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Abstract

In this paper we consider some special classes of Diophantine
equations connected with McFarland’s and Ma’s conjectures about
difference sets in abelian groups and we obtain an extension of known
results.
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1. Introduction

Let G be finite multiplicative group of order v. A k-subset D of G is called
a (v, k, λ)-difference set in G if and only if the ”differences” d1d

−1
2 for

d1, d2 ∈ D with d1 6= d2, give every nonidentity element of G precisely λ
times. If G is abelian, then D is called an abelian difference set.

1Supported by National Natural Science Foundation of China and Heilongjiang
Province Natural Science Foundation.
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An important concept in the theory of difference sets is the concept of
multipliers. A multiplier is an integer t such that

{
dt : d ∈ D

}
= Dg for

some ”translate” Dg of D.
One of the unsolved problems concerning difference sets with −1 as a

multiplier is McFarland’s conjecture (see, K.T. Arasu [1]):

Conjecture 1. If a nontrivial (v, k, λ)-difference set exists in an abelian
group with −1 as a multiplier, then either v = 4n, where n = k − λ = 625
or v = 4000.

S.L. Ma [8] posed the following two number-theoretic conjectures that would
imply Conjecture 1:

Conjecture 2. Let p be an odd prime and a, b, t, r ∈ N . Then

(A) Y = 22ap2t − 22apt+r + 1 is a square if and only if t = r;

(B) Z = 22b+2p2t − 2b+2pt+r + 1 is a sqare

if and only if p = 5, b = 3, t = 1, r = 2.

In the paper [8], Ma also obtained some partial results concerning Conjecture
2, namely:

Result 1. If Y in (A) is square, then r ≤ t < 2r.

Result 2. If Z in (B) is square, then t < r.

In 1994 the first author claimed (see [2]) that the Conjecture 2 holds.
Recently, Yongdong Guo in the paper [7] gave a generalization of

Result 1, proving that if k > 1 is odd and r < t < 2r, then the exponential
Diophantine equation:

x2 = 22ak2t − 22akt+r + 1, where x, a, k, t, r ∈ N(1)

has no solution.

Let
x, y, a, b, ki, ti, ri ∈ N , i = 1, 2, . . . , s, and δ ∈ {−1, 1} .
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In the present paper we consider the following Diophantine equations:

x2 = 22ak2t1
1 . . . k2ts

s y2 − 2a+bkt1+r1
1 . . . kts+rs

s δ + 1;(2)

x2 = k2t1
1 . . . k2ts

s y2 − 2ekt1+r1
1 . . . kts+rs

s δ + 2, where e ∈ {0, 1} ;(3)

and
x2 = k2t1

1 . . . k2ts
s y2 − 4kt1+r1

1 . . . kts+rs
s δ + 4.(4)

We prove the following results:

Theorem 1. Consider equation (2) with ti > ri for i = 1, 2, . . . , s,
a > b, and add y. Then Diophantine equation (2) has only solution given
by formulas:

x = 2a+b−1kt1+r1
1 . . . kts+rs

s − δ and y = 2b−1kr1
1 . . . krs

s .

If a = b and y odd, then Diophantine equation (2) has only solution given
by formulas:

x = 2kt1+r1
1 ...kts+rs

s − δ, y = kr1
1 ...krs

s and 2 |/k1...ks.

From the Theorem 1 follows the following:

Corollary. If t > r, then Diophantine equation (1) has no solution.

Theorem 2. If ti > ri for i = 1, 2, . . . , s, then Diophantine equation (3)
has no solution.

Theorem 3. If ti > ri for i = 1, 2, . . . , s, then Diophantine equation (4)
has only solution given by formulas

x = kt1+r1
1 . . . kts+rs

s − 2δ and y = kr1
1 . . . krs

s .

Moreover, we can also prove similar results on the following Diophantine
equations:

x2 = 22ak2t1
1 . . . k2ts

s y2 − 2a+bkt1+r1
1 . . . kts+rs

s δ − 1,(5)

x2 = k2t1
1 . . . k2ts

s y2 − 2ekt1+r1
1 . . . kts+rs

s δ − 2,(6)

x2 = k2t1
1 . . . k2ts

s y2 − 4kt1+r1
1 . . . kts+rs

s δ − 4,(7)

with the corresponding restrictions as in (2), (3) and (4).
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2. Basic Lemmas

Let D ∈ N be a non-square and let y|∗D denote that D is divided exactly
by each prime factor of y.

Lemma 1 ([3], p. 154–155, cf. [9]). If x1, y1 ∈ N , x2
1 − Dy2

1 = 1 and
x1 > 1

2y2
1 − 1, then x1 + y1

√
D is the fundamental solution of the Pell’s

equation

x2 −Dy2 = 1.(8)

If x1, y1 ∈ N , x2
1 − Dy2

1 = 4 and x2
1 > y2

1 − 2, then x1 + y1

√
D is the

fundamental solution of the Diophantine equation

x2 −Dy2 = 4.(9)

Lemma 2 ([11]). If x1, y1 ∈ N , x2
1 −Dy2

1 = 1 and y1|∗D, then x1 + y1

√
D

is the fundamental solution of the Pell’s equation (8).

