
Discussiones Mathematicae 169
General Algebra and Applications 20 (2000 ) 169–182

HYPERIDENTITIES IN ASSOCIATIVE GRAPH
ALGEBRAS

Tiang Poomsa-ard

Department of Mathematics, Faculty of Science,
Khon Kaen University, Khon Kaen 40002, Thailand

e-mail: tiang@kku1.kku.ac.th

Abstract

Graph algebras establish a connection between directed graphs
without multiple edges and special universal algebras of type (2,0).
We say that a graph G satisfies an identity s ≈ t if the corresponding
graph algebra A(G) satisfies s ≈ t. A graph G is called associative
if the corresponding graph algebra A(G) satisfies the equation
(xy)z ≈ x(yz). An identity s ≈ t of terms s and t of any type τ is
called a hyperidentity of an algebra A if whenever the operation
symbols occurring in s and t are replaced by any term operations of A
of the appropriate arity, the resulting identities hold in A.

In this paper we characterize associative graph algebras, identities
in associative graph algebras and hyperidentities in associative graph
algebras.
Keywords: identities, hyperidentities, associative graph algebras,
terms.
1991 Mathematics Subject Classifications: 08B05, 0840, 08C10,
08C99, 03C05.

1. Introduction

An identity s ≈ t of terms s, t of any type τ is called hyperidentity of an
algebra A if whenever the operation symbols occurring in s and t are replaced
by any term operations of A of the appropriate arity, the resulting identity
holds in A. Hyperidentities can be defined more precisely using the concept
of a hypersubstitution.

We fix a type τ = (ni)i∈I , ni > 0 for all i ∈ I, and operation symbols
(fi)i∈I , where fi is ni-ary. Let Wτ (X) be the set of all terms of type τ over
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some fixed alphabet X, and let Alg(τ) be the class of all algebras of type τ .
Then a mapping

σ : {fi| i ∈ I} −→ Wτ (X)

which assigns to every ni-ary operation symbol fi an ni-ary term will be
called a hypersubstitution of type τ (for short, a hypersubstitution). Let σ̂[t]
be the extension of the hypersubstitution σ to a mapping σ̂ defined on the
set of all terms. The term σ̂[t] can be defined inductively by:
for a term t ∈ Wτ (X),

(i) σ̂[x] = x for any variable x in the alphabet X, and

(ii) σ̂[fi(t1, ..., tni)] = σ(fi)Wτ (X)(σ̂[t1], ..., σ̂[tni ]).

Here σ(fi)Wτ (X) on the right hand side of (ii) is the operation induced by
σ(fi) on the term algebra Wτ (X).

Graph algebras have been invented in [8] to obtain examples of non-
finitely based finite algebras. To recall this concept, let G = (V, E) be
a (directed) graph with vertex set V and set of edges E ⊆ V × V . De-
fine the graph algebra A(G) corresponding to G to have underlying set
V ∪{∞}, where∞ is a symbol outside V , and two basic operations, a nullary
operation pointing to ∞ and a binary one denoted by juxtaposition,
given for u, v ∈ V by

uv =

{
u if (u, v) ∈ E
∞ otherwise.

Graph identities were characterized in [3] by using the rooted graph of a
term t where the vertices correspond to the variables occurring in t. Since
on a graph algebra we have one nullary and one binary operation, σ(f) in
this case is a binary term in Wτ (X), i.e. a term built up from variables of
a two-element alphabet and a binary operation symbol f corresponding to
the binary operation of the graph algebra.

In [6] R. Pöschel has shown that any term over the class of all graph
algebras can be uniquely represented by a normal form term and that there
is an algorithm to construct the normal form term to every given term t.

In [2] K. Denecke and T. Poomsa-ard characterized graph hyperidenti-
ties by using normal form graph hypersubstitutions.

A graph G = (V, E) is called associative if the corresponding graph
algebra A(G) satisfies the equation x(yz) = (xy)z. In this paper
we characterize associative graph algebras, identities in associative graph
algebras and hyperidentities in associative graph algebras.
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2. Associative graph algebras

We begin with a more precise definition of terms of the type of graph
algebras.

Definition 2.1. The set Wτ (X) of all terms over the alphabet

X = {x0, x1, x2, ...}
is defined inductively as follows:

(i) every variable xi, i = 0, 1, 2, ..., and ∞ are terms;
(ii) if s and t are terms, then f(s, t) is a term; instead of f(s, t) for short

we will write (st);
(iii) Wτ (X) is the set of all terms which can be obtained from (i) and (ii)

in finitely many steps.

