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Abstract

In [2] it was proved that all hypersubstitutions of type 7 = (2) which
are not idempotent and are different from the hypersubstitution which
maps the binary operation symbol f to the binary term f(y,x) have
infinite order. In this paper we consider the order of hypersubstitutions
within given varieties of semigroups. For the theory of hypersubs-
titution see [3].
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1 Preliminaries

In [1] hypersubstitutions were defined to make the concept of a hyperidentity
more precise. In this paper we consider the type 7 = (2) and the binary
operation symbol f. Type (2) hypersubstitutions seem to be simple enough
to be accessible, yet rich enough to provide an interesting structure.
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An identity s &~ t of type 7 = (2) is called a hyperidentity of a variety V' of
this type if for every substitution of terms built up by at most two variables
(binary terms) for f in s & t, the resulting identity holds in V. This shows
that we are interested in mappings

o :{f} = W(Xa),

where W(X3) is the set of all terms constructed by f and the variables
from the two-element alphabet Xo = {z,y}. Any such mapping is called a
hypersubstitution of type 7 = (2). By oy we denote the hypersubstitution
o {f} — {t}.

A hypersubstitutions ¢ can be uniquely extended to a mapping & on
W(X) (the set of all terms built up by f and variables from the countably
infinite alphabet X = {z,vy, z,---}) inductively defined by

(i) if t = x for some variable x, then 6[t] = z,
(ii) if ¢t = f(t1,t2) for some terms t1,t9, then 6[t] = o(f)(G[t1], o[t2]).

By Hyp we denote the set of all hypersubstitutions of type 7 = (2). For any
two hypersubstitutions o1, oy we define a product

01 0p 0 := 01 0 02

and obtain together with o;q = 04y, i.e., 0;4(f) = 2y, a monoid Hyp =
(Hyp; op,0iq). We will refer to this monoid as to Hyp. In [2] Denecke and
Wismath described all idempotent elements of Hyp.

We use the following denotation: Let W, denote the set of all words
using only the letter x, and dually for W,. We set

E, ={ozu|ueW,}, Ey={oy|veW,}, E=E,UE,,

where xu abbreviates f(x,u).
Clearly, for any element xu with u € W, we have

Ozu Oh Ozu = Ozu-
and for any element vy with v € W, we have
Oy Oh Opy = Tyy-

This shows that all elements of F are idempotent. The hypersubstitutions
0,0y mapping the binary operation symbol f to x and to y, respectively,
and the identity hypersubstitution are also idempotent.
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The hypersubstitution o, satisfies the equation
Oyz Oh Oyz = Ogy.
Further we have:

Proposition 1.1 (see [2]). If o5 0y 0¢ = 044, then either oy = o = 044 or
O0s = 0t = Oyzx.- [ |

In the following theorem we will use the concept of the length of a term as
number of occurrences of variables in the term.
In [2] was proved

Theorem 1.2.
(i) If o € Hyp is an idempotent, then 0 € EU {04, 0y, 0y}

(ii) If o € Hyp ~(E U {04,0y,0uy, 0y }), then o™ # o1 for allne IN
with n > 1 (i.e. o has infinite order).

(ii) If o € Hyp~(E U {04,0y,04y,0yz}), then the length of the word
(oo, 0)(f) is greater than the length of o(f). |

If we set G := Hyp~(E U {0y,0y,04y,0yz}), then G does not form a sub-
semigroup of Hyp. In fact, we consider the hypersubstitution o, where w
is a term different from x and from y. Then o, € G. Let u € W, and let
zu € W, be the term formed from xu by substitution of all occurrences of
the letters = by y, then ozz € G. But then we see

Ozu Oh Owx = Ozu
and the product of these elements from G is outside of G.

If we want to check whether an equation s ~ ¢ is satisfied as a hyperidentity
in a given variety V of semigroups, it is not necessary to test all hypersubsti-
tutions from Hyp. Depending on the identities satisfied in V' we may restrict
ourselves to a smaller subset of Hyp. By definition of a binary operation on
this subset, we will define a new algebra which, in general is not a monoid
and will determine the order of elements of those algebras.

