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Abstract

Let A,D, K, k ∈ N with D square free and 2 |/k, B = 1, 2 or 4
and µi ∈ {−1, 1}(i = 1, 2), and let h(−21−eD)(e = 0 or 1) denote
the class number of the imaginary quadratic field Q(

√−21−eD). In
this paper, we give the all-positive integer solutions of the Diophantine
equation Ax2 +µ1B = K

(
(Ay2 +µ2B)/K

)n
, 2 |/ n, n > 1 and we prove

that if D > 1, then h(−21−eD) ≡ 0(mod n), where D, and n satisfy
kn − 2e+1 = Dx2, x ∈ N, 2 |/ n, n > 1. The results are valuable for the
realization of quadratic field cryptosystem.
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1. Introduction

Let Z, N, Q be the sets of integers, positive integers and rational numbers,
respectively. Let A,K ∈ N, B = 1, 2 or 4, µi ∈ {−1, 1}(i = 1, 2) and
throughout this paper, we assume that if pa‖K for each prime divisor p | K,
then a < n. We study the positive integer solutions of the Diophantine
equation

(1.1) Ax2 + µ1B = K((Ay2 + µ2B)/K)n, where 2 |/n, n > 1.
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In 1979, K. Inkeri in [9] proved that if k > 2, then the equation 2y2 = 7k +1
has no positive integer solution. In 1987, we proved in [2] and [3] that
the equation Dy2 = (Dx2 + 1)k − 1, for k > 2, D ∈ N, has only positive
integer solutions (x, y, D, k) = (1, 11, 2, 5) and (1, 20, 6, 4), and the equation
Dy2 = (Dx2 − 1)k + 1, k > 1, D ∈ N has only positive integer solutions
(x, y, D, k) = (1, 1, 2, k) and (2, 5, 2, 2).

Clearly, the equations Dy2 = (Dx2 + 1)k − 1 and Dy2 = (Dx2− 1)k + 1
is a special case of (1.1) when A = D, µ1 = µ2, B = 1,K = 1 respectively.

In this paper, we first prove a general result on equation (1.1). Next
using the general result, we provide results on the divisibility of the class
number of imaginary quadratic fields. Let D ∈ N be square free, and let
h(−21−eD)(e = 0 or 1) denote the class number of the imaginary quadratic
field Q(

√−21−eD). Furthermore, let k, n ∈ N with 2 |/ kn, k > 1, n > 1,
and

kn − 2e+1 = Dx2, x ∈ N.

We prove that if D > 1, then

(1.2) h(−21−eD) ≡ 0(mod n).

In 1996, a result of R.A. Mollin shows in [12] only that if x = 1 then (1.2)
holds.

Let s = 0, 1, 2 and y ∈ N with 2 |/ y when s = 0 or 1. If x, n ∈ N satisfy

(1.3) 2syn − 1 = Dx2(s = 0, 1, 2), y > 1, 2 |/n, n > 1,

then h(−D) ≡ 0(mod n), where h(−D) is the class number of imaginary
quadratic field Q(

√−D). These are a well-known results of Sto/rmer [15]
(for D = 1, s = 1), Lebesgue [10] (for D = 1, s = 0), Nagell [13] (for s = 0)
and Ljunggren [11] (for s = 1, 2) on equation (1.3). We also obtain a general
method to proof of the well-known results.

By the way, the results of this paper are also valuable for the realization
of quadratic field cryptosystem (see [1]).

2. A kind of Diophantine equations

In this section, we give all positive integer solutions of (1.1) by using some
recent results of the generalized Pell’s equation. We have

Theorem 2.1. The Diophantine equation

(2.1) Ax2 + µ1 = K((Ay2 + µ2)/K)n, 2 |/n, n > 1
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has a positive integer solution if and only if µ1 = µ2, and all positive integer
solutions of (2.1) satisfy
(A) x = y,K = Ay2 + µ2; or
(B) Ay2 = 3K − µ2, K = (3(n−3)/2 + µ2)/4,

x = y(48K2 − 16µ2K + 1) · 3−(n−3)/2,
where n > 3, n ≡ µ2(mod 4).

Theorem 2.2. If A 6= 2, then the Diophantine equation

(2.2) Ax2 + 2µ1 = K((Ay2 + 2µ2)/K)n, 2 |/n, n > 1

has a positive integer solution if and only if µ1 = µ2, and all positive integer
solutions of (2.2) satisfy
(C) x = y, K = Ay2 + 2µ2; or
(D) Ay2 = 3K − 2µ2, K = (3(n−3)/2 + µ2)/2,

x = y(12K2−8µ2K+1)·3−(n−3)/2, where n ≥ 3, and n > 3 if µ2 = −1.

