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Abstract

Let G be a group and Kn = {g ∈ G : o(g) = n}. It is prowed: (i)
if F = R, n ≥ 4, then PSL(2, F ) = K2

n; (ii) if F = Q,R, n = ∞,
then PSL(2, F ) = K2

n; (iii) if F = R, then PSL(2, F ) = K3
3 ; (iv) if

F = Q,R, then PSL(2, F ) = K3
2 ∪ E,E /∈ K3

2 , where E denotes the
unit matrix; (v) if F =Q, then PSL(2, F ) 6= K3

3 .
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Let G be a group and Kn = Kn(G) = {g ∈ G : o(g) = n}. Let SL(m,F ) and
PSL(m,F ) be a special linear or projective specjal linear (resp.) groups of
degree m over a field F. Many papers have been devoted to the powers of the
set K2 (see [3] – [9]) but only few papers have been written about the powers
of the set Kn for n > 2 (see [1] – [3]). In the papers [3] and [5], it has been
proved that if F is an algebraically closed field, then PSL(3, F ) = KnKn

for n > 2 and PSL(3, F ) = K4
2 for any F. Note that we do not identify

K2 with the set of involutions. In the paper [7], it has been proved that if
F = Q, R, where Q denotes the field of rational numbers and R denotes
the field of real numbers, then PSL(2, F ) = K4

n.
In this paper we will prove the following properties:

(i) if F = R, n ≥ 4, then PSL(2, F ) = K2
n;

(ii) if F=Q,R, n = ∞, then PSL(2, F ) = K2
n;

(iii) if F = R, then PSL(2, F ) = K3
3 ;



160 J. Ambrosiewicz

(iv) if F = Q or R, then PSL(2, F ) = K3
2 ∪ E,E /∈ K3

2 ,
where E denotes the unit matrix;

(v) if F = Q, then PSL(2, F ) 6= K3
3 .

Recall, that PSL(2,C) = K2
n, where C denotes the field of complex

numbers (see [2]).
We begin with some lemmas.

Lemma 1. Let F be any field. In SL(2, F ), each non-scalar matrix is

similar to a matrix of the form
[

0 r
−r−1 s

]
= D. The order of D depends

only on s.
If F = R, then

a) the order of the matrix D ∈ SL(2,R) is n > 2 iff s = 2 cos 2kπ
n and

(k, n) = 1;
b) the order of the matrix D ∈ PSL(2,R) is n > 2 iff s = 2 cos kπ

n and
(k, n) = 1 or s = 2 cos 2kπ

n , (k, n) = 1.

If F = Q or R and |s| > 2, then the order of D is ∞.

Proof. If F is any field, then for each A =

[
a b
c d

]
∈ SL(2, F ) there

exists a matrix

X =


 x y

1
r (xa + cy) 1

r (bx + yd)


 and D =


 0 r

−r−1 s




such that A = X−1DX and s = a + d. The condition detX = 1 holds since
the equation x

r (bx + yd)− y
r (xa + cy) = 1 has a solution in r, x, y.

If F is any field, then we can find that

Dn =


 ϕn−2(s) rψn−1(s)

−r−1ψn−1(s) ωn(s)


 ,

where ϕn−2, ψn−1, ωn are polynomials in s which means that the order of D
depends only on s.

In the case F = R, it is easy to notice that the order of any matrix A over
R is the same as over F = C. Thus if −2 < s < 2, we can put s = 2 cosϕ,

and then the matrix D is similar to the diagonal matrix
[

eiϕ 0
0 e−iϕ

]
over

C. Hence, the rest of the proof follows from obvious properties of the group
of the n-th roots of unity. If |s| > 2, then the order of D is ∞.
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Lemma 2 (see [5]). If V = diag(v1, ..., vm), W = diag(w1, ..., wm), vi 6= vj,
wi 6= wj for i 6= j and V, W ∈ SL(m,F ), then SL(m,F ) = CV CW ∪ Z,
where CV denotes the conjugacy class of V and Z denotes the center
of SL(m,F ).

Lemma 3. If

Ni =


 0 wi

−w−1
i 0


 , Ti =


 0 1

−1 xi


 , Ni, Ti ∈ SL(2, F ),

then the trace tr(NT1
1 NT2

2 NT3
3 ) = s is any arbitrary element of

F, where (NT i
i = T−1

i NiTi).