Lemma 3 ([4]). Let a, b, x1, y1 ∈ N , a 6= 2 and ax2
1 − by2

1 = 2, D = ab. If
a = 1, y1|∗b, then 1

2

(
x2

1 + by2
1

)
+ x1y1

√
b is the fundamental solution of the

Pell’s equation (8).
If x1|∗a or y1|∗b, then 1

2

(
ax2

1 + by2
1

)
+ x1y1

√
ab = ε or is equal to ε3,

where ε is the fundamental solution of the Pell’s equation (8).

Lemma 4 ([5]). Let a, b, x1, y1 ∈ N , a 6= 4 and ax2
1 − by2

1 = 4, D = ab. If
a = 1, y1|∗b, then x1 + y1

√
b is the fundamental solution of equation (9).

If x1|∗a or y1|∗b, then 1
2

(
ax2

1 + by2
1

)
+ x1y1

√
ab = ω or is equal to 1

4ω3,
except when a = 5, b = 1, x1 = 5, y1 = 11, where ω is the fundamental
solution of equation (9).

From Lemma 1 one can deduce the following:

Lemma 5 (see also [6] and [10]). Let ε be the fundamental solution of
Pell’s equation (8). If D = s

(
st2 − δ

)
, with s, t ∈ N , and s > 1, then

ε = 2st2 − δ + 2t
√

D.

If D = s
(
st2 − 2δ

)
> 0, with s, t ∈ N , and δ ∈ {−1, 1} , then ε =

st2 − δ + t
√

D.

If D = s
(
st2 − 4δ

)
> 0, with s, t ∈ N , then st2 − 2δ + t

√
D is the

fundamental solution of equation (9).
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3. Proof of Theorems

Proof of Theorem 1. From (2) we have

x2 =2a−bkt1−r1
1 . . . kts−rs

s

(
2a−bkt1−r1

1 . . . kts−rs
s y2−δ

)(
2bkr1

1 . . . krs
s

)
2+1.(10)

Putting in (10) X = x, t = y, s = 2a−bkt1−r1
1 . . . kts−rs

s and Y = 2bkr1
1 . . . krs

s

we obtain

X2 − s
(
st2 − δ

)
Y 2 = 1.(11)

By Lemma 5, it follows that the fundamental solution of the Pell’s equation:
U2 − s

(
st2 − δ

)
V 2 = 1 is given by ε = 2st2 − δ + 2t

√
s (st2 − δ).

On the other hand we have Y |∗s (
st2 − δ

)
, therefore from Lemma 2 and

(11), we obtain X+Y
√

s (st2 − δ) = 2st2−δ+2t
√

s (st2 − δ), so X = 2st2−δ
and Y = 2t.

The proof of the Theorem 1 is complete.

Proof of Theorem 2. From (3) we obtain

x2 = kt1−r1
1 . . . kts−rs

s

(
kt1−r1

1 . . . kts−rs
s y2 − 2eδ

)
(kr1

1 . . . krs
s )2 + 2.(12)

Applying Lemma 3 to (12), we get

ε=
1
2

(
x2+kt1−r1

1 . . . kts−rs
s

(
kt1−r1

1 . . . kts−rs
s y2−2eδ

)
(kr1

1 . . . krs
s )2

)
+(13)

+xkr1
1 . . . krs

s

√
D,

where ε is the fundamental solution of Pell’s equation (8) and

D = kt1−r1
1 . . . kts−rs

s

(
kt1−r1

1 . . . kts−rs
s y2 − 2eδ

)
.

Hence, by Lemma 5 it follows that

ε =





2kt1−r1
1 . . . kts−rs

s y2 − δ + 2y
√

D, if e = 0

kt1−r1
1 . . . kts−rs

s y2 − δ + y
√

D, if e = 1
,

and consequently, we see that (13) is impossible. The proof of the Theorem
2 is complete.

Remark. The proof of the Theorem 3 is completely similar to the proof
of the Theorem 1.



198 Z. Cao and A. Grytczuk

References

[1] K.T. Arasu, Recent results on difference sets, p. 1–23 in: “Coding Theory and
Design Theory”, Part II, Springer-Verlag, Berlin-New York 1990.

[2] Z. Cao, Some Diophantine equations in difference sets, a lecture in: “5-th
National Combinatorial Mathematics Conference”, Shanghai 1994.

[3] Z. Cao, “Introduction to Diophantine equations” (Chinese), Harbin Inst. of
Technology Press, Harbin 1989.

[4] Z. Cao, On the equation axm − byn = 2, Chinese Sci. Bull. 35 (1990), 1227–
1228.

[5] Z. Cao, On the Diophantine equation axm−4c
abx−4c = by2 (Chinese), J. Harbin Inst.

Tech. 23 (1991), suppl., 110–112.
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