THE ORDER OF NORMAL FORM HYPERSUBSTITUTIONS OF TYPE (2)

Klaus Denecke

University of Potsdam, Institute of Mathematics PF 60 15 53, 14415 Potsdam, Germany e-mail: kdenecke@rz.uni-potsdam.de

AND

KAZEM MAHDAVI

State University of New York, College at Potsdam
Department of Mathematics
Potsdam, NY 13767, USA
e:mail mahdavk@potsdam.edu

Abstract

In [2] it was proved that all hypersubstitutions of type $\tau = (2)$ which are not idempotent and are different from the hypersubstitution which maps the binary operation symbol f to the binary term f(y,x) have infinite order. In this paper we consider the order of hypersubstitutions within given varieties of semigroups. For the theory of hypersubstitution see [3].

Keywords: hypersubstitutions, terms, idempotent elements, elements of infinite order.

1991 Mathematics Subject Classification: Primary 20M14; Secondary 20M07, 08A40.

1 Preliminaries

In [1] hypersubstitutions were defined to make the concept of a hyperidentity more precise. In this paper we consider the type $\tau = (2)$ and the binary operation symbol f. Type (2) hypersubstitutions seem to be simple enough to be accessible, yet rich enough to provide an interesting structure.

An identity $s \approx t$ of type $\tau = (2)$ is called a hyperidentity of a variety V of this type if for every substitution of terms built up by at most two variables (binary terms) for f in $s \approx t$, the resulting identity holds in V. This shows that we are interested in mappings

$$\sigma: \{f\} \to W(X_2),$$

where $W(X_2)$ is the set of all terms constructed by f and the variables from the two-element alphabet $X_2 = \{x, y\}$. Any such mapping is called a hypersubstitution of type $\tau = (2)$. By σ_t we denote the hypersubstitution $\sigma: \{f\} \to \{t\}$.

A hypersubstitutions σ can be uniquely extended to a mapping $\hat{\sigma}$ on W(X) (the set of all terms built up by f and variables from the countably infinite alphabet $X = \{x, y, z, \cdots\}$) inductively defined by

- (i) if t = x for some variable x, then $\hat{\sigma}[t] = x$,
- (ii) if $t = f(t_1, t_2)$ for some terms t_1, t_2 , then $\hat{\sigma}[t] = \sigma(f)(\hat{\sigma}[t_1], \hat{\sigma}[t_2])$.

By Hyp we denote the set of all hypersubstitutions of type $\tau = (2)$. For any two hypersubstitutions σ_1, σ_2 we define a product

$$\sigma_1 \circ_h \sigma_2 := \hat{\sigma}_1 \circ \sigma_2$$

and obtain together with $\sigma_{id} = \sigma_{xy}$, i.e., $\sigma_{id}(f) = xy$, a monoid $\underline{Hyp} = (Hyp; \circ_h, \sigma_{id})$. We will refer to this monoid as to \underline{Hyp} . In [2] Denecke and Wismath described all idempotent elements of Hyp.

We use the following denotation: Let W_x denote the set of all words using only the letter x, and dually for W_y . We set

$$E_x = \{\sigma_{xu} | u \in W_x\}, E_y = \{\sigma_{vy} | v \in W_y\}, E = E_x \cup E_y,$$

where xu abbreviates f(x, u).

Clearly, for any element xu with $u \in W_x$ we have

$$\sigma_{xu} \circ_h \sigma_{xu} = \sigma_{xu}$$
.

and for any element vy with $v \in W_y$ we have

$$\sigma_{vy} \circ_h \sigma_{vy} = \sigma_{vy}$$
.

This shows that all elements of E are idempotent. The hypersubstitutions σ_x, σ_y mapping the binary operation symbol f to x and to y, respectively, and the identity hypersubstitution are also idempotent.

The hypersubstitution σ_{yx} satisfies the equation

$$\sigma_{yx} \circ_h \sigma_{yx} = \sigma_{xy}.$$

Further we have:

Proposition 1.1 (see [2]). If
$$\sigma_s \circ_h \sigma_t = \sigma_{id}$$
, then either $\sigma_s = \sigma_t = \sigma_{id}$ or $\sigma_s = \sigma_t = \sigma_{yx}$.

In the following theorem we will use the concept of the length of a term as number of occurrences of variables in the term.

In [2] was proved

Theorem 1.2.

- (i) If $\sigma \in Hyp$ is an idempotent, then $\sigma \in E \cup \{\sigma_x, \sigma_y, \sigma_{xy}\}$.
- (ii) If $\sigma \in Hyp \setminus (E \cup \{\sigma_x, \sigma_y, \sigma_{xy}, \sigma_{yx}\})$, then $\sigma^n \neq \sigma^{n+1}$ for all $n \in \mathbb{N}$ with $n \geq 1$ (i.e. σ has infinite order).
- (iii) If $\sigma \in Hyp \setminus (E \cup \{\sigma_x, \sigma_y, \sigma_{xy}, \sigma_{yx}\})$, then the length of the word $(\sigma \circ_h \sigma)(f)$ is greater than the length of $\sigma(f)$.