Terms built up from the two-element set X2 = {x1, x2} of variables are called
binary. We denote the set of all binary terms by Wτ (X2). The leftmost
variable of a term t is denoted by L(t). A term in which the symbol ∞
occurs is called trivial.

Definition 2.2. To every non-trivial term t we assign a directed graph
G(t) = (V (t), E(t)) defined as follows: The vertex set V (t) is the set of
variables occurring in t, and the set E(t) of edges is defined inductively by

E(t) = φ if t is a variable, E(st) = E(s) ∪ E(t) ∪ {(L(s), L(t))}.
L(t) is called the root of the graph G(t), and the pair (G(t), L(t)) is the
rooted graph corresponding to t. Formally, to every trivial term t we assign
the empty graph φ.

Definition 2.3. We say, a graph G = (V,E) satisfies an identity s ≈ t if
the corresponding graph algebra A(G) satisfies s ≈ t (i.e. we have s = t for
every assignment V (s)∪ V (t) → V ∪ {∞}) and use the notation G |= s ≈ t.

Definition 2.4. Let G = (V, E) and G
′
= (V

′
, E

′
) be graphs. A homomor-

phism f : G → G
′
is a mapping f : V → V

′
carrying edges to edges, i.e., for

which (u, v) ∈ E we have (f(u), f(v)) ∈ E′.
In [3] was proved:

Proposition 2.1. Let s and t be non-tivial terms from Wτ (X) with variables
V (s) = V (t) = {x0, x1, ..., xn} and L(s) = L(t). Then a graph G = (V,E)
satisfies s ≈ t if and only if the graph algebra A(G) has the following
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property: A mapping h : V (s) −→ V is a homomorphism from G(s) into
G iff it is a homomorphism from G(t) into G.

Proposition 2.1 gives a method to check whether a graph G = (V, E) has
an associative graph algebra. Before to do this, we want to introduce some
notation about graph.

For any graph G = (V, E), let N(v) = {w ∈ V |(v, w) ∈ E} denote the
set of all out-neighbours of a vertex v ∈ V . Graphs of the form (V, V × V )
are called complete graphs. For N ⊆ V ,the induced subgraph is given by
(N, E ∩ (N ×N)). Then we have:

Proposition 2.2. Let G = (V,E) be a graph. Then the following are
equivalent:

(i) G has an associative graph algebra,
(ii) for any edge (u, v)∈E and any vertex w∈V, (u,w)∈E⇐⇒(v, w)∈E,
(iii) E is transitive and for every v ∈ V the subgraph induced by N(v) is

a complete graph.

Proof. (i) ⇒ (ii): Suppose G = (V, E) has an associative graph algebra.
Let s and t be terms such that s := (xy)z, t := x(yz). For any edge (u, v) ∈ E
and any vertex w ∈ V , let h : V (s) → V be the restriction of an evaluation
function of the variables such that h(x) = u, h(y) = v and h(z) = w. We
see that if (u,w) ∈ E, then h is a homomorphism from G(s) into G. By
Proposition 2.1 we have h is a homomorphism from G(t) into G, that is
(v, w) ∈ E. By the same way if (v, w) ∈ E, then (u,w) ∈ E.

(ii) ⇒ (iii): Clearly from (ii) we have E is transitive. Let v ∈
V and u,w ∈ N(v) we have (v, u), (v, w) ∈ E. By (ii) we get
(u, w), (w, u), (u, u), (w, w) ∈ E. Hence subgraph of G induced by N(v)
is a complete graph.

(iii) ⇒ (i): Let G = (V, E) be a graph which satisfies (iii), let s and
t be non-trivial terms such that s := (xy)z, t := x(yz). Suppose that h :
V (s) → V is a homomorphism from G(s) into G. Since (x, y), (x, z) ∈ E(s)
we have (h(x), h(y)), (h(x), h(z)) ∈ E. By N(h(x)) is a complete graph, we
have (h(y), h(z)) ∈ E, therefore h is a homomorphism from G(t) into G.
By the same way, if h is a homomorphism from G(t) into G and since E is
transitive, then we have h is a homomorphism from G(s) into G. Hence by
Proposition 2.1, we get A(G) satisfies s ≈ t.

