RELATIVELY COMPLEMENTED ORDERED SETS

Ivan Chajda and Zuzana Morávková

Department of Algebra and Geometry, Palacký University of Olomouc Tomkova 40, 779 00 Olomouc, Czech Republic e-mail: chajda@risc.upol.cz

Abstract

We investigate conditions for the existence of relative complements in ordered sets. For relatively complemented ordered sets with 0 we show that each element $b \neq 0$ is the least one of the set of all upper bounds of all atoms contained in b.

Key words and phrases: modular ordered set, complemented, relatively complemented ordered set, atom.

1991 Mathematics Subject Classification: 06A99.

Let (A, \leq) be an ordered set and $B \subseteq A$. Denote by

$$L(B) = \{ x \in A; \ x \le b \text{ for all } b \in B \},\$$
$$U(B) = \{ x \in A; \ b \le x \text{ for all } b \in B \}.$$

If $B = \{b_1, \ldots, b_n\}$, we shall write briefly $L(b_1, \ldots, b_n)$ or $U(b_1, \ldots, b_n)$ instead of L(B) or U(B), respectively. Moreover, for $B, C \subseteq A$ we write L(B, C) for $L(B \cup C)$ and U(B, C) for $U(B \cup C)$. Following [5], an ordered set (A, \leq) is *modular* if for every $a, b, c \in A$ it holds:

$$a \le c \Rightarrow L(c, U(a, b)) = L(U(a, L(b, c))).$$

Modular ordered sets were treated in [2], a special sort of them, the so called distributive ordered sets were investigated in [2] and [4].

Let (A, \leq) be an ordered set and $a \in A$. An element $b \in A$ is called a *complement of a* if

$$L(U(a,b)) = A$$
 and $U(L(a,b)) = A$.

Complemented ordered sets were studied in [1]. A generalization of the complement called a pseudocomplement in an ordered set was introduced in [5].

It is well known that if L is a complemented modular lattice, then L is also relatively complemented. The aim of our paper is to find a generalization of this result for ordered sets. However, there are several possibilities how to introduce the concept of a relative complement in an ordered set. We can pick up the following two:

Definition. Let (A, \leq) be an ordered set, $a, b \in A$ and $a \leq b$. Let $x \in [a, b] = \{z \in A : a \leq z \leq b\}$. An element $y \in [a, b]$ is called a *weak relative complement of x in* [a, b] if

$$U(x,y) \cap [a,b] = \{b\} \quad \text{and} \\ L(x,y) \cap [a,b] = \{a\}.$$

An element $y \in [a, b]$ is called a strong relative complement of x in [a, b] if

U(x,y) = U(b) and L(x,y) = L(a).

An ordered set (S, \leq) is strongly relatively complemented if for every interval [a, b] of S, each $x \in [a, b]$ has a strong relative complement in [a, b].

Of course, every strong relative complement of $x \in [a, b]$ is also a weak relative complement of x in [a, b] but not vice versa.

For the sake of brevity, we will write $U_{[a,b]}(x,y)$ or $L_{[a,b]}(x,y)$ instead of $U(x,y) \cap [a,b]$ or $L(x,y) \cap [a,b]$, respectively.

Theorem 1. Let (S, \leq) be a modular ordered set. Let $a, b \in S$, $a \leq b$, and $x \in [a, b]$. Suppose $y \in S$ is a complement of x. The set U(a, L(y, b)) has the least element p if and only if the set L(U(a, y), b) has the greatest element p; in such a case, p is a strong relative complement of x in [a, b].

Proof. Denote by A = U(a, L(y, b)) and B = L(U(a, y), b). Since (S, \leq) is modular, we have

$$\begin{aligned} A &= U(a, L(y, b)) = U(L(U(a, y), b)) = U(B), \\ B &= L(U(a, y), b) = L(U(a, L(y, b))) = L(A). \end{aligned}$$

(Let us note that the second line follows by an application of the dual of modular law since modularity is selfdual, see [2], [3].) Hence, if p is the least

element of A, then A = U(p) and B = L(A) = L(U(p)) = L(p), thus p is the greatest element of B. Dually we can show the converse implication. Moreover, the modularity of (S, \leq) yields

$$\begin{split} U(x,p) &= U(x,L(p)) = U(x,B) = U(x) \cap U(B) = U(x) \cap A = \\ &= U(x) \cap U(a,L(y,b)) = U(x,a,L(y,b)) = U(x,L(y,b)) = \\ &= U(L(U(x,y),b)) = U(L(b)) = U(b), \\ L(x,p) &= L(x,U(p)) = L(x,A) = L(x) \cap L(A) = L(x) \cap B = \\ &= L(x) \cap L(U(a,y),b) = L(x,U(a,y),b) = L(x,U(a,y)) = \\ &= L(U(a,L(x,y))) = L(U(a)) = L(a). \end{split}$$

Example 1. Applying methods of [2], we can check that the set (S, \leq) in Figure 1 is modular.