If we set $G := Hyp \setminus (E \cup \{\sigma_x, \sigma_y, \sigma_{xy}, \sigma_{yx}\})$, then G does not form a subsemigroup of Hyp. In fact, we consider the hypersubstitution σ_{wx} where w is a term different from x and from y. Then $\sigma_{wx} \in G$. Let $u \in W_x$ and let $\overline{xu} \in W_x$ be the term formed from xu by substitution of all occurrences of the letters x by y, then $\sigma_{\overline{xu}} \in G$. But then we see

$$\sigma_{\overline{xu}} \circ_h \sigma_{wx} = \sigma_{xu}$$

and the product of these elements from G is outside of G.

If we want to check whether an equation $s \approx t$ is satisfied as a hyperidentity in a given variety V of semigroups, it is not necessary to test all hypersubstitutions from Hyp. Depending on the identities satisfied in V we may restrict ourselves to a smaller subset of Hyp. By definition of a binary operation on this subset, we will define a new algebra which, in general is not a monoid and will determine the order of elements of those algebras.

2 Normal Form hypersubstitutions

In [4] J. Płonka defined a binary relation on the set of all hypersubstitutions of an arbitrary type with respect to a variety of this type.

Definition 2.1. Let V be a variety of semigroups, and let $\sigma_1, \sigma_2 \in Hyp$. Then

$$\sigma_1 \sim_V \sigma_2 :\Leftrightarrow \sigma_1(f) \approx \sigma_2(f) \in IdV.$$

Clearly, the relation \sim_V is an equivalence relation on Hyp and has the following properties:

Proposition 2.2 ([3]). Let V be a variety of semigroups and let $\sigma_1, \sigma_2 \in Hyp$.

- (i) If $\sigma_1 \sim_V \sigma_2$, then for any term t of type $\tau = (2)$ the equation $\hat{\sigma}_1[t] \approx \hat{\sigma}_2[t]$ is an identity of V.
- (ii) If $s \approx t \in IdV$, $\hat{\sigma}_1[s] \approx \hat{\sigma}_1[t] \in IdV$ and $\sigma_1 \sim_V \sigma_2 \in IdV$, then $\hat{\sigma}_2[s] \approx \hat{\sigma}_2[t] \in IdV$.

In general, the relation \sim_V is not a congruence relation on Hyp. A variety is called *solid* if every identity in V is satisfied as a hyperidentity. For a solid variety V the relation \sim_V is a congruence relation on Hyp and the factor monoid $Hyp/_{\sim_V}$ exists.

In the arbitrary case we form also $Hyp/_{\sim_V}$ and consider a choice function

$$\varphi: Hyp/_{\sim_V} \to Hyp$$
, with $\varphi([\sigma_{id}]_{\sim_V}) = \sigma_{id}$,

which selects from each equivalence class exactly one element. Then we obtain the set $Hyp_{N_{\varphi}}(V) := \varphi(Hyp/_{\sim_V})$ of all normal form hypersubstitutions with respect to V and φ .

On the set $Hyp_{N_{\omega}}(V)$ we define a binary operation

$$\circ_N: Hyp_{N_{\varphi}}(V) \times Hyp_{N_{\varphi}}(V) \to Hyp_{N_{\varphi}}(V)$$

by $\sigma_1 \circ_N \sigma_2 = \varphi(\sigma_1 \circ_h \sigma_2)$. This mapping is well-defined, but in general not associative. Therefore, $(Hyp_{N_{\varphi}}(V); \circ_N, \sigma_{id})$ is not a monoid. We call this structure groupoid of normal form hypersubstitutions. We ask, how to characterize the idempotent elements of $Hyp_{N_{\varphi}}(V)$ since for practical work normal form hypersubstitutions are more important than usual hypersubstitutions.

Proposition 2.3. Let V be a variety of semigroups and let

$$\varphi: Hyp/_{\sim_V} \to Hyp$$

be a choice function. Then

- (i) $\sigma \in Hyp_{N_{\sigma}}(V)$ is an idempotent element iff $\sigma \circ_h \sigma \sim_V \sigma$.
- (ii) $\sigma_{yx} \circ_N \sigma_{yx} = \sigma_{xy} \text{ if } \sigma_{yx} \in Hyp_{N_{\varphi}}(V).$

Proof. (i) If σ is an idempotent of $Hyp_{N_{\varphi}}(V)$, then $\sigma \circ_N \sigma = \sigma \sim_V \sigma \circ_h \sigma$. If conversely $\sigma \sim_V \sigma \circ_h \sigma$, then $\sigma \circ_N \sigma \sim_V \sigma$. But then $\sigma \circ_N \sigma = \sigma$ because of $\sigma \in Hyp_{N_{\varphi}}(V)$.