2 Normal Form hypersubstitutions

In [4] J. Plonka defined a binary relation on the set of all hypersubstitutions
of an arbitrary type with respect to a variety of this type.
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Definition 2.1. Let V be a variety of semigroups, and let 01,00 € Hyp.
Then
g1~y 09 < Ul(f) ~ UQ(f) e IdV.

Clearly, the relation ~y is an equivalence relation on Hyp and has the
following properties:

Proposition 2.2 ([3]). Let V be a variety of semigroups and let o1,09 €
Hyp.
(i) If o1 ~v o2, then for any term t of type T = (2) the equation &1[t] ~
Go[t] is an identity of V.

(i) If s =~ t € IdV,61[s] = a1[t] € IdV and o1 ~y o2 € IdV, then
&2[8] %&Q[t] e IdV. |

In general, the relation ~y is not a congruence relation on Hyp. A variety is
called solid if every identity in V is satisfied as a hyperidentity. For a solid
variety V the relation ~y is a congruence relation on Hyp and the factor
monoid Hyp/~, exists.

In the arbitrary case we form also Hyp/~, and consider a choice function
¢ Hyp/~, — Hyp, with ©([0id]~, ) = 0id,

which selects from each equivalence class exactly one element. Then we
obtain the set Hypn, (V) := p(Hyp/~, ) of all normal form hypersubstitu-
tions with respect to V and ¢.

On the set Hypn,, (V') we define a binary operation

on : Hypn, (V) x Hypn, (V) — Hypn, (V)

by o1 on 02 = (01 o 02). This mapping is well-defined, but in general
not associative. Therefore, (Hypn,(V);on,0iq) is not a monoid. We call
this structure groupoid of normal form hypersubstitutions. We ask, how
to characterize the idempotent elements of Hypy, (V) since for practical
work normal form hypersubstitutions are more important than usual
hypersubstitutions.

Proposition 2.3. Let V be a variety of semigroups and let

¢ : Hyp/~, — Hyp

be a choice function. Then
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(i) o€ Hypn,(V) is an idempotent element iff o op 0 ~y 0.
(ii) oyz ON Oy = Oy if oye € Hypn, (V).

Proof. (i) If o is an idempotent of Hypy,(V), then coy o =0 ~y oo 0.
If conversely o ~y 0 op, 0, then o o 0 ~y 0. But then o oy 0 = 0 because
of o € Hypn, (V).

(ii) oy ON Oyz ~V Oyz Op Oye = 0zy € Hypn,(V). Therefore,
Oyz ON Oyz = Ozy. [ |

As a consequence we have: if o is an idempotent of Hyp and o € Hypn,,(V),
then it is also an idempotent in Hypy,, (V') for any variety V' of semigroups
and any choice function ¢. But in general Hypy,, (V') has idempotents which
are not idempotents in Hyp.

3 Idempotents in Hypy (V)

Now we want to consider the following variety of semigroups: V =
Mod{(zy)z ~ z(yz),zyuwv =~ zuyv,z® ~ x} , i.e., the variety of all
medial semigroups satisfying 23 ~ x.

Let f be our binary operation symbol. As usual instead of f(z,y) we
will also write zy. The elements of W(X2)/IdV where Xo = {z,y} is a
two-element alphabet, have the following form: [z"y™|1qv, [¥"2™]1av,
[zy™ " 1av, [yz™y" | 1ay where 0 < m,n < 2. So we get the set

W(Xg)/IdV =
= {[x]IdV, [OCQ}IdV, [-Ty]ldVa [$y2]1dva [iUQy}IdV, [xyx]IdVa [$2y2]1dv7 [$y233]1dv,
y2?) v, [2y*a? rav, Wliav, W3 av, el av, e av, W) av, [yaylav,

[x
22 1av, [yz?ylrav, [vey? rav, ly2*y? rav -}

From each class we exchange a normal form term using a certain choice
function ¢ and obtain the following set of normal form hypersubstitutions:
Hypn, (V) = {00,042, Ouy, Oy, 02y Oy, Ou2025 O g2, Oy, Tpy22, Oy 02,
Ty Oya2s Oo2a, Oyays Oy2a2s Oya2ys Ty Oyz2y? )

