is a PCS such that the pseudocomplement aj £

is equal to a* A f. It follows that F' is compatible also with the operation of
pseudocomplementation and F' € Con(S). Similarly for arbitrary element
a € S we define binary relation a by

(,y) €aiff z Na=yAa.

Again a € Con(S). One can easily verify that a = 0(a,1) for arbitrary
acsS.
The following two facts were proved by Sankappanavar in [4] and [6].

Lemma 1.1. Let S be a PCS. If ¢ € Con(S) then v = ([1])" V (¥ A p).
|

Lemma 1.2. Let S be a PCS. The following statesments are equivalent:

(1) Con(S) is distributive,
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(2) S satisfies:

(D) VaVy(x <y =z <y or y<ux),

(3) S satisfies:

(Dw) VaVy(z* =y* =2 <y or y <)
and
() VaVy((z = 2** and z < y*™*) = = < y),
(4) Con(S) is modular. |

One can easily verify the next auxiliary lemma.

Lemma 1.3. Let S be a PCS satisfying (D). Let a,b € S be such that a < b
and a* = b*. Then

(i) 0(a,b) = [a,b]  [a,b] UA;
(i) [1]6*(a,b) = b, 1]. -

A (distributive) p-algebra is an algebra L = (L;V,A,* 0,1) where
(L;V, A, 0,1) is a bounded (distributive) lattice and * is the unary operation
of pseudocomplementation. learly the congruence lattice of any congruence
distributive PCS is a distributive p-algebra.

The class B, of all distributive p-algebras is equational. K.B. Lee proved
in [3] that the lattice of all equational subclasses of B, is a chain

B.i.CcBycBicCc...cB,C...CB,
of type w—+ 1, where B_1, By and B; denote the classes of all trivial, Boolean

and Stone algebras, respectively. Moreover, he proved that forn > 1, L € B,
if and only if L satisfies the identity

(Lp) @iAzaA. Azy)*VETATaA . AZy) Voo V(@ Az AL AT ) =1,

Definition 1.4 ([2]; Definition 1). Let L be a distributive p-algebra and
n > 1. L is said to be an (Ly)-lattice if L € B,,.
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2. PSEUDOCOMPLEMENTED SEMILATTICES WITH (L;,)-CONGRUENCE
LATTICES

In [5] H.P. Sankappanavar gave a description of those PCS S whose
congruence lattice Con(S) is Stone, i.e. satisfies (L1). The aim of this
paper is to continue in this direction and investigate the cases for which
Con(S) satisfies (L) for n > 2.

Theorem 2.1. Let S be a PCS. If Con(S) € B, (n > 1), then
(Cn) Vai (vi#2* (i=1,...,n+1) and x; #z; (i # j)) = Ndlz; = 0.

Proof. For n = 1, the claim was proved by H.P. Sankappanavar in
Theorem 3.2 of [5]. Assume that n > 2. Let z1,x9,...,2,41 € S be such
that =; # xf* ( =1,2,...,n+1) and z; # z; (i # j). Suppose that
w = /\n—l—ll T; >

Without loss of generality we can divide elements z1,z2,...,T,41 into
k disjoint groups (1 <k <mn+1):

{xllaxIQa"'7x1m1}7{$217$227"'7$2m2}7"'7{$k171:k2"'axk‘mk}
such that mqy +mo+ ... +mp =n+1 and
Til < Tig < ... < Tim, < xp (1=1,...,k).
Let us denote

Tize(xli)xli-i-l)a i:1727"‘7m1_1
Tmi = H(xlmwxﬁ)’
Tm1+j :9(332]',%2]'_;,_1), jZl,Q,...,mQ—l

ok

Tmi+mg = 9(1‘2m2,3§21),

Tmi+mao+...dmep_ 1+l = 0(£kl7 mkl+1)7 l= ]-a 2... myg — 1
-

Tmi4+mo+...4my — Tn+l = e(mkmkal)-

Let 91:\/;‘+217'] and 6; = 7']\/\/] Z+1Tj,i:2,3,...,n
From Lemma 1.3 follows that 0y Om, i =1,2,...,n