(ii)
$$\sigma_{yx} \circ_N \sigma_{yx} \sim_V \sigma_{yx} \circ_h \sigma_{yx} = \sigma_{xy} \in Hyp_{N_{\varphi}}(V)$$
. Therefore, $\sigma_{yx} \circ_N \sigma_{yx} = \sigma_{xy}$.

As a consequence we have: if σ is an idempotent of Hyp and $\sigma \in Hyp_{N_{\varphi}}(V)$, then it is also an idempotent in $Hyp_{N_{\varphi}}(V)$ for any variety V of semigroups and any choice function φ . But in general $Hyp_{N_{\varphi}}(V)$ has idempotents which are not idempotents in Hyp.

3 Idempotents in $Hyp_{N_{\omega}}(V)$

Now we want to consider the following variety of semigroups: $V = Mod\{(xy)z \approx x(yz), xyuv \approx xuyv, x^3 \approx x\}$, i.e., the variety of all medial semigroups satisfying $x^3 \approx x$.

Let f be our binary operation symbol. As usual instead of f(x,y) we will also write xy. The elements of $W(X_2)/IdV$ where $X_2 = \{x,y\}$ is a two-element alphabet, have the following form: $[x^ny^m]_{IdV}, [y^nx^m]_{IdV}, [xy^mx^n]_{IdV}, [yx^my^n]_{IdV}$ where $0 \le m, n \le 2$. So we get the set

$$W(X_2)/IdV =$$

$$=\{[x]_{IdV},[x^2]_{IdV},[xy]_{IdV},[xy^2]_{IdV},[x^2y]_{IdV},[xyx]_{IdV},[x^2y^2]_{IdV},[xy^2x]_{IdV},\\[xyx^2]_{IdV},[xy^2x^2]_{IdV},[y]_{IdV},[y^2]_{IdV},[yx]_{IdV},[yx^2]_{IdV},[y^2x]_{IdV},[yxy]_{IdV},\\[y^2x^2]_{IdV},[yx^2y]_{IdV},[yxy^2]_{IdV},[yx^2y^2]_{IdV}.\}$$

From each class we exchange a normal form term using a certain choice function φ and obtain the following set of normal form hypersubstitutions: $Hyp_{N_{\varphi}}(V) = \{\sigma_x, \sigma_{x^2}, \sigma_{xy}, \sigma_{xy^2}, \sigma_{x^2y}, \sigma_{xyx}, \sigma_{x^2y^2}, \sigma_{xy^2x}, \sigma_{xyx^2}, \sigma_{xy^2x^2}, \sigma_{y}, \sigma_{y^2x^2}, \sigma_{y^2x^2}$

The multiplication in the groupoid $(Hyp_{N_{\varphi}}(V); \circ_N, \sigma_{id})$ is given by the following table.