Figure 1

Of course, $L(U(x, y)) = L(\emptyset) = S$ and $U(L(x, y)) = U(\emptyset) = S$; thus y is a complement of x in (S, \leq) . Further, U(a, L(y, b)) = U(a, c) = U(p). Thus (S, \leq) , a, b, x, y satisfy the assumption of Theorem 1, and hence p is a strong relative complement of x in [a, b].

Example 2. Let (S, \leq) be the ordered set depicted in Figure 2. S is modular and the element y is a complement of x. The set $A = U(a, L(y, b)) = U(a, c) = \{b, d\}$ has not a least element. The set $B = L(U(a, y), b) = L(d, b) = \{a, c\}$ has not a greatest element. It is easy to see that the element x has not a weak relative complement in [a, b].

Figure 2

Although Theorem 1 is a generalization of the well known lattice statement, we can remove the assumption of modularity of (S, \leq) and the complementarity of x to obtain a bit more general result:

Theorem 2. Let (S, \leq) be an ordered set, let $a, b \in S$, $a \leq b$, and $x \in [a, b]$. If there exists an element $y \in S$ such that:

- (i) the set L(U(a, y), b) has the greatest element e and the set U(a, L(y, b)) has the least element f,
- (ii) the set L(U(a, y), x) has the greatest element a and the set U(x, L(y, b)) has the least element b,

then e and f are strong relative complements of x in [a, b].

Proof. Set A = U(a, L(y, b)) and B = L(U(a, y), b). By (i), there exist $e, f \in S$ with A = U(f), B = L(e). Prove $f \leq e$:

Since $c \leq b$ for each $c \in L(y, b)$, we have $U(b) \subseteq U(L(y, b))$. However, $a \leq b$ yields $U(b) \subseteq U(a)$, thus $U(b) \subseteq L(a, L(y, b))$, whence

(*)
$$L(b) \supseteq L(U(a, L(y, b)))$$

Analogously, $c \leq y$ for each $c \in L(y, b)$ yields $U(y) \subseteq U(L(y, b))$, clearly $U(a, y) \subseteq U(a, L(y, b))$, whence

$$(**) L(U(a,y)) \supseteq L(U(a,L(y,b))).$$

Applying (*) and (**), we conclude

$$L(e) = B = L(U(a, y), b) \supseteq L(U(a, L(y, b))) = L(A) = L(U(f)) = L(f),$$

i.e. $L(e) \supseteq L(f)$ proving $f \le e$.

Moreover, (i) and (ii) imply

$$\begin{split} L(e,x) &= L(e) \cap L(x) = B \cap L(x) = L(U(a,y),b) \cap L(x) = \\ &= L(U(a,y),b,x) = L(U(a,y),x) = L(a) \,, \\ U(f,x) &= U(f) \cap U(x) = A \cap U(x) = U(a,L(y,b)) \cap U(x) = \\ &= U(a,L(y,b),x) = U(L(y,b),x) = U(b) \,. \end{split}$$

Further, we obtain

$$U(b) = U(b, L(U(a, y), b)) = U(b, B) = U(b, e) \subseteq U(x, e) \subseteq U(x, f) = U(b),$$

$$L(a) = L(a, U(a, L(y, b))) = L(a, A) = L(a, f) \subseteq L(x, f) \subseteq L(x, e) = L(a),$$

proving U(x, e) = U(b) and L(x, f) = L(a). Thus e and f are strong relative complements of x in [a, b].

Example 3. It is easy to see that the ordered set (S, \leq) in Figure 3 is not modular and for x, y, a, b we have $x \in [a, b]$ and

$$\begin{split} L(U(a, y), b) &= L(e), \\ U(a, L(y, b)) &= U(f), \\ L(U(a, y), x) &= L(a), \\ U(x, L(y, b)) &= U(b) \,. \end{split}$$

Hence, by Theorem 2, e and f are strong relative complements of x in [a, b].

An anologous result is valid also for weak relative complements:

Theorem 3. Let (S, \leq) be an ordered set, let $a, b \in S$, $a \leq b$, and $x \in [a, b]$. If there exists an element $y \in S$ such that:

- (i) the set L(U(a, y), b) has the greatest element e and the set U(a, L(y, b))has the least element f,
- (ii)* the set L(U(a, y), x) has a maximal element a and the set U(x, L(y, b))has a minimal element b,

then e and f are weak relative complements of x in [a, b].