CONGRUENCES ON PSEUDOCOMPLEMENTED SEMILATTICES 223

Therefore, we have

01/\02/\.../\9n:_)Tn+1 and (91/\92/\.../\%)*@7;“;
0T NO2 N ... N0, D7 and (07 ANOa A ... ANOp)" C T

LA ANOEN.. NG, D7 and (O A...AOFA...AB)* C TS

91/\02/\.../\9;:_)7'” and (91/\92/\.../\92)* T;;.
From our assumption that Con(S) € B, we obtain
n+1
1’L+1 V 7—1 \Y 7'2 \/ T =
It implies that there exists a sequence ag = 1,a1,as,...,a, = 0 C S such

that a; = aip1(ajp), (@ = 0,1,...,m — 1), where o) € {75 : k =
1,2,...,n+1}.

From Lemma 1.3, we obtain

n+1

(171 C [r12,1] € /\«’L“z, = [w, 1],

[1]7—2 - [:513’ 1] - [wv 1]7

[1]7';11+m2+...+mT+j - [$r+1j+1, 1C w1 (j=1,2,...,mpy1 — 1),

(U741 € [, 1 € w, 1]
Clearly a1 > w and aj, ; > w, since 1 = ap = a1(aj() and a;,_; =
1(j(m— 1)) Qjm-1) € {Tp + k = 1,2,...,n + 1}. If we meet elements
1,02, ..., Am—1 Wlth the element a),_;, we obtain a new sequence b; =
a1 N ay,_ l,bz =axNay 1, .., bm— = am—2 Nay,_1,bpy—1 = 0 such that
bi = biv1(aj), (1=1,2,...,m—2)and o) € {ry : k=1,2,...,n+1}.
Again by = a1 Na}),_; > w and b}, 5 > w. Repeating the previous step
m — 2 times we obtain y = 0(a;(0)), @) € {7 : k=1,2,...,n+ 1} such
that y > w. Since y* = 1)), ¥* > w. Therefore, w < y Ay* =0 which
is a contradiction with our assumption that w = /\" 1 x; > 0. [
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Corollary 2.2. Let S be a PCS such that Con(S) € B, (n > 1).
Then |[alp| < n+ 1 for arbitrary a € S. |

Definition 2.3. Let S be a PCS. We say that S is an (.S),)-semilattice
(n > 1) iff S satisfies (C},) and S satisfies (D). In other words, S is an (Sy,)-
semilattice if and only if S is a congruence distributive pseudocomplemented
semilattice which satisfies the condition (Cp,).

In the next we will often deal with non-closed elements. We find it
useful to introduce now a few notations.

N(S)={n € S: nisnon— closed }, i.e.
N(S)={neS: n#n"};

N*(S) = {n™: ne N(S)}
C(S)={ceS:cAn=0; Yne N(S)};
C*(S)={c": ceC(9)}.

One can easily verify that C(S) is an ideal in B(S) and 0 € C(S). Moreover,
if ce C(S) and n € N(S), then cAn*™ = (cAn)*™ = 0. It follows that C(S5)
can be defined equivalently as C(S) = {c € S: cAn*™ =0; Vn € N(S)}. If
there is no danger of confusion, we will write N, N**, C' and C* instead of
N(S),N**(S),C(S) and C*(S), respectively.

Definition 2.4. Let S be a PCS and ¢ € Con(S). Then
Ny ={ne N: 0(n,n™) N # A},
Ny ={n"": n € Ny}.

Clearly Cy is an ideal in B(S), Ny = Nynp and Ny, = N.
3. PROPERTIES OF CONGRUENCES ON (.S),)-SEMILATTICES
The following lemmas were inspired by [5]. The next lemma is obvious.
Lemma 3.1. Let S be a PCS. Then
Y= \/{Q(n,n**) : ne NS}
For arbitrary A C S the symbol A* denotes the set of all upper bounds of A.