For the identity (xy)z ≈ x(yz) we have, if two of the variables x, y, z
coincide, then we get as special cases the identities, (xx)y ≈ x(xy), (xy)y ≈
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x(yy) and x(yx) ≈ (xy)x. By Proposition 2.2 we can conclude that for any
graph G = (V, E) if it has an associative graph algebra, then

(i) if (u, v) ∈ E, then v has a loop,
(ii) if (u, v) ∈ E, then u has a loop iff (v, u) ∈ E.

From this and Proposition 2.2 give the list of all graphs G = (V,E) which
|V | ≤ 3 and G has an associative graph algebra.
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Remark. Let B be the set of all graphs in the list. Then a graph G has an
associative graph algebra if and only if each induced subgraph H of G with
|V (H)| ≤ 3 is isomorphic to an element of B.

3. Identities in associative graph algebras

Graph identities were characterized in [3] by the following proposition:

Proposition 3.1. A non-trivial equation s ≈ t is an identity in the class
of all graph algebras iff either both terms s and t are trivial or none of them
is trivial, G(s) = G(t) and L(s) = L(t).

Further they proved:

Proposition 3.2. Let G = (V, E) be a graph and let h : X −→ V ∪ {∞}
be an evaluation of the variables. Consider the canonical extension of h to
the set of all terms. Then there holds: if t is a trivial term then h(t) = ∞.
Otherwise, if h : G(t) −→ G is a homomorphism of graphs, then h(t) =
h(L(t)), and if h is not a homomorphism of graphs, then h(t) = ∞.

By Proposition 3.2 we have the following lemma:

Lemma 3.1. Let G = (V, E) be a graph, let t be a term and let h : X −→
V ∪ {∞} be an evaluation of the variables.

(i) If h : G(t) −→ G has the property that the subgraph of G induced by
h(V (t)) is complete, then h(t) = h(L(t)).

(ii) If h : G(t) −→ G has the property that the subgraph of G induced by
h(V (t)) is disconnected, then h(t) = ∞.

Proof. (i) Since the subgraph of G induced by h(V (t)) is complete, h is a
homomorphism of graphs. By Proposition 3.2, we have h(t) = h(L(t)).

(ii) Since the subgraph of G induced by h(V (t)) is disconnected and G(t)
is a rooted graph which is connected, there is an edge (u, v) of G(t) such
that (h(u), h(v)) is not an edge of the subgraph of G induced by h(V (t)).
Hence, h is not a homomorphism. By Proposition 3.2, we have h(t) = ∞.
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Now we apply our results to characterize all identities in the class of all
associative graph algebras. Clearly, if s and t are trivial, then s ≈ t is an
identity in the class of all associative graph algebras and x ≈ x, x ∈ X is
an identity in the class of all associative graph algebras too. So we consider
the case that s and t are non-trivial and different from variables. Then all
identities in associative graph algebras are characterized by the following
theorem:

Theorem 3.1. Let s and t be non-trivial terms and let x0 = L(s). Then
s ≈ t is an identity in the class of all associative graph algebras if and only
if the following conditions are satisfied:

(i) L(s) = L(t),

(ii) V (s) = V (t),

(iii) The variable x0 occurs in s more than once if and only if x0 occurs
in t more than once.

Proof. Suppose that s ≈ t is an identity in the class of all associative graph
algebras.

If V (s) 6= V (t), then we can suppose that there exists x such
that x ∈ V (s) and x 6∈ V (t). Consider the graph G6 in the list and
h : V (s) ∪ V (t) −→ V (G6) is the restriction of an evaluation of the
variables such that h(x) = 0, h(y) = 1 for all other y ∈ V (s) ∪ V (t).
Obviously A(G) is not satisfies s ≈ t.

Let G = (V, E) be a complete graph with V = V (s) = V (t) and let
an identity function h : V (s) −→ V be the restriction of an evaluation
of the variables. Since G is a complete graph, by Lemma 3.1, we have
L(s) = h(L(s)) = h(s) = h(t) = h(L(t)) = L(t).

Let the variable x0 occur in s more than once and occur in t only once.
Then (x, x0) ∈ E(s) for some x ∈ V (s) and (y, x0) /∈ E(t) for all y ∈ V (t).
Consider the graph G6 in the list again and h : V (s) −→ V (G6) such that
h(x0) = 0, and h(y) = 1 for all other y ∈ V (s). We see that h(s) = ∞ and
h(t) = 0. Hence, A(G6) does not satisfy s ≈ t.