The multiplication in the groupoid (Hypn, (V);on,0iq) is given by the
following table.
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mnw\mnb Nﬂmmsb meme N&N;Hb Nﬂumsb Nnﬁ\mﬂb Namnab Nﬂmaab N&Nﬂab ananb Nawuab Nanﬂmb Nmmﬂab zo NmNﬂmb
N:NH\.G >Nﬂab amaﬁb fizhip NHNMHb HN)HO >Neab zhz o fizfip 2%, N:H:b
DNHDb :NHDb HN>Hb bwaab HNPHb HNme >NH>b HN\..H.O :Nﬂab NHb aNHNb
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praab N:.Nﬂbb amab Nh&ﬂhb >NHb NHN:Hb HN>b NHNPHb Hmab Zo HNDb
T, ges  2its ey 2T, 2%, %F, 2%, [ E =,
Nawua‘b :NH>b Naw.ﬁb fizfip N\.Hb Hwéeb NHNDb zhzo HNDb Nﬂb zhp

% 2% 2%, a2ty %5 o s % s %o s

Ao fip Tp fip Tp Tp fip Tp Ao Tp fipo
NMN&ab N;NHDB Namﬁab N\.Nﬂbb N>Nﬂab NHNDHb NHNbe Nnmbﬂb Nﬁmaab NHN:Hb Zo NHN?Hb
N:N8>b amabb >Nﬂmb fizhp fizhip am:nb HNme zhzo Nﬂma&b 2%, Nﬂmﬂb
bNH: :NH:b :maab :lwabb Paﬁab HNDHb HN#Hb Hmheb Hmbab Nﬂb HNMHb
Rgzlt 22t eTEts T, 2%els Fe'¥, gheTs gty "%, %o "%,
NMNH:b Nanhmb Rzhp Namanb Rzhp thbnb zhzp N&Naab zhzp Tp zhzp
N>Ns>b NANHmb Hmab mmwnmb Hmhb Nnm>nb amﬂb NHN)Hh PNHb Z0 MNHb
NDNH\.,b NDNH;G Nﬂmb NJNH:b Naab NHNDHb N:Hb NHN;Hb Nasb Zo Nhﬂb
Namﬂab MNHDb NHN}b fzhp Hmnb Hwaﬁb NmNHb zhzo Nbe Nnb fizo

gt Nab Nbb Nmb N:b % (4 %o z%s 2% [

fio fip [ fip fip To Tp To To To To
N:NH:b AN&MB NHNab fzhip Hmhb HNMHE N:Nﬂb zhzo Npﬂb Nab No
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The table shows that there are many idempotents in Hypy, (V') which are
not idempotents in Hyp.
The following example shows that (Hypy(V);on, 0i4) is not a monoid:

(042 ON Opy2) ON Oy2 = 042 ON 02 = 02,

0,2 ON (J$y2 oN sz) = 0,20NOg = Og.
All idempotent elements of Hypy (V') are

{Owys Oy 042, 02, 002, 0p202, Oy, Oy, Opy202, Oyy Oy2, Oy Oypua, Oyp2,2).

Now we ask for which varieties at most the idempotents of Hyp are
idempotents of Hypn, (V).

Theorem 3.1. For a variety V of semigroups the following are equivalent:
(i) Mod{(zy)z = (yz), zy = yx} CV,

(ii) {olo € Hypn,(V) and c oy 0 = 0} = {o|loc € Hyp and 0 o 0 =
o} N Hypn, (V') for each choice function .