Lemma 3.2. Let S be a PCS. Then (N**)* = C*.
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Proof. Let n € N and ¢ € C be arbitrary. Then ¢ A n** = 0. Therefore,
n** < ¢* and C* C (N**)". Take arbitrary y € (N**)*. Clearly y € B(S).
It means that y = y™ > n** for arbitrary n € N. Thus y* < n* and
y* An=y* An** = 0. It follows that y* € C and since y is a closed element
y e C*. [ |

Lemma 3.3. Let S be a PCS satisfying (D) and X C N(S) = N. Then
N((X**)u)/\ g N \ X

Proof. Suppose that n € X N N(x«yuja. Then there exist n <n; <my <
n** such that n1 A f =myi A f and f € (X*™)%. Since n € X, it follows that
f>n* Thus ni A f = ny = m; = m1 A f contrary to our assumption
n1 < my. Therefore, N((X**)u)/\ NX =0 and N((X**)u)/\ CN \ X. ]

Lemma 3.4. Let S be a PCS satisfying (D) and 5 € Con(S) be such that
BC . Then (N§)") C 5.

Proof. Let (z,y) € B A ((N3")*)". Without loss of generality we can
assume that © <y < a**. Then z A f =y A f for some f € (N3*)". Since
(x,y) € (B, we obtain that §(z,2™*) A B # A and = € Ng. It implies that
f2a>y>xand AN f=x=y=yA f contrary to our assumption
x < y. So, we can conclude that ((N3*)*)" C B*. ]

Corollary 3.5. Let S be a PCS satisfying (D). Then ¢* = ((N**)“)" =
(S

Lemma 3.6. Let S be an (S),)-semilattice (n > 1). Let 1) € Con(S) be such
that |[1]¢p " N| > n. Then ¢* = A.

Proof. Two cases can occur: [[1Jy N N| >n+1 or |[[1]y N N| = n. In the
first case 1 = V since S is an (Sy,)-semilattice. Thus ¢* = A.

In the second case we first claim that ¢ C ¢. If N C [1]¢ then it is
true. Assume that N G [1]y. Let 1 NN = {n; : i = 1,...,n}. Let
s € N \[1]1p. Since Ay n; = 1(x)) and S is an (S,,)-semilattice, we obtain
that s A Ay n; = 0 = s(¢). Therefore, s = s** (1)) for arbitrary s € N and
¢ C Y.

To complete the proof it suffices to show that also ¢* C . Let f €
(N**)*. Then f > n}* for any n; € [1]¢p N N. It implies that (N**)* C [1]).
Thus ¢* = ((N**)“)" C ([1]$)" C 1. Hence ¢ V ¢* C 1. Therefore, we
obtain ¢¥* C (p V ¢*)* = ¢* A ¢** = A proving the lemma. |
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Definition 3.7 Let S be a PCS satisfying (D) and A C C. Then we define
do(A)={ceC:cNha=0, ac A}.

Lemma 3.8. Let S be a PCS satisfying (D) and I C C be an ideal in B(S).
Then (N**UIUdc(I))" = {1}.

Proof. Let f € (N* UIUdg(I))*. Then

f=n"* (n*™* e N*) and f*An™=0;

f>za(ael and f*Aa=0;

f>c(ceda(l)) and f*Ac=0.
From f* A n** = 0 follows f* € C. Since f* Aa = 0 for all a € I, it
follows f* € dc(I). Since f* Ac =0 for all ¢ € dc(I), we obtain that also
f*N f*= f*=0. Hence, f is a dense element. f € (N**)" implies that f

is closed. So we can conclude f = 1 proving the lemma. [ |

By taking I = {0}, we immediately obtain
Corollary 3.9. Let S be a PCS satisfying (D). Then {N**UC}" = {1}.m

Lemma 3.10. Let S be a PCS satisfying (D) and F C S be a Boolean filter,
i.e. FF'C B(S). Then F C ((N** \N;*) Udc(Cp))™.

Proof. Let f € F be such that f ¢ (N**\ Nz*)". Thus f 2 n** for some
n* € N\ Nz*. Then f An™ <n™ and, since Con(S) is distributive, two
possibilities may occure.

First suppose that f A n™ < n < n**. Since f = 1(F), fAn™ =
n**(F), we obtain that n = n**(F). Hence, 0(n,n**) A F' # A. Therefore,
n € Ng, n*™* € N;* contrary to assumption n** € N** \N;* Now suppose
that n < f An*™ < n**. Since f = 1(F), fAR™ = n**(ﬁ'), we again
obtain that 6(n,n**) A F # A. Therefore, n € Ng, n** € NI";* contrary to
assumption n** € N** \ NZ*. Thus F' C (N**\ Nz7)".