OM	gr 9 9 9 m	6	6	2000	6	6	6			,		,				
1	x x x	xy2	x^2y	767	x 2 y 2	$x {}_{7} kx$	xhx-	x37x7	28 26 8 8 T	3xx	$x_2 k$	oyxy	y2x2	yx^2y	$^{o}yxy^{2}$	$^{\circ}_{yx}^{2y}^{2}$
σ_x	$\sigma_x \sigma_x \sigma_x$	σ_x	αx	σ_x	σ_x	σ_x	σ_x	σ_x	oy oy oy	σy	σy	σ_y	σy	σy	σ_y	σy
σ_{x^2}	$\sigma_x \sigma_{x^2} \sigma_{x^2}$	σ_{x^2}	σ_{x^2}	σ_{x^2}	σ_{x^2}	σ_{x^2}	σ_{x^2}	σ_{x^2}	oy 0,20,2	σ_{y^2}	σ_{y^2}	σ_{y^2}	σ_{y^2}	σ_{y^2}	0,2	9,2
σ_{xy}	$\sigma x \sigma_{x^2} \sigma_{xy}$	σ_{xy^2}	σ_{x^2y}	σ_{xyx}	$\sigma_{x^2y^2}$	σ_{xy^2x}	σ_{xyx^2}	σ_{xy}^2	oy oy2 oyx	σ_{yx}^2	σ_{y}^{2x}	σyxy	σ_{y}^{2x}	σ_{yx^2y}	σ_{uxu^2}	$\sigma_{ux}^2 2u^2$
σ_{xy2}	$\sigma_x \sigma_x \sigma_{xy^2}$	σ_{xy^2}	σ_{xy^2}	σ_{xy2x2}	σ_{xy^2}	σ_{xy2x2}	~	$\sigma_{xy}^{2x}^{2}$	oy oy oyx2	σ_{yx}^2	σ_{yx}^2	σ_{yx}^{2y2}	σ_{yx^2}	$\sigma_{yx}^2_{y2}$	$\sigma_{yx}^2_{yz}^2$	$\sigma_{yx}^2y^2$
σ_{x^2y}	$\sigma_x \sigma_x \sigma_{x^2y}$	σ_{x^2y}	σ_{x^2y}	$\sigma_{xy^2x^2}$	σ_{x^2y}	$\sigma_{xy^2x^2}$	σ_{xy2x2}	$\sigma_{xy^2x^2}$	$\sigma y \sigma y \sigma_{y^2x}$	σ_{y^2x}	σ_{y^2x}	$\sigma_{yx}^2_{yz}^2$	σ_{y^2x}	$\sigma_{yx}^2_{yz}^2$	$\sigma_{yx}^2_{yz}$	σ_{yx}^2
σ_{xyx}	ox ox oxyx	cxyx.	σ_{xyx}	$\sigma_{xy^2x^2}$	oxyx 5	σ_{xy}^{2x}	σ_{xy2x2}	σ_{xy}^2	oy oy oyxy	σyxy	σ_{yxy}	σ_{yx}^2	dyxy	$\sigma_{yx}^2_{yz}$	σ_{yx}^{2}	σ_{yx}^{2}
σ_{x}^{2y2}	$\sigma_x \sigma_{x^2} \sigma_{x^2y^2}$,2 0x2y2	$\sigma_{x^2y^2}$	σ_{xy^2x}	$\sigma_{x^2y^2}$	σ_{xy^2x}	σ_{xy^2x}	σ_{xy^2x}	oy oy2 oy2x2	2 0 y2x2	$\sigma_{y^2x^2}$		σ_{y2x2}	σ_{yx^2y}	σ_{yx^2y}	σ_{yx}^2
σ_{xy^2x}	$\sigma_x \sigma_{x^2} \sigma_{xy^2x}$	$x \sigma_{xy^2x}$	σ_{xy^2x}	σ_{xy^2x}	σ_{xy^2x}	σ_{xy^2x}	σ_{xy^2x}	σ_{xy}^2	oy oy2 oyx2y	$y \sigma_{yx}^2$		1	σ_{yx^2y}	σ_{yx^2y}	1	σ_{yx}^2
σ_{xyx^2}	$\sigma_x \sigma_{x^2} \sigma_{xyx^2}$,2 0xy2x2	2 dxyx	σ_{xyx}	σ_{xy^2x}	σ_{xy^2x}	σ_{xyx^2}	σ_{xy}^{2x}	oy oy2 oyxy2	2 0 yx2y2	2 dyxy	σyxy	σ_{yx}^2	σ_{yx^2y}	1 3	$\sigma_{yx}^2_{yz}$
$\sigma_{xy^2x^2}$	$ax \sigma x \sigma_{xy2x2}$	$x^2 \sigma_{xy^2x^2}$	$2 \sigma_{xy2x2}$	$2 \sigma_{xy} 2x^2$	$\sigma_{xy^2x^2}$	σ_{xy2x2}	σ_{xy}^{2x}	σ_{xy}^2	oy oy oyx2y2	$y^2 \sigma_{yx}^2 z_y^2$	2 0 yx2y2	2 0 yx2y2		σ_{yx}^2	$\sigma_{yx}^2_{yz}$	σ_{yx}^{2y}
σy	$\sigma x \sigma x \sigma y$	σy	σy	σ_x	σy	σ_x	σ_x	σ_x	oy oy ox	σ_x	σ_x	σy	σ_x	σy	σy	σy
σ_{y^2}	$\sigma_x \sigma_x 2 \sigma_y 2$	σ_{y^2}	σ_{y^2}	σ_{x^2}	σ_{y^2}	σ_{x^2}	σ_{x^2}	σ_{x^2}	oy oy2 ox2	σ_{x^2}	σ_{x^2}	σ_{y^2}	σ_{x^2}	σ_{y^2}	σ_{y^2}	σ_{y^2}
σyx	$\sigma_x \sigma_x 2 \sigma_y x$	σ_{y^2x}	σ_{yx^2}	σ_{xyx}	$\sigma_{y^2x^2}$	σ_{xy^2x}	σ_{xyx^2}	σ_{xy}^2	oy oy2 oxy	σ_{x^2y}	σ_{xy2}	σ_{yxy}	$\sigma_{x}^{2y^2}$	σ_{yx}^2	σ_{yxy^2}	$\sigma_{yx}^2y^2$
σ_{yx^2}	$\sigma_x \sigma_x \sigma_{yx^2}$	σ_{yx^2}	σ_{yx^2}	$\sigma_{xy^2x^2}$	g of yx2	σ_{xy}^{2x}	$\sigma_{xy^2x^2}$	σ_{xy}^2	oy oy oxy2	σ_{xy2}	σ_{xy}^2	$\sigma_{yx}^2_{yz}^2$	σ_{xy^2}	σ_{yx}^{2y2}	σ_{yx}^{2y2}	$\sigma_{yx}^2y^2$
σ_{y^2x}	$\sigma_x \sigma_x \sigma_{y^2x}$	σ_{y^2x}	σ_{y^2x}	σ_{xy}^2	σ_{y^2x}	$\sigma_{xy^2x^2}$	σ_{xy2x^2}	σ_{xy}^2	$\sigma y \sigma y \sigma_{x^2 y}$	σ_{x^2y}	σ_{x^2y}	$\sigma_{yx}^2_{yz}^2$	σ_{x^2y}	σ_{yx}^{2y2}	$\sigma_{yx}^2_{yz}^2$	$\sigma_{yx}^2_{yz}^2$
σyxy	$\sigma_x \sigma_x \sigma_y \sigma_y$	Oyxy	σyxy	$\sigma_{xy^2x^2}$	o yxy	$\sigma_{xy^2x^2}$	σ_{xy2x2}	σ_{xy}^2	oy oy oxyx	σ_{xyx}	σ_{xyx}	$\sigma_{yx}^2_{yz}^2$	σ_{xyx}	σ_{yx}^{2y2}	$\sigma_{yx}^2_{yz}^2$	$\sigma_{yx}^2_{y2}$
$\sigma_{y^2x^2}$	$\sigma_x \sigma_{x^2} \sigma_{y^2x}$	$2 \sigma_{y}^2 2x^2$	$\sigma_{y^2x^2}$	σ_{xy^2x}	$\sigma_{y^2x^2}$	σ_{xy^2x}	σ_{xy^2x}	σ_{xy}^2	oy oy2 ox2y2	$2 \sigma_{x}^{2}$	$\sigma_{x^2y^2}$	σ_{yx^2y}	$\sigma_{x^2y^2}$	σ_{yx^2y}	σ_{yx}^2	σ_{yx}^2
σ_{yx^2y}	$\sigma_x \sigma_{x^2} \sigma_{yx^2y}$	$y \sigma_{yx^2y}$	σ_{yx^2y}	σ_{xy^2x}	σ_{yx}^2	σ_{xy^2x}	σ_{xy^2x}	σ_{xy^2x}	$\sigma_y \sigma_{y^2} \sigma_{xy^2x}$	$x \sigma_{xy^2x}$	σ_{xy^2x}	σ_{yx^2y}	σ_{xy^2x}	σ_{yx^2y}	σ_{yx}^2	σ_{yx}^2
σ_{yxy^2}	$\sigma_x \sigma_{x^2} \sigma_{yxy^2}$	2 dyxy	$\sigma_{yx}^2y^2$	xax 2	σ_{yx^2y}	σ_{xy^2x}	σ_{xyx^2}	σ_{xy}^2	oy oy2 oxyx2	2 oxyx	σ_{xy2x2}	2 oyxy	σ_{xy}^2	σ_{yx}^2	σ_{yxy^2}	$\sigma_{yx}^2y^2$
$\sigma_{yx}^2y^2$	ox ox o	$yx^2y^2 \sigma_y x^2y^2$	$2 \sigma_{yx} 2y^2$	$\sigma_{xy^2x^2}$	$\sigma_{yx^2y^2}$	$\sigma_{xy^2x^2}$	σ_{xy2x2}	σ_{xy2x2}	$\sigma_y \sigma_y \sigma_{xy2x2}$	$x^2 \sigma_{xy^2x^2}$		2 0xy2x2		$\sigma_{xy^2x^2}$	$\sigma_{xy^2x^2}$	$\sigma_{xy^2x^2}$

