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Abstract

We investigate conditions for the existence of relative complements
in ordered sets. For relatively complemented ordered sets with 0 we
show that each element b # 0 is the least one of the set of all upper
bounds of all atoms contained in b.
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Let (A, <) be an ordered set and B C A. Denote by

L(B)={x € A; x <bforallbe B},
UB)={xecA; b<zforallbe B}.

If B = {b1,...,b,}, we shall write briefly L(b,...,b,) or U(by,...,by)
instead of L(B) or U(B), respectively. Moreover, for B,C C A we
write L(B,C) for L(BUC) and U(B,C) for U(B U C). Following [5], an
ordered set (A, <) is modular if for every a,b,c € A it holds:

a<c= Lic,U(a,b)) = L{U(a, L(b,c))).

Modular ordered sets were treated in [2], a special sort of them, the so called
distributive ordered sets were investigated in [2] and [4].

Let (A, <) be an ordered set and a € A. An element b € A is called a
complement of a if

L(U(a,b)) = A and U(L(a,b))=A.
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Complemented ordered sets were studied in [1]. A generalization of the
complement called a pseudocomplement in an ordered set was introduced
in [5].

It is well known that if L is a complemented modular lattice, then L is
also relatively complemented. The aim of our paper is to find a generaliza-
tion of this result for ordered sets. However, there are several possibilities
how to introduce the concept of a relative complement in an ordered set.
We can pick up the following two:

Definition. Let (A, <) be an ordered set, a,b € A and a < b. Let x €
[a,b] ={z€ A: a<z<b}. An element y € [a,b] is called a weak relative
complement of x in [a,b] if

U(z,y) N [a,b] = {b} and
L(z,y)Nla,b] = {a}.

An element y € [a, b] is called a strong relative complement of x in [a,b] if
U(z,y) =U(b) and L(x,y)= L(a).

An ordered set (5, <) is strongly relatively complemented if for every interval
[a,b] of S, each z € [a,b] has a strong relative complement in [a, b].

Of course, every strong relative complemnt of x € [a,b] is also a weak
relative complement of x in [a, b] but not vice versa.

For the sake of brevity, we will write Uy, 3 (@, y) or Lig (7, y) instead of
U(z,y) N|a,b] or L(z,y) N [a,b], respectively.

Theorem 1. Let (S, <) be a modular ordered set. Let a,b € S, a <b, and
x € [a,b]. Supposey € S is a complement of x. The set U(a, L(y,b)) has the
least element p if and only if the set L(U(a,y),b) has the greatest element
p; in such a case, p is a strong relative complement of x in [a,b].

Proof. Denote by A =U(a,L(y,b)) and B = L(U(a,y),b). Since (5, <) is
modular, we have

A=U(a, L(y,b)) = U(L(U(a,y),b)) = U(B),
B = L(U(a,y),b) = L(U(a, L(y,b))) = L(A).

(Let us note that the second line follows by an application of the dual of
modular law since modularity is selfdual, see [2], [3].) Hence, if p is the least
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element of A, then A = U(p) and B = L(A) = L(U(p)) = L(p), thus p is
the greatest element of B. Dually we can show the converse implication.
Moreover, the modularity of (S, <) yields

U(z,p) =U(x,L(p)) =U(z,B) =U(x)NUB)=U(x)NA=
= (1}) N U(a,L(y, b)) = U(.%',CL,L(y, b)) = U(va(yv b)) =
=U(L(U(z,y),b)) = U(L(b)) = U(b),

Example 1. Applying methods of [2], we can check that the set (S5, <) in
Figure 1 is modular.

b d
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Figure 1

Of course, L(U(z,y)) = L(®) = S and U(L(z,y)) = U(D) = S; thus y is a
complement of z in (S, <). Further, U(a, L(y,b)) = U(a,c) = U(p). Thus
(S, <), a,b, x,y satisfy the assumption of Theorem 1, and hence p is a strong
relative complement of z in [a, b].

Example 2. Let (S, <) be the ordered set depicted in Figure 2. S is modular
and the element y is a complement of . The set A = U(a, L(y,b)) =
U(a,c) = {b,d} has not a least element. The set B = L(U(a,y),b) =
L(d,b) = {a, c} has not a greatest element. It is easy to see that the element
x has not a weak relative complement in [a, b].
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Although Theorem 1 is a generalization of the well known lattice statement,
we can remove the assumption of modularity of (S, <) and the complemen-
tarity of x to obtain a bit more general result:

Theorem 2. Let (S, <) be an ordered set, let a,b € S, a < b, and z € [a,b].
If there exists an element y € S such that:

(i) the set L(U(a,y),b) has the greatest element e and the set U(a, L(y,b))
has the least element f,

(ii) the set L(U(a,y), ) has the greatest element a and the set U(x, L(y,b))
has the least element b,

then e and f are strong relative complements of x in |a,b].