Proof. The proof of $f \le e$ is the same as in that of Theorem 2. Applying (i) and (ii)* we obtain

$$\begin{split} L_{[a,b]}(e,x) &= L(e) \cap L(x) \cap [a,b] = B \cap L(x) \cap [a,b] = \\ &= L(U(a,y),b) \cap L(x) \cap [a,b] = L(U(a,y),b,x) \cap [a,b] = \\ &= L(U(a,y),x) \cap [a,b] = L_{[a,b]}(U(a,y),x) = L_{[a,b]}(a) = \{a\} \end{split}$$

and dually

$$\begin{split} U_{[a,b]}(f,x) \ &= U(f) \cap U(x) \cap [a,b] = A \cap U(x) \cap [a,b] = \\ &= U(a,L(y,b)) \cap U(x) \cap [a,b] = U(a,L(y,b),x) \cap [a,b] = \\ &= U(L(y,b),x) \cap [a,b] = U_{[a,b]}(L(y,b),x) = U_{[a,b]}(b) = \{b\} \,. \end{split}$$

Since $f \leq e$, we conclude

$$\begin{split} U_{[a,b]}(b) = & U(b) \cap [a,b] = U(b,L(U(a,y),b)) \cap [a,b] = U(b,B) \cap [a,b] = \\ = & U(b,e) \cap [a,b] \subseteq U(x,e) \cap [a,b] \subseteq U(x,f) \cap [a,b] = U(b) \cap [a,b] = U_{[a,b]}(b), \end{split}$$

whence $U_{[a,b]}(x,e) = U_{[a,b]}(b)$. Dually, it can be shown that $L_{[a,b]}(x,f) = L_{[a,b]}(a)$. We have proved that e and f are weak relative complements of x in [a,b].

Example 4. Consider the ordered set (S, \leq) depicted in Figure 4. Although (S, \leq) is not modular, the elements a, b, x, y satisfy (i) and (ii)* of Theorem 3, thus e and f are weak relative complements of x in [a, b]. Moreover, the element x has no strong relative complement in [a, b], since $[a, b] = \{a, b, x, e, f\}$ and for the only possible candidates e and f we have

$$\begin{split} L(e, x) &= \{a, y\} \neq \{a\} = L(a), \\ U(e, x) &= \{b, h\} \neq \{b\} = U(b) \,, \end{split}$$

analogously also for f.

Figure 4

Now, we turn our attention to some aspects of atomicity in relatively complemented ordered sets. In the case of lattices, it is well known that if L is a relatively complemented lattice of finite length and $b \in L$, $b \neq 0$, then $b = \forall A(b)$, where A(b) is the set of all atoms of L less or equal to b (see e.g. [6]). In the case of ordered sets with 0 we investigate whether U(A(b)) = U(b).

An element a of an ordered set (S, \leq) is called an *atom* if either a covers 0 whenever 0 is the least element of (S, \leq) or a is a minimal element of (S, \leq) in the opposite case. For $b \in S$, denote by A(b) the set of all atoms of S below b. (S, \leq) is called *atomic* if for any $b \in S$, $b \neq 0$ (whenever 0 in S exists) there exists an atom $a \in S$ with $a \leq b$. It is almost evident that if (S, \leq) is of a finite length, then (S, \leq) is atomic.

Theorem 4. Let (S, \leq) be a strongly relatively complemented ordered set of a finite length with 0. If $b \in S$ and $b \neq 0$, then U(A(b)) = U(b).

Proof. If b is an atom in S, then $A(b) = \{b\}$, and hence U(A(b)) = U(b). Suppose b is not an atom in S and $b \neq 0$. Since (S, \leq) is of a finite length and hence atomic, there exists $p_1 \in A(b)$. Since (S, \leq) is strongly relatively complemented, there exists $c_1 \in [0, b]$ with $U(p_1, c_1) = U(b)$.

(a) If c_1 is an atom of (S, \leq) then $c_1 \leq b$ implies $c_1 \in A(b)$. Denote by $D = A(b) \setminus \{p_1, c_1\}$. Clearly $U(D) \supseteq U(b)$ (since U(D) = S if $D = \emptyset$ and, for $D \neq \emptyset$, $d \leq b$ for each $d \in D$. Then

$$U(A(b)) = U(p_1, c_1) \cap U(D) = U(b) \cap U(D) = U(b).$$

(b) Suppose c_1 is not an atom of (S, \leq) . We can repeat the same consideration for the element c_1 (instead of the element b), i.e. there exists

 $p_2 \in A(c_1)$ and $c_2 \in [0, c_1]$ such that $U(p_2, c_2) = U(c_1)$. Since (S, \leq) is of a finite length, we will finish after n steps of this procedure to obtain an element $c_n \in S$ such that $U(p_n, c_n) = U(c_{n-1})$ and $c_n \in A(c_{n-1})$. Denote by $D_n = A(c_{n-1}) \setminus \{p_n, c_n\}$. Evidently, $U(D_n) \supseteq U(c_{n-1})$ and

$$U(A(c_{n-1})) = U(p_n, c_n) \cap U(D_n) = U(c_{n-1}) \cap U(D_n) = U(c_{n-1}).$$