Theorem 2.3. If A 6= 4, then all positive integer solutions of the Diophan-
tine equation

(2.3) Ax2 + 4µ1 = K((Ay2 + 4µ2)/K)n, 2 |/n, n > 1

satisfy µ1 = 1, µ2 = −1, x = 11, y = 3,K = 1, n = 3, A = 1; or µ1 = µ2 =
1, x = 11, y = 1,K = 1, n = 3, A = 1; or µ1 = µ2 and
(E) x = y, K = Ay2 + 4µ2; or
(F) Ay2 = 3K − 4µ2,K = 3(n−3)/2 + µ2, x = y(3K2− 4µ2K + 1) · 3−(n−3)/2,
where n ≥ 3, and n > 3 if µ2 = −1.

From Theorem 2.3, we know that
(I) the equation Ax2+4µ = K((Ay2−4µ)/K)n(µ ∈ {−1, 1}, n odd > 1)

has only positive integer solution µ = 1, x = 11, y = 3,K = 1, n = 3, A = 1,
and

(II) the equation Ax2 + 4 = K((Ay2 + 4)/K)n(n odd > 1) has only
positive integer solutions x = 11, y = 1,K = 1, n = 3, A = 1; x = y,K =
Ay2+4, and x = y(3K2−4K+1)·3−(n−3)/2,K = 3(n−3)/2+1, Ay2 = 3K−4,
where n ≥ 3.

For example, the equation Ax2 + 4 = (Ay2 + 4)n(n odd > 1) has only
positive integer solution x = 11, y = 1, n = 3, A = 1, and the equation
Ax2 + 4 = 2((Ay2 + 4)/2)n(n odd > 1) has only positive integer solution
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x = 5, y = 1, n = 3, A = 2, and the equation Ax2 + 4 = 3((Ay2 + 4)/3)n

(n odd > 1) has no positive integer solutions, etc.
We need some lemmas to prove our theorems.

Lemma 2.4. Let ε and Ω be the fundamental solution of Pell’s equation
x2 −Dy2 = 1 and x2 −Dy2 = 4 respectively. Then

ε = 2st2 + µ + 2t
√

D if D = s(st2 + µ), s, t ∈ N, µ ∈ {−1, 1};

ε = st2 + µ + t
√

D if D = s(st2 + 2µ), s, t ∈ N, µ ∈ {−1, 1};
Ω = st2 + 2µ + t

√
D ‘if D = s(st2 + 4µ), s, t ∈ N, µ ∈ {−1, 1}.

Proof. See Z. Cao and A. Grytczuk [7]. The part results of Lemma 2.4
first appeared in the papers by C. Richaud [14] and G. Degert [8].

Lemma 2.5. Let a, b ∈ N. If u, v ∈ N satisfy au2 − bv2 = 1, and u |∗ a
or v |∗ b, where symbol u |∗ a means that every prime factor of u divides a,
then

au2 + bv2 + 2uv
√

ab = ε or ε3,

where ε is the fundamental solution of Pell’s equation x2 − aby2 = 1.

Proof. See also [16], for an equivalent result by D.T. Walker. Also, Lemma
2.5 follows directly from a general result by Z. Cao in [4].

Lemma 2.6. Let a, b ∈ N with a 6= 2. If u, v ∈ N satisfy au2 − bv2 = 2,
and u |∗ a or v |∗ b, then

1
2
(au2 + bv2) + uv

√
ab = ε or ε3,

where ε is the fundamental solution of Pell’s equation x2 − aby2 = 1.

Proof. See Z. Cao [4].

Lemma 2.7. Let a, b ∈ N with a 6= 4. If u, v ∈ N satisfy au2 − bv2 = 4,
and u |∗ a or v |∗ b, then

1
2
(au2 + bv2) + uv

√
ab = Ω or

1
4
Ω3,
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except a = 5, b = 1, u = 5, v = 11, where Ω is the fundamental solution of
Pell’s equation x2 − aby2 = 4.

Proof. See Z. Cao [5].

Proof of Theorem 2.1. The sufficiency of the theorem is clear. Thus,
we prove the necessity. Now we assume that (2.1) has a solution. From
(2.1), we know that K | Ay2 +µ2. Put (X, Y ) = (x, ((Ay2 +µ2)/K)(n−1)/2).
Then (2.1) gives

(2.4) AX2 − (Ay2 + µ2)Y 2 = −µ1.

Since Y |∗ (Ay2 + µ2), by (2.4) from Lemma 2.4 and Lemma 2.5, we have

(2.5) AX2 + (Ay2 + µ2)Y 2 + 2XY
√

A(Ay2 + µ2) = ε or ε3,

ε = 2Ay2 + µ2 + 2y
√

A(Ay2 + µ2).

We see that (2.5) gives

(2.6) AX2 + (Ay2 + µ2)Y 2 = 2Ay2 + µ2, XY = y,

or

(2.7) AX2+(Ay2+µ2)Y 2 = (2Ay2+µ2)((2Ay2+µ2)2+12Ay2(Ay2+µ2)),

(2.8) XY = y(3(2Ay2 + µ2)2 + 4Ay2(Ay2 + µ2)).