Conversely, suppose that s and t are non-trivial terms and satisfy (i), (ii)
and (iii). Let G = (V, E) be a graph which has an associative graph algebra
and let h : X −→ V ∪ {∞} be an evaluation of the variables. Consider
the restriction function of h on V (s) and V (t). Since V (s) = V (t), we have
that the subgraphs of G, which are induced by h(V (s)) and h(V (t)), are the
same subgraph of G, say it is the subgraph H.
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If H is a complete subgraph of G, then h(s) = L(s) = x0 = L(t) = h(t).

If H is a disconnected subgraph of G, then h(s) = ∞ = h(t).

For the case H is a connected subgraph and not complete, by
Proposition 2.2 we can prove that for any v1, v2 ∈ V (H), N(v1) = N(v2)
and since H is not complete, therefore there exists at least one element
v
′ ∈ V (H) such that v

′
/∈ N(v

′
).

If there exist v1, v2 ∈ V (H) such that v1 6= v2, v1 /∈ N(v1) and v2 /∈
N(v2), then h(s) = ∞ = h(t).

If there exists only one element v
′ ∈ V (H) such that v

′
/∈ N(v

′
), then

a) h(s) = ∞ = h(t) if there exist x 6= x0, h(x) = v
′
or h(x0) = v

′
, h(x) 6=

v
′
for all x 6= x0 and x0 occurs in s more than once,

b) h(s) = v
′
= h(t) if h(x0) = v

′
, h(x) 6= v

′
for all x 6= x0 and x0 occurs

in s only once.

Hence we have A(G) satisfies s ≈ t.

4. Hyperidentities in associative graph algebras

Let AG be the class of all associative graph algebras and let IdAG be the
set of all identities satisfied in AG. Now we want to precisise the concept of
a hypersubstitution for graph algebras.

Definition 4.1. A mapping σ : {f,∞} → Wτ (X2), where f is the operation
symbol corresponding to the binary operation of a graph algebra, is called
graph hypersubstitution if σ(∞) = ∞ and σ(f) = s ∈ Wτ (X2). The graph
hypersubstitution with σ(f) = s is denoted by σs.

Definition 4.2. An identity s ≈ t is an associative graph hyperidentity iff
for all graph hypersubstitutions σ, the equations σ̂[s] ≈ σ̂[t] are identities
in AG.

Clearly, if s and t are trivial terms, then s ≈ t is an associative graph
hyperidentity. If we want to check that s ≈ t (s, t are non-trivial) is an
associative graph hyperidentity, then we can restrict ourselves to a (small)
subset of HypG – the set of all graph hypersubstitutions.

In [4] the following relation between hypersubstitutions was defined:
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Definition 4.3. Two graph hypersubstitutions σ1, σ2 are called AG-
equivalent iff σ1(f) ≈ σ2(f) is an idetity in AG. In this case, we write
σ1 ∼AG σ2.

In [1] (see also [4]) was proved:

Lemma 4.1. If σ̂1[s] ≈ σ̂1[t] ∈ IdAG and σ1 ∼AG σ2, then σ̂2[s] ≈ σ̂2[t] ∈
IdAG.

Therefore, it is enough to consider the quotient set HypG/ ∼AG .
In [6] was shown that any non-trivial term t over the class of graph

algebras has a uniquely determined normal form term NF (t) and there is
an algorithm to construct the normal form term to a given term t. Now
we want to describe how to construct the normal form term. Let t be a
non-trivial term. The normal form term of t is the term NF (t) constructed
by the following algorithm:

(i) Construct G(t) = (V (t), E(t)).

(ii) Construct for every x ∈ V (t) the list lx = (xi1 , ..., xik(x)
) of all out-

neighbours (i.e. (x, xij ) ∈ E(t), 1 ≤ j ≤ k(x)) ordered by increasing
indices i1 ≤ ... ≤ ik(x) and let sx be the term (...((xxi1)xi2)...xik(x)

).

(iii) Starting with x := L(t), Z := V (t), s := L(t), choose the variable
xi ∈ Z ∩ V (s) with the least index i, substitute the first occurrence
of xi by the term sxi , denote the resulting term again by s and put
Z := Z \ {xi}. While Z 6= φ, continue this procedure. The resulting
term is the normal form NF (t).