Proof. ”(i)=(ii)” Let ¢ be an arbitrary choice function and let o €
Hypn, (V) be an idempotent element of Hypy, (V). Then ¢ = ooy 0 ~v
o op 0. Let u and v be the words corresponding to ¢ and to ¢ oj o, respec-
tively. By £(u) we denote the length of u. Assume that o € EU{0i4,04,0,}.
By Theorem 1.2 (iii) the length of v is greater than that of u since o # 0y 1)
by Theorem 2.3 (ii). But then u = v € IdMod{z(yz) ~ (zy)z,xy =~ yx}
since from the associative and the commutative identity one can derive only
identities u ~ v with ¢(u) = ¢(v). But by assumption, u ~ v € IdV C
IdMod{(zy)z ~ x(yz),zy ~ yx}, a contradiction. This shows

{olo € Hypn,(V) and 0 oy 0 = 0} C (E U {0y, 0y,04}) N Hypn, (V).

If conversely o is an idempotent of Hyp, i.e. o op 0 = o, then g oy 0 ~y
oopo = o and thus ooy o = o, since 0 € Hypn,, (V) and o is an idempotent
of Hypn,, (V). Therefore we have equality.

7(i1)=(1)” Assume that Mod{(zy)z =~ x(yz),zy =~ yx} € V. Then there
exists an identity z* ~ 2" € IdV with 1 < k < n € IN. Now we construct
an idempotent element of Hypy,, (V') which is not in E'U {04,0,,0:4}. We
set m :=n — k and w := x?u) for some word u € W, with £(u) = 3km — 2.
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Clearly, 0, € EU{0y,0y,0iq}. It is easy to see that the length of w is 3km
and the length of the word v corresponding to oy, op, 0y, is (3km)2. In fact,
from z* ~ 2™ € IdV it follows ¢ ~ x%t™ ¢ IdV for all natural numbers
a > k and b > 1 and in particular we have g3km n g3kmt(Ok*m—3k)m _
2Bkm)®  Thus

(owon ow)(f) =~ 2 BEm)? o g 3km f(f(z,z),u) = ow(f).

Therefore, gy, of 0y ~y 0w and oy, ON Ty ~Y Oy Op Oy ~V Tw- Let ¢ be a
choice function with o, € Hypn, (V). Then from o, 0n 04 ~v 0y it follows
Ow ON Oy = Oy, a contradiction. [ |

4 Elements of infinite order

We remember that the order of an element of a groupoid is the
cardinality of the subgroupoid generated by this element if this
cardinality is finite and the order is infinite otherwise. By O(o) we denote
the order of the hypersubstitution ¢ € Hypy, (V). By Theorem 1.2 (ii),
the hypersubstitution oy, r(,.)) has infinite order in Hyp, but in
Hypn, (V) = {00,002, Ony, Oy, 02y, Oy, Tu2025 Opp2a; Oy, Ogy2a2, Oy Oy2,
Oyas Tya2s Oy, Oyays Oy2a2s Oya2y, Typy2, Oyp2,2 b, Where Vo= Mod{(zy)z ~
z(yz), vyuv ~ zuyv, x> ~ x} we have

Ozyx ON Oxyz = Ogy252

and

Ozyx ON Ogy242 = Ogy222 = Ogy252 ON Ozya,

thus

3 _ 2
axyx - axyz

and o4y, has finite order. Now we characterize elements of infinite order
with respect to varieties of semigroups which contain the variety of
commutative semigroups.

By (0)oy we denote the subgroupoid of Hypy, (V) generated by the
hypersubstitution o.

Theorem 4.1. Let V' be a variety of semigroups. Then the following are
equivalent:
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(i) Mod{(xy)z = x(yz),xy ~yx} CV

(ii) {olo € Hypn,(V) and the order of o is infinite} = Hypn,, (V) ~(EU
{02, 0y, 0i4, 0y } U AL U Az), where Ay = {o|o € Hypn, (V)N ({ou|v €
Wt N(Ey U {oz}) and (0)oy N {ogulu € W(X2)} # 0} and Az =
ol € Hypn, (V)1 ({oulo € Wyt ~(By ULoy}) and (0)ey N {ouylu €
W(Xa)} # 0} for each choice function .