Let f € F'and y € do(Cp). Since f* A f = 0A f, we have f* = O(F)
and also f* Ay = O(F) Thus, f*Ay € Cp. From this, we get (f*Ay) Ay =
f* Ny = 0. Hence, y < f** = f proving that F' C dc(Cp)". So we can
conclude that F € ((N*™*\ NZ*) Udc(Cp))". |

Lemma 3.11. Let S be a PCS satisfying (D) and let ' C S be a Boolean
fitter. Then ((Nz"U Cp)")" C (F)*.
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Proof. Let (z,y) € F/\((N;;*UCF)“)/\, x < y. It means that z A f = yA f
for some fe F and x Ah=y A h for some h € (NI’;* UCz)". Therefore, **A f
=y A fand 2 A R* = y™* A B**. Since ™%, y*™*, f, h** € B(S), it follows
that A (f+h**) = y*™*A(f+h**). Since f € F C ((N**\N;*)Udc(Cﬁ))"
and ™ € (NZ'U Cp)", from the two previous lemmas we obtain that
f+h™ € {(N**\N;;*)Udc(C’p)UN;;*UC’F}“ = (N*UCpUdc(Cp))* = {1}.
Thus, we see that z** = y**. Since (z,y) € F, z <y and 2* = y* we obtain
that O(z,z*) A F # A and z € N Therefore, h > 2™ >y > x and
x Ah =2z =1y =yA h which is a contradiction with our assumption x < y.
Thus the lemma is proved. [

Theorem 3.12. Let S be an (Sy)-semilattice (n > 1) such that B(S) is a

complete Boolean algebra. Then Con(S) is an (Ly,)-lattice.

Proof. For n = 1 the claim follows from [5] (see Theorem 3.27). Assume
that n > 2. Let 61,0,,...,60, be arbitrary elements of Con(S). For the sake
of simplicity let us denote

ag =601 N0 N ... N0y,
OZlZQT/\GQ/\.../\Hn,

aizel/\.../\ej/\.../\ﬂn,

an:(gl/\ez/\.../\ez.

V. From Lemma 1.1, follows

We want to prove that ajVaj V...V
= ,...,n). Three possibilities may

that af = (i A @)* A (([1)e)™)* (

occur:

ap =
0,1,.
(1) [MJauNN #0@ fori=0,1,...,n;
(2) [1]a; € B(S) fori=0,1,...,n;

(3) There exist I,J C {0,1,...,n} such that I ZQ # J, INJ =,
IuJ={0,1,...,n} and [1]a; C B(S) for i € I and [1Ja; NN # @ for
jed

Ad (1): Suppose that n; € [1Ja; "N (i = 0,1,...,n). It means that
6(ni, 1) € oy. Since oy Aoy = A for i,j € {0,1,...,n}, i # j, we obtain
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that 0(n;, 1) C o] for arbitrary j # 4. It follows that
n
agVajV...Va;, 2 \/Q(ni,l)

=0

Let Vi y0(n;,1) = 6. Then n; = 1(0) (: = 0,1,...,n) and therefore

Nieoni = 1(8). Since «o; (¢ = 0,1,...,n) are pairwise disjoint,
congruences n; (i = 0,1,...,n) are pairwise different nonclosed
elements.  From the assumption that S is an (95),)-semilattice we
obtain Aj_gn; = 0= 1(0) hence oV ajV...Va =V.

Ad (2): Suppose that [l]la; C B(S) for ¢ = 0,1,...,n. From
Lemma 3.4 and Lemma 3.11 follows that o 2 ((Ny7a,)" ) (( (e Y
C([l]ai)A)u)/\7 i = 0,1,...,n. Let > No*z*/\go = a;, Y N (Ma)r = b;,

> C(janr = ¢i, (i = 0,1,...,n). Since ([1Ja;)" € a; and Ny¥, = N7,
we have a; = 3 Ng* > > Nfjjann = bi (0 = 0,1,...,n). Hence, af D

VAN (bz + Ci)/\ = G(ai, 1) VAN H(bl + ¢, 1) D) (9(0,1 + b; + ¢, 1) = Q(CLZ + ¢, 1)
(i = 0,1,...,n). Therefore, we have Vi_,af O Vi ,6(a; + ¢,1) =
O(Nizo(a; +¢;),1). We claim that a; A ¢;=0 for arbitrary 4, j€{0,1,...,n}.