Further, let $D_{n-1} = A(c_{n-2}) \setminus \{p_{n-1}, A(c_{n-1})\}$. Clearly $U(D_{n-1}) \supseteq U(c_{n-2})$
and again

$$U(A(c_{n-2})) = U(p_{n-1}) \cap U(A(c_{n-1})) \cap U(D_{n-1}) =$$

= $U(p_{n-1}, c_{n-1}) \cap U(D_{n-1}) = U(c_{n-2}) \cap U(D_{n-1}) = U(c_{n-2}).$

Analogously we proceed to prove $U(A(c_k)) = U(c_k)$ for k = 1, ..., n. For $D_1 = A(b) \setminus \{p_1, A(c_1)\}$ we have $U(D_1) \supseteq U(b)$, thus also

$$U(A(b)) = U(p_1) \cap U(A(c_1)) \cap U(D_1) =$$

= $U(p_1) \cap U(c_1) \cap U(D_1) = U(b) \cap U(D_1) = U(b)$.

Example 5. Let (S, \leq) be the ordered set depicted in Figure 5. Then (S, \leq) is strongly relatively complemented and of a finite length. For the element $b \in S$ we really have $A(b) = \{a, c, d\}$ and U(A(b)) = U(a, c, d) = U(b).

Figure 5

Remark. If (S, \leq) is a strongly relatively complemented ordered set of a finite length without 0, the assertion of Theorem 4 does not hold in general, see, e.g., Figure 6, where $A(b) = \{a, c\}$ but $U(A(b)) = U(a, c) = U(d) = \{d, b\} \neq \{b\} = U(b)$.

Figure 6

Moreover, b is not even a minimal element of U(A(b)). On the other hand, we can state the following

Theorem 5. Let (S, \leq) be an ordered set, let $b \in S$ and $b \neq 0$ whenever 0 in S exists. If b covers an atom a and card $(A(b)) \geq 2$, then b is a minimal element of U(A(b)).

Proof. Let $b \neq 0$ covers an atom a and let $card(A(b)) \geq 2$. Suppose b is not minimal in U(A(b)). Then there exists $m \in U(A(b))$ with m < b. Since $a \in A(b)$, we conclude $a \leq m < b$. But b covers a, i.e. a = m, hence $a \in U(A(b))$ Since $card(A(b)) \geq 2$, there exists $c \in A(b)$ with $c \neq a$. It is easy to check that c and a are bot comparable. However $a \in U(A(b))$ implies $c \leq a$, a contradiction.

Example 6. Let (S, \leq) be an ordered set with the diagram depicted in Figure 7.

Then (S, \leq) has not 0 and it is not of a finite length. $A(b) = \{a, c\}$, i.e. card(A(b)) = 2. In accordance with Theorem 5, b is a minimal element in the set $U(A(b)) = U(a.c) = \{b, d_1, d_2, \ldots, e_1, e_2, \ldots\}$. On the other hand $U(A(b)) \neq \{b\} = U(b)$.

Remark. The condition "b covers an atom a" in Theorem 5 is not necessary. For the set (S, \leq) in Figure 8 we have that b is the unique and hence minimal element of U(A(b)) but b covers no atom of S.

Figure 8

On the other hand, if $b \neq 0$ (whenever 0 in S exists) and b is not an atom of S, then, if b is minimal in U(A(b)), $card(A(b)) \geq 2$. Namely, if card(A(b)) = 0, then $A(b) = \emptyset$ and $U(A(b)) = U(\emptyset) = S$; thus b is a minimal element of S. Since $b \neq 0$, S has not 0. However, b is not an atom, a contradiction. If card(A(b)) = 1, then $A(b) = \{a\}$ and $a \neq b$, i.e. U(A(b)) = U(a) and b cannot be the minimal element of U(A(b)), a contradiction again.

References

- [1] I. Chajda, Complemented ordered sets, Arch. Math. (Brno) 28 (1992), 25-34.
- [2] I. Chajda and J. Rachůnek, Forbidden configurations for distributive and modular ordered sets, Order 5 (1989), 407–423.
- [3] R. Halaš, Pseudocomplemented ordered sets, Arch. Math. (Brno) 29 (1993), 153-160.
- [4] J. Niederle, Boolean and distributive ordered sets, Order 12 (1995), 189–210.
- [5] J. Rachůnek and J. Larmerová, Translations of modular and distributive ordered sets, Acta Univ. Palacký Olomouc, Fac. Rerum Nat., Math., 31 (1988), 13–23.
- [6] V.N. Salij, Lettices with Unique Complementations (Russian), Nauka, Moskva 1984.

Received 21 September 1998 Revised 7 June 1999