The table shows that there are many idempotents in $Hyp_{N_{\varphi}}(V)$ which are not idempotents in Hyp.

The following example shows that $(Hyp_N(V); \circ_N, \sigma_{id})$ is not a monoid:

$$(\sigma_{x^2}\circ_N\sigma_{xy^2})\circ_N\sigma_{x^2}=\sigma_{x^2}\circ_N\sigma_{x^2}=\sigma_{x^2},$$

$$\sigma_{x^2} \circ_N (\sigma_{xy^2} \circ_N \sigma_{x^2}) = \sigma_{x^2} \circ_N \sigma_x = \sigma_x.$$

All idempotent elements of $Hyp_N(V)$ are

$$\{\sigma_{xy}, \sigma_{x}, \sigma_{x^{2}}, \sigma_{xy^{2}}, \sigma_{x^{2}y}, \sigma_{x^{2}y^{2}}, \sigma_{xy^{2}x}, \sigma_{xyx^{2}}, \sigma_{xy^{2}x^{2}}, \sigma_{y}, \sigma_{y^{2}}, \sigma_{yx^{2}y}, \sigma_{yxy^{2}}, \sigma_{yx^{2}y^{2}}\}.$$

Now we ask for which varieties at most the idempotents of Hyp are idempotents of $Hyp_{N_{\omega}}(V)$.