From the assumption that B(S) is a complete Boolean algebra, it follows
that B(S) satisfies the join infinite distributive identity and its dual meet
infinite distributive identity. Let > N** = m. Since cAn™* = 0 for arbitrary
c € C,n € N, we obtain that m = >  N** < ¢* and therefore ¢ < m* for
arbitrary ¢ € C. Thus > C < m*. Tt follows that a; A c; = 3 N;T A
Y Cayr S XNTAXC <mAm* =0. Thus we obtain that A\i_y(a; +
ci) = Ni- oaﬁ-/\ =0Cj-

We claim that /\]:0 ¢; = 0. Take arbitrary 4,5 € {0,1,...,n} such
that ¢ # j. Then ¢; A¢; = 20[1 YA ZC(M%.)A =Y{dAre: dEe€
Cija)r and e € Cpyja,)r }- Since ([1ai) A ([1]aj)" = A, we have d Ae =0
for arbitrary d € C]q,)» and e € C((1)a;)r- Hence, ¢; A ¢; = 0.

Next we will prove that A, a; = 0. Using the fact that B(S) satisfies
both the join and meet infinite distributive identities we
obtain that Ai_ga; = AiZo>. Nat = S ANizon™ : nj* € Ny} Take
arbitrary (n + 1)-tuple (nj* : n;* € N3*, i = 0,1,...,n). Clearly some

1

elements n;* (i = 0,1,...,n) may coincide. Suppose that n}* = m** for
i eI C{0,1,...,n}. It means that there exist elements r;, s; such that
ri < si, 17 =5 =m" and (r;,s;) € a; for i € I. Since «; are pairwise

disjoin congruences, it follows that 6(r;, s;) (i € I) are also pairwise disjoint
congruences. Thus |I| < |[m**|p N N| < n.
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From the previous consideration follows that A\ n/* = /\;‘9:1 m7* where
m;* #my* for j # 1, ni* = m;* for i € I; C {0,1,...,n}, 7=1,2,... k;
Iinl;=0for j #1; U§:1 I;=10,1,...,n} and [[m;*]eNN| > |[;],j =1,
2,.. .k, k. Thus, we can write /\?:1 m;* :k/\?ﬂ(/\{s** ©os€[miTlp NN}
= Nj=1(Ms = se[mirle n N})™ = (Ajo1(Ms = s € [mj*le N N}))™.
From |[m}*]e N N| > [I;] (j = 1,2,...,k) and Uj_, I; = {0,1,...,n}, it
follows that /\;‘5:1(/\{3 : s € [mj*]p N N}) is meet of at least (n + 1)
different nonclosed elements. Hence, /\?;1(/\{8 1 s € [mi*lpNN}) = 0.
Thus we obtain Aiga; = > {Aizon;* : n* € N;'} = 0 which implies
Vicgar 26(0,1) =V and Con(S) € B,.

Ad (3): Suppose that [1]o; € B(S) for i € I and [1]Ja;NN #( for j € J
where I # 0 # J, INJ # (and IUJ = {0,1,...,n}. Using the previous part
of the proof we obtain that \/,c; af 20(A;er ai, 1), where a; =37 N3*\,, i€ 1.
Let m; € [1]Ja; NN for j € J. Then 8(m;,1) A a; = A and of D 6(m;, 1)
for arbitrary ¢ € I and j € J. It follows that \/;c;af 2 0(A;crai1) V
\/jeJ 9(mja 1) = 9(/\iel Qi 1)\/9(/\jej myj, 1) = 9(/\ie1 ai/\/\jeJ mj, 1). Next
we will prove that A;c;ai A \jeymi™ = 0. Since Ajcya; = S{Nicr i -
n;* € N}, we can write A;erai A Njey mi* = SANier i A Njes mi*
ni* € Nj*}. Since mj; < m3* and m; € [1]eyj, obviously mi* € N;;" (7 €J).
Repeating the same consideration as in the part (2) of this proof we obtain
that A;erni™ A Njegm;* =0 for arbitrary |I|-tuple (nj* : nj* € Ny¥i € I).