The algorithm stops after a finite number of steps, since G(t) is a rooted
graph. Without difficulties one shows G(NF (t)) = G(t), L(NF (t)) = L(t).

In [2] was defined:

Definition 4.4. The graph hypersubstitution σNF (t), is called normal
form graph hypersubstitution. Here NF (t) is the normal form of the binary
term t.

Since for any binary term t the rooted graphs of t and NF (t) are the
same, we have t ≈ NF (t) ∈ IdAG. Then for any graph hypersubstitution
σt with σt(f) = t ∈ Wτ (X2), one obtains σt ∼AG σNF (t).

In [2] all rooted graphs with at most two vertices were considered.
Then we formed the corresponding binary terms and used the algorithm to
construct normal form terms. The result is given in the following table.
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normal form term graph hypers. normal form term graph hypers.

x1x2 σ0 x1 σ1

x2 σ2 x1x1 σ3

x2x2 σ4 x2x1 σ5

(x1x1)x2 σ6 (x2x1)x2 σ7

x1(x2x2) σ8 x2(x1x1) σ9

(x1x1)(x2x2) σ10 (x2(x1x1))x2 σ11

x1(x2x1) σ12 x2(x1x2) σ13

(x1x1)(x2x1) σ14 x2((x1x1)x2) σ15

x1((x2x1)x2) σ16 (x2(x1x2))x2 σ17

(x1x1)((x2x1)x2) σ18 (x2((x1x1)x2))x2 σ19

By Theorem 3.1, we have the following relations:
(1) σ0 ∼AG σ8,
(2) σ5 ∼AG σ9,
(3) σ6 ∼AG σ10 ∼AG σ12 ∼AG σ14 ∼AG σ16 ∼AG σ18,
(4) σ7 ∼AG σ11 ∼AG σ13 ∼AG σ15 ∼AG σ17 ∼AG σ19.

Let

MAG = {σ0, σ1, σ2, σ3, σ4, σ5, σ6, σ7}.
We defined the product of two normal form graph hypersubstitutions in
MAG as follows.

Definition 4.5. The product σ1N ◦N σ2N of two normal form graph
hypersubstitutions is defined by (σ1N ◦N σ2N )(f) = NF (σ̂1N [σ2N (f)]).
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The following table gives the multiplication of MAG .

◦N σ0 σ1 σ2 σ3 σ4 σ5 σ6 σ7

σ0 σ0 σ1 σ2 σ3 σ4 σ5 σ6 σ7

σ1 σ1 σ1 σ2 σ1 σ2 σ2 σ1 σ2

σ2 σ2 σ1 σ2 σ1 σ2 σ1 σ2 σ2

σ3 σ3 σ1 σ2 σ3 σ4 σ4 σ3 σ4

σ4 σ4 σ1 σ2 σ3 σ4 σ3 σ4 σ4

σ5 σ5 σ1 σ2 σ3 σ4 σ0 σ5 σ7

σ6 σ6 σ1 σ2 σ3 σ4 σ7 σ6 σ7

σ7 σ7 σ1 σ2 σ3 σ4 σ6 σ7 σ7

In [2] the leftmost normal form graph hypersubstitution was defined.

Definition 4.6. A graph hypersubstitution σ is called leftmost if

L(σ(f)) = x1.

The set ML of all leftmost normal form graph hypersubstitution in MAG
contains exactly the following elements:

ML = {σ0, σ1, σ3, σ6}.
In [5] the concept of a proper hyppersubstitution of a class of algebras was
introduced.

Definition 4.7. A hypersubstitution σ is called proper with respect to a
class K of algebras if σ̂[s] ≈ σ̂[t] ∈ IdK for all s ≈ t ∈ IdK.

A graph hypersubstitution with the property that σ(f) contains both
variables x1 and x2 is called regular. It is easy to check that the set of all
regular graph hypersubstitutions form a groupoid Mreg.
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We want to prove that ML is the set of all proper normal form graph
hypersubstitutions with respect to AG.

In [2] the following lemma was proved:

Lemma 4.2. For each non-trivial term s, (s 6= x ∈ X2),

E(σ̂6[s]) = E(s) ∪ {(u, u)| (u, v) ∈ E(s), u, v ∈ X2}.
Then we obtain:

Theorem 4.2. ML is the set of all proper graph hypersubstitutions.