Theorem 3.1. For a variety V of semigroups the following are equivalent:

- (i) $Mod\{(xy)z \approx x(yz), xy \approx yx\} \subseteq V$,
- (ii) $\{\sigma|\sigma\in Hyp_{N_{\varphi}}(V) \text{ and } \sigma\circ_N\sigma=\sigma\}=\{\sigma|\sigma\in Hyp \text{ and } \sigma\circ_h\sigma=\sigma\}\cap Hyp_{N_{\varphi}}(V) \text{ for each choice function } \varphi.$

Proof. "(i) \Rightarrow (ii)" Let φ be an arbitrary choice function and let $\sigma \in Hyp_{N_{\varphi}}(V)$ be an idempotent element of $Hyp_{N_{\varphi}}(V)$. Then $\sigma = \sigma \circ_N \sigma \sim_V \sigma \circ_h \sigma$. Let u and v be the words corresponding to σ and to $\sigma \circ_h \sigma$, respectively. By $\ell(u)$ we denote the length of u. Assume that $\sigma \notin E \cup \{\sigma_{id}, \sigma_x, \sigma_y\}$. By Theorem 1.2 (iii) the length of v is greater than that of u since $\sigma \neq \sigma_{f(y,x)}$ by Theorem 2.3 (ii). But then $u \approx v \notin IdMod\{x(yz) \approx (xy)z, xy \approx yx\}$ since from the associative and the commutative identity one can derive only identities $u \approx v$ with $\ell(u) = \ell(v)$. But by assumption, $u \approx v \in IdV \subseteq IdMod\{(xy)z \approx x(yz), xy \approx yx\}$, a contradiction. This shows

$$\{\sigma|\sigma\in Hyp_{N_{\varphi}}(V) \text{ and } \sigma\circ_N\sigma=\sigma\}\subseteq (E\cup\{\sigma_x,\sigma_y,\sigma_{id}\})\cap Hyp_{N_{\varphi}}(V).$$

If conversely σ is an idempotent of Hyp, i.e. $\sigma \circ_h \sigma = \sigma$, then $\sigma \circ_N \sigma \sim_V \sigma \circ_h \sigma = \sigma$ and thus $\sigma \circ_N \sigma = \sigma$, since $\sigma \in Hyp_{N_{\varphi}}(V)$ and σ is an idempotent of $Hyp_{N_{\varphi}}(V)$. Therefore we have equality.

"(ii) \Rightarrow (i)" Assume that $Mod\{(xy)z \approx x(yz), xy \approx yx\} \not\subseteq V$. Then there exists an identity $x^k \approx x^n \in IdV$ with $1 \leq k < n \in I\!\!N$. Now we construct an idempotent element of $Hyp_{N_{\varphi}}(V)$ which is not in $E \cup \{\sigma_x, \sigma_y, \sigma_{id}\}$. We set m := n - k and $w := x^2u$ for some word $u \in W_x$ with $\ell(u) = 3km - 2$.

Clearly, $\sigma_w \notin E \cup \{\sigma_x, \sigma_y, \sigma_{id}\}$. It is easy to see that the length of w is 3km and the length of the word v corresponding to $\sigma_w \circ_h \sigma_w$ is $(3km)^2$. In fact, from $x^k \approx x^n \in IdV$ it follows $x^a \approx x^{a+bm} \in IdV$ for all natural numbers $a \geq k$ and $b \geq 1$ and in particular we have $x^{3km} \approx x^{3km+(9k^2m-3k)m} = x^{(3km)^2}$. Thus

$$(\sigma_w \circ_h \sigma_w)(f) \approx x^{(3km)^2} \approx x^{3km} \approx f(f(x, x), u) = \sigma_w(f).$$

Therefore, $\sigma_w \circ_h \sigma_w \sim_V \sigma_w$ and $\sigma_w \circ_N \sigma_w \sim_V \sigma_w \circ_h \sigma_w \sim_V \sigma_w$. Let φ be a choice function with $\sigma_w \in Hyp_{N_{\varphi}}(V)$. Then from $\sigma_w \circ_N \sigma_w \sim_V \sigma_w$ it follows $\sigma_w \circ_N \sigma_w = \sigma_w$, a contradiction.

4 Elements of infinite order

We remember that the order of an element of a groupoid is the cardinality of the subgroupoid generated by this element if this cardinality is finite and the order is infinite otherwise. By $O(\sigma)$ we denote the order of the hypersubstitution $\sigma \in Hyp_{N_{\varphi}}(V)$. By Theorem 1.2 (ii), the hypersubstitution $\sigma_{f(x,f(y,x))}$ has infinite order in Hyp, but in $Hyp_{N_{\varphi}}(V) = \{\sigma_x, \sigma_{x^2}, \sigma_{xy}, \sigma_{xy^2}, \sigma_{x^2y}, \sigma_{xyx}, \sigma_{x^2y^2}, \sigma_{xy^2x}, \sigma_{xyx^2}, \sigma_{xy^2x^2}, \sigma_{yy^2x^2}, \sigma_{yxy}, \sigma_{yxy}$

$$\sigma_{xyx} \circ_N \sigma_{xyx} = \sigma_{xy^2x^2}$$

and

$$\sigma_{xyx} \circ_N \sigma_{xy^2x^2} = \sigma_{xy^2x^2} = \sigma_{xy^2x^2} \circ_N \sigma_{xyx},$$

thus

$$\sigma_{xyx}^3 = \sigma_{xyx}^2$$

and σ_{xyx} has finite order. Now we characterize elements of infinite order with respect to varieties of semigroups which contain the variety of commutative semigroups.