Proof. Set A = U(a,L(y,b)) and B = L(U(a,y),b). By (i), there exist
e, feSwith A=U(f), B= L(e). Prove f <e:

Since ¢ < b for each ¢ € L(y,b), we have U(b) C U(L(y,b)). However,
a < byields U(b) C U(a), thus U(b) C L(a, L(y, b)), whence

(%) L(b) 2 L(U(a, L(y,b))) -

Analogously, ¢ < y for each ¢ € L(y,b) yields U(y) € U(L(y,b)), clearly
U(a,y) € U(a, L(y,b)), whence

(%) L(U(a,y)) 2 L(U(a, L(y,1))) -
Applying (x) and (**), we conclude

L(e) = B = L(U(a,y),b) 2 L(U(a, L(y,b))) = L(A) = LU(f)) = L(f),
i.e. L(e) 2 L(f) proving f <e.



RELATIVELY COMPLEMENTED ORDERED SETS 211

Moreover, (i) and (ii) imply

L(e,z) = L(e) N L(z) = BN L(x) = L(U(a,y),b) N L(x) =
L(U(a,y),b,z) = L(U(a,y),x) = L(a),

uf)nu(z ) ANU(z) =Ula, L(y, b)) N U(z) =
Ula, L(y,b), x) = U(L(y,b), z) )

U(f,=)

Further, we obtain

U(b) = U(b, L(U(a,y),b)) = U(b,B) = U(b, e) €
L(a) = L(a,U(a, L( y,0))) = L(a, A) = L(a, f) €
)

proving U(z,e) = U(b) and L(x, f) = L(a). Thus e and f are strong relative
complements of z in [a, ]. |

U(x,e) CU(x, f) =U(b),
L(z, f) € L(z,e) = L(a),

Example 3. It is easy to see that the ordered set (S, <) in Figure 3 is not
modular and for z,y, a,b we have x € [a,b] and

L(U(a,y),b) =
Ula, L(y, b)) = U(f),
L(U(a,y), )
Uz, L(y,b)) =U(b).

Figure 3

Hence, by Theorem 2, e and f are strong relative complements of z in [a, b].
An anologous result is valid also for weak relative complements:

Theorem 3. Let (S, <) be an ordered set, let a,b € S, a < b, and x € [a,b).
If there exists an element y € S such that:
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(i) the set L(U(a,y),b) has the greatest element e and the set U(a, L(y,b))
has the least element f,

(ii)* the set L(U(a,y),z) has a mazimal element a and the set U(z, L(y,b))
has a minimal element b,

then e and f are weak relative complements of x in [a,b].
Proof. The proof of f < e is the same as in that of Theorem 2.
Applying (i) and (ii)* we obtain
L L(z)NJa,b] = BN L(x) N [a,b] =
= L(U(a,y),b) N L(xz) N [a,b] = L(U(a,y),b,x) N[a,b] =
L y

and dually

Uy (fsz) =U(f)NU(z)Na,b] = ANU(x) N[a,b] =
(a,L(y,b))NU(x) Na,b] = U(a, L(y,b),z) N [a,b] =
(L(y7 b),SL‘) N [CL, b] = U[a,b](L(y’ b)vx) = U[a,b] (b) = {b}

U
U

Since f < e, we conclude

Ul (6)=U(b) N [a,b]=U (b, L(U(a,y),b)) N [a,b] =U (b, B) N [a, b] =
= U(b,¢)N[a,b] CU(z,e)N[a, )] CU(, f)N[a, 5] =U(b) N [a, b] = Ula ) (b),

whence Uy p)(7,e) = Ujgp(b). Dually, it can be shown that Ly, (z, f) =
Ligy(a). We have proved that e and f are weak relative complements of
in [a,b]. |

Example 4. Consider the ordered set (S, <) depicted in Figure 4. Al-
though (S, <) is not modular, the elements a,b,z,y satisfy (i) and (ii)*
of Theorem 3, thus e and f are weak relative complements of z in [a,b].
Moreover, the element x has no strong relative complement in [a, b], since
[a,b] = {a,b,,z,e, f} and for the only possible candidates e and f we have

L(e,z) = {a,y} # {a} = L(a),
Ule,x) = {b,h} # {b} = U(b),

analogously also for f.
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Now, we turn our attention to some aspects of atomicity in relatively com-
plemented ordered sets. In the case of lattices, it is well known that if
L is a relatively complemented lattice of finite length and b € L, b # 0,
then b = VA(b), where A(b) is the set of all atoms of L less or equal to
b (see e.g. [6]). In the case of ordered sets with 0 we investigate whether
U(A(b)) = U(b).

An element a of an ordered set (S, <) is called an atom if either a covers
0 whenever 0 is the least element of (S, <) or a is a minimal element of (S, <)
in the opposite case. For b € S, denote by A(b) the set of all atoms of S
below b. (5, <) is called atomic if for any b € S, b # 0 (whenever 0 in S
exists) there exists an atom a € S with a < b. It is almost evident that if
(S, <) is of a finite length, then (5, <) is atomic.