Proof. If s ≈ t ∈ IdAG and s, t are trivial terms, then for every graph
hypersubstitution σ ∈ MAG the terms σ̂[s] and σ̂[t] are also trivial and thus
σ̂[s] ≈ σ̂[t] ∈ IdAG.

By the same way we see that σ̂[s] ≈ σ̂[t] ∈ IdAG for every σ ∈ MAG , if
s = t = x.

Now, assume that s and t are non-trivial terms, different from variables
and s ≈ t ∈ IdAG. Then (i) L(s) = L(t) (let L(s) = L(t) = x

′
), (ii)

V (s) = V (t) and (iii) the variable x
′
occurs in s more than once if and only

if x
′
occurs in t more than once.
At first assume that σ ∈ {σ1, σ3}. Then for σ1 we have σ̂1[s] = σ̂1[t] = x

′

and for σ3 we get σ̂3[s] = σ̂3[t] = x
′
x
′
.

For σ6 we obtain L(σ̂6[s]) = L(s) = L(t) = L(σ̂6[t]). Since σ6 is regular,
we have V (s) = V (σ̂6[s]) and V (t) = V (σ̂6[t]). Because of V (s) = V (t) we
have V (σ̂6[s]) = V (σ̂6[t]).

By Lemma 4.2, we have
E(σ̂6[s]) = E(s) ∪ {(u, u)|(u, v) ∈ E(s)} and

E(σ̂6[t]) = E(t) ∪ {(u, u)|(u, v) ∈ E(t)}.
Since L(s) = L(t) = x

′
, we obtain (x

′
, xi) ∈ E(s) and (x

′
, xj) ∈ E(t) for

some i, j = 1, 2, hence (x
′
, x

′
) ∈ E(σ̂6[s]) and (x

′
, x

′
) ∈ E(σ̂6[t]) thus x

′

occurs in E(σ̂6[s]) and E(σ̂6[t]) more than once.
By Theorem 3.1, we have σ̂6[s] ≈ σ̂6[t] ∈ IdAG
For any σ 6∈ ML i.e. L(σ(f)) = x2, we give an identity s ≈ t in AG and

show that σ̂[s] ≈ σ̂[t] 6∈ IdAG.
Let s = (x1x2)x1, t = ((x1x2)x1)x2. By Theorem 3.1 we get s ≈ t ∈

IdAG.
If σ ∈ {σ2, σ4, σ5, σ7}, then L(σ(f)) = x2. We see that L(σ̂[s]) = x1

and L(σ̂[t]) = x2 for all σ ∈ {σ2, σ4, σ5, σ7}; thus σ̂[s] ≈ σ̂[t] 6∈ IdAG.
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Now we apply our results to characterize all hyperidentities in associative
graph algebras. Clearly, if s and t are trivial, then s ≈ t is a hyperidentity
in AG and x ≈ x, x ∈ X, is a hyperidentity in AG too. So we consider the
case that s and t are non-trivial and different from variables.

In [2] the concept of a dual term sd of the non-trivial term s was defined
in the following way:

If s = x ∈ X, then xd = x, if s = t1t2, then sd = td2t
d
1. The dual term

sd can be obtained by application of the graph hypersubstitution σ5, i.e.,
σ̂5[s] = sd.

Theorem 4.2. An identity s ≈ t in AG, where s, t are non-trivial and
s 6= x, t 6= x, is a hyperidentity in AG if and only if the dual equation
sd ≈ td is also an identity in AG.

Proof. If s ≈ t is a hyperidentity in AG, then σ̂5[s] ≈ σ̂5[t] is an identity
in AG, i.e. sd ≈ td is an identity in AG.

Assume that s ≈ t is an identity in AG and that sd ≈ td is an iden-
tity in AG too. We have to prove that s ≈ t is closed under all graph
hypersubstitutions from MAG .

If σ is proper, then σ̂[s] ≈ σ̂[t] ∈ IdAG, i.e. if σ ∈ ML we are ready.
By assumption σ̂5[s] = sd ≈ td = σ̂5[t] is an identity in AG. Because of
σ1 ◦N σ5 = σ2, σ3 ◦N σ5 = σ4, σ6 ◦N σ5 = σ7 and σ̂[σ̂5[t

′
]] = σ̂[t

′d] for all
σ ∈ MAG , t

′ ∈ Wτ (X2). Then we have σ̂2[s] ≈ σ̂2[t], σ̂4[s] ≈ σ̂4[t], σ̂7[s] ≈
σ̂7[t] are identities in AG.
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