By $\langle \sigma \rangle_{\circ_N}$ we denote the subgroupoid of $Hyp_{N_{\varphi}}(V)$ generated by the hypersubstitution σ .

Theorem 4.1. Let V be a variety of semigroups. Then the following are equivalent:

- (i) $Mod\{(xy)z \approx x(yz), xy \approx yx\} \subseteq V$
- (ii) $\{\sigma|\sigma\in Hyp_{N_{\varphi}}(V) \text{ and the order of }\sigma \text{ is infinite}\}=Hyp_{N_{\varphi}}(V)\setminus (E\cup\{\sigma_x,\sigma_y,\sigma_{id},\sigma_{yx}\}\cup A_1\cup A_2), \text{ where }A_1=\{\sigma|\sigma\in Hyp_{N_{\varphi}}(V)\cap (\{\sigma_v|v\in W_x\}\setminus (E_x\cup\{\sigma_x\}) \text{ and }\langle\sigma\rangle_{\circ_N}\cap \{\sigma_{xu}|u\in W(X_2)\}\neq\emptyset\} \text{ and }A_2=\{\sigma|\sigma\in Hyp_{N_{\varphi}}(V)\cap (\{\sigma_v|v\in W_y\}\setminus (E_y\cup\{\sigma_y\}) \text{ and }\langle\sigma\rangle_{\circ_N}\cap \{\sigma_{uy}|u\in W(X_2)\}\neq\emptyset\} \text{ for each choice function }\varphi.$

Proof. "(i) \Rightarrow (ii)": Let φ be a choice function. Let σ be an element of $Hyp_{N_{\varphi}}(V)$ with $O(\sigma) = \infty$. By Theorem 3.1 and Proposition 2.3, $\sigma \notin E \cup \{\sigma_x, \sigma_y, \sigma_{xy}, \sigma_{yx}\}.$

If we assume that σ belongs to A_1 , then there exists a word $u \in W(X_2)$ such that $\sigma_{xu} \in \langle \sigma \rangle_{\circ_N}$. Clearly, there exists a natural number $n \geq 1$ such that $\ell(\sigma_{xy}) = n$. Moreover, we have

$$\sigma \circ_N \sigma_{xu} \sim_V \sigma \circ_h \sigma_{xu} = \sigma$$
,

since the word corresponding to σ is in W_x . Because of $\sigma \in Hyp_{N_{\varphi}}(V)$ we get

$$\sigma \circ_N \sigma_{xu} = \sigma$$

and $\ell(\sigma) + \ell(\sigma_{xu}) = n + 1$. But this means, $O(\sigma) \leq n$. Thus $\sigma \notin A_1$. In a similar way we show $\sigma \notin A_2$. This shows $\{\sigma | \sigma \in Hyp_{N_{\varphi}}(V) \text{ and the order of } \sigma \text{ is infinite}\} \subseteq Hyp_{N_{\varphi}}(V) \setminus (E \cup \{\sigma_x, \sigma_y, \sigma_{id}, \sigma_{yx}\} \cup A_1 \cup A_2)$.

Suppose that $\sigma \in Hyp_{N_{\varphi}}(V) \setminus (E \cup \{\sigma_x, \sigma_y, \sigma_{id}, \sigma_{yx}\} \cup A_1 \cup A_2)$. Let u be the word corresponding to σ .

If $u \in W_x$, then $\langle \sigma \rangle_{Hyp_{N_{\varphi}}(V)} \subseteq \{\sigma_v | v \in W_x\}$. Otherwise there exists an identity $a \approx b \in IdV$ such that $a \in W_x$ and b uses the letter y. Clearly, $a \approx b \notin IdMod\{(xy)z \approx x(yz), xy \approx yx\}$ which contradicts $a \approx b \in IdV \subseteq IdMod\{(xy)z \approx x(yz), xy \approx yx\}$. Moreover, $\langle \sigma \rangle_{\circ_N} \cap \{\sigma_{xu} | u \in W(X_2)\} = \emptyset$ and $\sigma_x \notin \langle \sigma \rangle_{\circ_N}$. Therefore, for $\sigma_1, \sigma_2 \in \langle \sigma \rangle_{Hyp_{N_{\varphi}}(V)}$ the length of the word corresponding to $\sigma_1 \circ_h \sigma_2$ is greater than the length of u. Hence for each $\sigma' \in \langle \sigma \rangle_{\circ_N}$ with $\ell(\sigma') \geq 2$ the length of the word corresponding to σ' is greater than the length of u. Otherwise there would exist an identity $c \approx d \in IdV$ such that the length of d is greater than that of d. Clearly, $d \in IdMod\{(xy)z \approx x(yz), xy \approx yx\}$, what contradicts $d \in IdV \subseteq IdMod\{(xy)z \approx x(yz), xy \approx yx\}$. Therefore, for all $\sigma_a, \sigma_b \in \langle \sigma \rangle_{\circ_N}$ there holds $\sigma_a \circ_N \sigma_b \neq \sigma$, i.e. $O(\sigma) = \infty$. If $u \in W_y$, then we get $O(\sigma) = \infty$ in the dual way.