From (2.6) and (2.4), we get

2(Ay2 + µ2)Y 2 = 2Ay2 + µ2 + µ1, XY = y,

and so µ1 = µ2, Y = 1, X = y i.e. x = y, K = Ay2 + µ2.
From (2.7) and (2.4), we have

2(Ay2 + µ2)Y 2 = µ1 + (2Ay2 + µ2)((2Ay2 + µ2)2 + 12Ay2(Ay2 + µ2))

= µ1 + (2Ay2 + µ2)(16A2y4 + 16µ2Ay2 + 1)

= µ1 + (2Ay2 + µ2) · 16Ay2(Ay2 + µ2) + (2Ay2 + µ2)

= (2Ay2 + µ2) · 16Ay2(Ay2 + µ2) + (2Ay2 + µ2 + µ1),
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and so µ1 = µ2, Y = 4Ay2 + µ2. Hence

(2.9) ((Ay2 + µ2)/K)(n−1)/2 = Y = 4Ay2 + µ2 = 4(Ay2 + µ2)− 3µ2,

and so (Ay2 + µ2)/K | 3, (Ay2 + µ2)/K = 3 since (Ay2 + µ2)/K = 1 is
impossible. So Ay2 = 3K − µ2 and K = (3(n−3)/2 + µ2)/4 by (2.9), and
x = y(48K2 − 16µ2K + 1) · 3−(n−3)/2 by (2.8). The theorem is proved.

A proof of Theorem 2.2 and Theorem 2.3 is similar to the process of the
proof of Theorem 2.1 by using Lemma 2.6 and Lemma 2.7 respectively, and
so the proof is omitted.

3. The class number of imaginary quadratic fields

Let D be a positive integer which is square free, and let h(−21−eD)
(e = 0 or 1) denote the class number of the imaginary quadratic field
Q(
√−21−eD). Furthermore, let k, n ∈ N with 2 |/ kn, k > 1, n > 1, and

(3.1) kn − 2e+1 = Dx2, x ∈ N.

We prove the following result.

Theorem 3.1. If D > 1, then h(−21−eD) ≡ 0(modn).
From Theorem 3.1, we get that if D = 3, 5, 7, 11, 15, 17, 21, 33, 35, 39, or

41, then equation (3.1) has no positive integer solutions.
For the Diophantine equations

(3.2) 1 + Dx2 = 2syn (s = 0, 1, 2), 2 |/n, n > 1,

using the above method, we can give a general new proof of a well-known
results by Sto/rmer [15], Lebesgue [10], Nagell [13] and Ljunggren [11] on
equation (3.2).

Now, we only give the proof of Theorem 3.1. We need a lemma.

Lemma 3.2. Let c, d be two square-free positive integers such that (c, d) =
1 and let h(−cd) be the class number of the imaginary quadratic field
Q(
√−cd). Then every integer solution (x, y, z, n) of the equation

cx2 + dy2 = zn, (x, y) = 1

can be expressed as zt = (ca2 + db2)/λ2, n = n1t,

x
√

c + y
√
−d = ((a

√
c + b

√
−d)/λ)n1 ,
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where

t = (n, h(−cd)), (a, b) =





1,

1 or 2,
λ =





1, if 3 |/n1,

2, if 3 | n1.

Proof. It is easy to see from the proof of lemma in [6].

Proof of Theorem 3.1. Let (n, h(−21−eD)) = t, and let n = n1t. If
n1 = 1, then the theorem is proved. Otherwise, n1 > 1. By Lemma 3.2, we
have that all integer solutions of (3.1) satisfy

(3.3) x
√

D + 2e
√
−21−e = ((a

√
D + b

√
−21−e)/λ)n1 , 2 |/n1,

(3.4) kt = (Da2 + 21−eb2)/λ2,

where a, b, t, n1 and λ are defined in Lemma 3.2. If 3 | n1, then λ = 2, (a, b) =
1 or 2. Hence, there exist a′, b′ ∈ Z such that

(a′
√

D + b′
√
−21−e)/2 = ((a

√
D + b

√
−21−e)/2)n1/3,

where (a′, b′) = 1 or 2. So (3.3) gives

(3.5) x
√

D + 2e
√
−21−e = ((a′

√
D + b′

√
−21−e)/2)3,

and so

(3.6) 8x = a′(Da′2 − 3 · 21−eb′2), 2e+3 = b′(3Da′2 − 21−eb′2).

Clearly, if e = 0, then 2 | a′, 2 | b′, and if e = 1 and 2 |/ b′, then the
second equality of (3.6) is impossible. Therefore, we have 2 | a′, 2 | b′.
Let a′ = 2a′′, b′ = 2b′′, a′′, b′′ ∈ Z. Then the second equality of (3.6) gives
2e = b′′(3Da′′2 − 21−eb′′2) and so Da′′2 = 1, which is a contradiction since
D > 1.

If 3 |/ n1, then λ = 1 and (a, b) = 1. From (3.3), we get b | 2e, and so
b = ±2e. Therefore, kt = Da2 + 21+e by (3.4). Then by (3.1) we have

(3.7) (Da2 + 21+e)n1 = Dx2 + 21+e.

By Theorem 2.2 and Theorem 2.3, we easily see that (3.7) gives D = 1 and
n1 = 3. This contradicts our assumption. The theorem is proved.
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