Theorem 4. Let (S, <) be a strongly relatively complemented ordered set of
a finite length with 0. If b € S and b # 0, then U(A(b)) = U(b).

Proof. If b is an atom in S, then A(b) = {b}, and hence U(A(b)) = U(b).
Suppose b is not an atom in S and b # 0. Since (S, <) is of a finite length

and hence atomic, there exists p; € A(b). Since (S, <) is strongly relatively
complemented, there exists ¢; € [0, ] with U(p1,c1) = U(b).

(a) If ¢; is an atom of (S, <) then ¢; < b implies ¢; € A(b). Denote by
D = A() \ {p1,c1}. Clearly U(D) 2 U(b) (since U(D) = S if D = () and,
for D # 0, d < b for each d € D. Then

U(A(b)) = U(pr,c1) NU(D) =U(b) NU(D) = U(b).

(b) Suppose ¢; is not an atom of (S,<). We can repeate the same
consideration for the element ¢; (instead of the element b), i.e. there exists
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p2 € A(c1) and ca € [0, ¢1] such that U(pa,ca) = U(er). Since (S, <) is of
a finite length, we will finish after n steps of this procedure to obtain an
element ¢, € S such that U(py,c,) = U(cn—1) and ¢, € A(cy—1). Denote
by Dy, = A(cn—1) \ {pn,cn}. Evidently, U(D,,) 2 U(cp—1) and

U(A(cn-1)) = Ulpn, cn) NU(Dy) = U(cn_1) NU(Dy) = Ulcn_1).

Further, let anl = A(Can)\{pnfla A(Cnfl)}' Cleaﬂy U(anl) 2 U(Cnf2)
and again

U(A(en—2)) = U(pn-1) NU(A(cn-1)) NU(Dp—1) =
= U(pnfl, Cnfl) N U(anl) = U(Cn72) N U(anl) = U(Can) .

Analogously we proceed to prove U(A(ci)) = Ulceg) for k =1,...,n. For
Dy = A(b) \ {p1, A(c1)} we have U(Dy) 2 U(b), thus also

U(A(b)) = U(p1) NU(A(e1)) NU(Dr) =
= U(p1) NU(e1) NU(Dy) = Ub) NU(Dy) = U(b). .

Example 5. Let (5, <) be the ordered set depicted in Figure 5. Then (S, <)
is strongly relatively complemented and of a finite length. For the element
b € S we really have A(b) = {a,c,d} and U(A(b)) = U(a,c,d) = U(b).

b

Figure 5
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Remark. If (S, <) is a strongly relatively complemented ordered set of a
finite length without 0, the assertion of Theorem 4 does not hold in general,
see, e.g., Figure 6, where A(b) = {a,c} but U(A(D)) = U(a,c) = U(d) =
{d, b} # {b} = U(b).

Figure 6

Moreover, b is not even a minimal element of U(A(b)). On the other hand,
we can state the following

Theorem 5. Let (S, <) be an ordered set, let b € S and b # 0 whenever 0
in S exists. If b covers an atom a and card (A(b)) > 2, then b is a minimal
element of U(A(b)).

Proof. Let b # 0 covers an atom a and let card (A(b)) > 2. Suppose b
is not minimal in U(A(b)). Then there exists m € U(A(b)) with m < b.
Since a € A(b), we conclude a < m < b. But b covers a, i.e. a = m, hence
a € U(A(b)) Since card (A(b)) > 2, there exists ¢ € A(b) with ¢ # a. It
is easy to check that ¢ and a are bot comparable. However a € U(A(b))
implies ¢ < a, a contradiction. [

Example 6. Let (S,<) be an ordered set with the diagram depicted in
Figure 7.
Then (5, <) has not 0 and it is not of a finite length. A(b) = {a,c}, i.e.

card (A(b)) = 2. In accordance with Theorem 5, b is a minimal element in
the set U(A(b)) = U(a.c) = {b,d1,da,...,e1,e2,...}. On the other hand

U(A(b)) # {b} = U(b).
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Figure 7

Remark. The condition “b covers an atom a” in Theorem 5 is not necessary.
For the set (5, <) in Figure 8 we have that b is the unique and hence minimal
element of U(A(b)) but b covers no atom of S.

b

Figure 8
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On the other hand, if b # 0 (whenever 0 in S exists) and b is not an atom of .S,
then, if b is minimal in U(A(b)), card (A(b)) > 2. Namely, if card (A(b)) = 0,
then A(b) = 0 and U(A(b)) = U(D) = S; thus b is a minimal element of S.
Since b # 0, S has not 0. However, b is not an atom, a contradiction. If
card (A(b)) = 1, then A(b) = {a} and a # b, i.e. U(A(b)) = U(a) and b
cannot be the minimal element of U(A(b)), a contradiction again.
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