If u uses both letters x and y, then $\langle \sigma \rangle_{\circ_N} \subseteq \{\sigma_v | v \in W(X_2) \setminus (W_x \cup W_y)\}$. Otherwise there is an identity $a \approx b \in IdV$ such that $a \in W_x \cup W_y$ and b uses both letters x and y. Clearly, $a \approx b \notin IdMod\{(xy)z \approx x(yz), xy \approx yx\}$ which contradicts $a \approx b \in IdV \subseteq IdMod\{(xy)z \approx x(yz), xy \approx yx\}$. The same argumentation as above (using also $\sigma \notin \{\sigma_{xy}, \sigma_{yx}\}$) shows that for each $\sigma' \in \langle \sigma \rangle_{\circ_N}$ with $\ell(\sigma') \geq 2$ the length of the word corresponding to σ' is greater than the length of u. This means there don't exist hypersubstitutins $\sigma_a, \sigma_b \in \langle \sigma \rangle_{\circ_N}$ such that $\sigma_a \circ_N \sigma_b = \sigma$ and hence $O(\sigma) = \infty$. This shows $\{\sigma | \sigma \in Hyp_{N_{\varphi}}(V) \text{ and the order of } \sigma \text{ is infinite}\} \supseteq Hyp_{N_{\varphi}}(V) \setminus (E \cup \{\sigma_x, \sigma_y, \sigma_{id}, \sigma_{yx}\} \cup A_1 \cup A_2)$.

"(ii) \Rightarrow (i)": Assume that $Mod\{(xy)z \approx x(yz), xy \approx yx\} \not\subseteq V$. Then there exists an identity $x^k \approx x^n \in IdV$ with $1 \leq k < n \in I\!\!N$. We set m := n - k and $w := f(f(\dots f(x,y),\dots,y),y)$, where w has the length km+1. It is easy to check that $(\sigma_w \circ_h \sigma_w)(f) = v \approx xy^{(km)^2}$. In fact, from $x^k \approx x^n \in IdV$ and m := n - k, it follows $x^{km} \approx x^c \in IdV$ with $c = km + (k^2m - k)m = k^2m^2$. Therefore, $(\sigma_w \circ_h \sigma_w)(f) = v \approx xy^{k^2m^2} \approx xy^{km} \approx \sigma_w(f)$, i.e. $\sigma_w \circ_h \sigma_w \sim_V \sigma_w$ and thus $\sigma_w \circ_N \sigma_w \sim_V \sigma_w \circ_h \sigma_w \sim_V \sigma_w$. Let φ be a choice function such that $\sigma_w \in Hyp_{N_{\varphi}}(V)$. Obviously, $\sigma_w \in Hyp_{N_{\varphi}}(V) \setminus (E \cup \{\sigma_x, \sigma_y, \sigma_{id}, \sigma_{f(y,x)}\} \cup A_1 \cup A_2)$ and thus $O(\sigma) = \infty$. But $\sigma_w \in Hyp_{N_{\varphi}}(V)$ forces $\sigma_w \circ_N \sigma_w = \sigma_w$ and $O(\sigma) = 2$, what contradicts $O(\sigma) = \infty$. Therefore $Mod\{(xy)z \approx x(yz), xy \approx yx\} \subseteq V$.

References

- [1] K. Denecke, D. Lau, R. Pöschel, and D. Schweigert, *Hyperidentities, hyper-equational classes and clone congruences*, Contributions to General Algebra 7 (1991), 97–118.
- [2] K. Denecke and Sh. Wismath, The Monoid of Hypersubstitutions of Type (2), Contributions to General Algebra, Verlag Johannes Heyn, 10 (1998), 110–126.
- [3] K. Denecke and Sh. Wismath, "Hyperidentities and clones," Gordon and Breach Sci. Publ., Amsterdam-Singapore 2000.
- [4] J. Płonka, Proper and inner hypersubstitutions of varieties, p. 106–115 in: "Proceedings of the International Conference: Summer school on General Algebra and Ordered sets 1994", Palacký University, Olomouc 1994.

Received 3 December 1997 Revised 30 December 1999