Proof. ”(i)=(ii)”: Let ¢ be a choice function. Let ¢ be an element of
Hypn, (V) with O(oc) = oo. By Theorem 3.1 and Proposition 2.3,
o & EU{04,0y, 04y, 0ya}-

If we assume that o belongs to Aj, then there exists a word u € W (Xy)
such that o4, € (0)o,. Clearly, there exists a natural number n > 1 such
that ¢(0,y) = n. Moreover, we have

O ON Ogy ~V O Op Ogy = O,

since the word corresponding to o is in W,. Because of o € Hypn, (V)
we get

OONOgy =0

and £(0) 4+ ¢(04y) = n + 1. But this means, O(o) < n. Thus o € A;. In a
similar way we show o ¢ As. This shows {o|c € Hypn,(V) and the order
of o is infinite} C Hypn,, (V) ~\(E U {0g, 0y, 0ig, 0ye } U A1 U Ag).

Suppose that o € Hypn, (V) N(E U {0y, 0y, 0id,0yc} U A1 U Az). Let u
be the word corresponding to o.

If u € Wy, then <0’>HypN¢(V) C {oy|v € W, }. Otherwise there exists an
identity a =~ b € IdV such that a € W, and b uses the letter y. Clearly,
ax~b¢ IdMod{(ry)z ~ x(yz),ry ~ yx} which contradicts a =~ b € I[dV C
IdMod{(zy)z ~ x(yz),xy ~ yx}. Moreover, (0)oy N{ozu|u € W(X2)} =10
and oy & (0)oy. Therefore, for 01,09 € <0>HypN¢(V) the length of the
word corresponding to o1 o 09 is greater than the length of u. Hence for
each o’ € (o), with ¢(¢") > 2 the length of the word corresponding to
o’ is greater than the length of u. Otherwise there would exist an identity
c =~ d € IdV such that the length of d is greater than that of c. Clearly,
cx~d ¢ IdMod{(zy)z ~ x(yz),xy ~ yz}, what contradicts ¢ = d € IdV C
IdMod{(zy)z ~ x(yz),zy ~ yx}. Therefore, for all o,,04 € (0)o, there
holds o, on 0p # 0, i.e. O(0) = co. If u € Wy, then we get O(c) = oo in
the dual way.
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If w uses both letters x and y, then (o)., C {o,|v € W(X2) (W, UW,)}.
Otherwise there is an identity a ~ b € IdV such that a € W, U W, and b
uses both letters x and y. Clearly, a = b ¢ IdMod{(xy)z = z(yz),zy ~ yx}
which contradicts a ~ b € IdV C IdMod{(zy)z ~ z(yz),xy ~ yx}.
The same argumentation as above (using also o & {04y, 0y, }) shows that
for each o’ € (o), with £(0’) > 2 the length of the word corresponding
to o/ is greater than the length of u. This means there don’t exist
hypersubstitutins o4,0, € (0)o, such that o, oy 0, = o and hence
O(0) = oco. This shows {o|c € Hypn,(V) and the order of o is infinite} 2
HypN¢(V) ~(EU {Uz, Oy, Tid, O'yz} UAu AQ).

7(ii) = (1)”: Assume that Mod{(zy)z ~ x(yz),xy ~ yz} € V. Then
there exists an identity z¥ ~ 2" € IdV with 1 < k < n € IN. We set
m :=n—kand w := f(f(... f(z,y),...,9),y), where w has the length
km + 1. It is easy to check that (o o ow)(f) = v = :L‘y(km)Q. In fact,
from zF ~ 2" € IdV and m = n — k, it follows 2™ ~ z¢ € IdV with
¢ = km + (k*m — k)m = k?m?2. Therefore, (0 op 0)(f) = v ~ zyF' ™ ~
2y 2 04, (f), i.e. 0y 0n O ~y 0y and thus 0y, 0N Ty ~V O O Tw ~V Ty
Let ¢ be a choice function such that o, € Hypn, (V). Obviously, o, €
Hypn, (V) ~N(E U{0s, 0y, 0id, 0f(y2)} U A1 U A2) and thus O(o) = co. But
ow € Hypn, (V) forces oy oy 0y = 0y and O(o) = 2, what contradicts
O(o) = co. Therefore Mod{(zy)z ~ x(yz),zy ~ yx} C V. |
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