Therefore, Ajcrai A Njegmy < Nierai A Njegm;™ = 0 and Viigal 2

. =

Vierar 2 60(0,1) = V, hence Con(S) € B,. |
Corollary 3.13. Let S be a PCS such that B(S) is a complete Boolean
algebra. For arbitrary n > 1 the following statesments are equivalent:

(i) Con(S) is an (Ly)-lattice,

(ii) S is an (Sy)-semilattice.

4. PSEUDOCOMPLEMENTED SEMILATTICES WITH RELATIVE
(Ly,)-CONGRUENCE LATTICES

Definition 4.1 ([2], Definition 2). Let L be a distributive lattice. L is said
to be a relative (Ly,)-lattice if every interval [a,b] in L is an (L, )-lattice.
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Lemma 4.2 ([2], Theorem 2). Let L be a distributive lattice with 1. The
following conditions are equivalent:

(i) L is a relative (Ly)-lattice,

(ii) for every a € L, [a,1] is an (Ly,)-lattice.

Lemma 4.3. Let S be a PCS. Then S is an (Sy)-semilattice (n > 1) iff the
quotient semilattice S/6 is an (Sy)-semilattice for arbitrary 0 € Con(S).

Proof. Let S be a PCS. Suppose that S is an (S,)-semilattice for some
n > 1. We claim that for arbitrary 8 € Con(S) the following is true: if
[a)0 € N(S/0) then [a]0 C N(S).

Suppose that [a]@ # ([a]0)™ = [a**]0 and there exists z € [a]f such
that x = 2**. Then [a]0 = [z]0 = [2**]0 = ([]0)** = ([a]0)** which is a
contradiction to our assumption.

Let [21]0,[x2]0,...,[zn+1]0 € S/0 be such that [z;)0 # [21*]0 i =
1,...,n+1and [z;]0 # [z;]0, i # j. From the previous part of proof follows
that x; (i =1,...,n+ 1) are pairwise distinct non-closed elements from S.
Since S is an (S )-semilattice we obtain Af[2:]0 = [/\"ﬁl :EZ:| 6 = [0]6.
Thus S/ satisfies the condition (Cy,).

Since Con(S/0) = [0, V] C Con(S) the congruence distributivity of S
implies that the condition (D) is satisfied also in the quotient semilattice
S/6. The sufficient condition is obvious. |

From the previous result and from Theorem 3.28 of [5], we immediately

obtain

Corollary 4.4. Let S be a PCS. The following statesments are equivalent:
(i) Con(S) is a relative Stone lattice,

(ii) S satisfies (C1) and for arbitrary congruence 8 € Con(S) the quotient
PCS S/ satisfies:

(a) if A C N**(5/6), then )" A exists;

(Sa0) , _
(b) if K C C(S/0), then Y K exists. |

Corollary 4.5. Let S be a PCS such that the Boolean algebra B(S/0) is
complete for arbitrary congruence § € Con(S). For arbitrary n > 1 the
following statesments are equivalent:

(i) Con(S) is an (Ly)-lattice,
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(ii) Con(S) is a relative (Ly,)-lattice,

(iii) S is an (Sy)-semilattice. |

References

[1] G. Grétzer, General Lattice Theory, Birkhduser-Verlag, Basel 1978.

[2] M. Haviar and T. Katrindk, Semi-discrete lattices with (Ly,)-congruence
lattices, Contribution to General Algebra 7 (1991), 189-195.

[3] K.B. Lee, Fquational classes of distributive pseudo-complemented
lattices, Canad. J. Math. 22 (1970), 881-891.

[4] H.P. Sankappanavar, Congruence lattices of pseudocomplemented semilat-
tices, Algebra Universalis 9 (1979), 304-316.

[5] H.P. Sankappanavar, On pseudocomplemented semilattices with Stone
congruence lattices, Math. Slovaca 29 (1979), 381-395.

[6] HP. Sankappanavar, On  pseudocomplemented  semilattices whose
congruence lattices are distributive, (preprint).

Received 27 October 1998
Revised 1 October 1999


http://www.tcpdf.org