Proof. If we put x1 = x2 = 0, then s = −w3w
−1
1 w−1

2 (w2
1 + w2

2)x3. Thus s
is directly proportional to x3 and s can be any arbitrary element of F.

Lemma 4. If

Mi =


 0 wi

−w−1
i di


 (i = 1, 2, 3), Ti =


 0 1

−1 xi


 , di 6= 0,

and Mi, Ti ∈ SL(2, F ), then there are wi such that the trace tr(M1M
T2
2 MT3

3 ) =
s is any arbitrary element of F .

Proof. A calculation shows that if we take w2 = −d2d
−1
1 w−1

1 , x3 = x2 +
d3w

−1
3 and (w1w3d1)2 6= d2

2, then s = x2(d1d
−1
2 w3−d1d

−1
2 w−1

1 w−1
3 )+d1d3d

−1
2 ,

so s varies as a linear function of x2.

Lemma 5. Let Mi =
[

0 wi

−w−1
i di

]
, Si =

[
0 yi

−y−1
i xi

]
, over R. Then

s = tr(MS1
1 MS2

2 ) = −w1w2

(
x1y1 − x2y2

y2y1

)2

+

(x1y1−x2y2)
(

d1w2

y2
2

− w1d2

y2
1

)
−

(
w2

w1

)(
y1

y2

)2

−
(

w1

w2

)(
y2

y1

)
+d1d2.

(1)

achieves the minimum

smin =
1
2

√
(4− d2

1)(4− d2
2) +

1
2
d1d2
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and the maximum value

smax = −1
2

√
(4− d2

1)(4− d2
2) +

1
2
d1d2

for w1w2 < 0 and w1w2 > 0, respectively.

Proof. If we consider the trace s as a function of x1, x2, then the condition

∂s

∂x1
=

∂s

∂x2
= 0(2)

is equivalent to the condition

2(x1y1 − x2y2) =
d1

d2
y2
1 −

d2

d1
y2
2.(3)

Since ∂2s
∂x2

1
= −2w1w2

y2
2

, ∂2s
∂x2

2
= −2w1w2

y2
1

, ∂2s
∂x1∂x2

= −2w1w2
y1y2

, therefore

s(x1 + h, x2 + k)− s(x1, x2) = −2w1w2

y2
1y

2
2

(y1 − y2k)2.(4)

Hence, s(x1, x2) achieves the minimum and the maximum value for w1w2 < 0
and w1w2 > 0, respectively. The value of the trace s , at the surface (3)
equals

1
4
x(d2

2 − 4) +
1
4
(d2

1 − 4)
1
x

+
1
2
d1d2,(5)

where x = w1
w2

(y1

y2
)2.

The function (5) in x and, as a result, also s achieves the minimum smin

and the maximum smax value for

w1

w2
= −(

y1

y2
)2

√
d2

1 − 4
d2

2 − 4
and

w1

w2
= (

y1

y2
)2

√
d2

1 − 4
d2

2 − 4
,

respectively.

Lemma 6. If F = R, then the non-scalar matrix A =
[

a b
c d

]
∈ SL(2, F )

and D =
[

0 r
−r−1 s

]
, are similar in SL(2, F ) provided s = a + d, br ≥ 0

or −cr ≥ 0.
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Proof. We have XAX−1 = D, where

X =
[

x y
1
r (ax + cy) 1

r (bx + yd)

]
, detX 6= 0.

The condition X ∈ SL(2, F ) is equivalent to the solvability of the equation

bx2 + xy(d− a)− cy2 − r = 0 in x or y.(6)

The descriminant ∆ = y2(s2−4)+4br or ∆ = x2(s2−4)−4cr, respectively,
must be a non negative element of F.

By the assumption br ≥ 0 or −cr ≥ 0, we can chose so small y or x such
that ∆ ≥ 0 for any a, d ∈ R.

Lemma 7. Let s = tr(MS1
1 MS2

2 ) be defined by (1) and let n be the order of
Mi. Then:

if n = 2, then −∞ < s ≤ −2 or 2 ≤ s < ∞;
if n = 3, then −∞ < s ≤ −1 or 1 ≤ s < ∞;
if n ≥ 4, then −∞ < s < ∞.

Proof. For d1 = 2 cos π
n and d2 = 2 cos π(n−1)

n the trace s achieves the
minimum

smin = −2 cos
2π

n
(7)

and for d1 = 2 cos π
n and d2 = 2 cos π

n , the trace s achieves the maximum
value

smax = 2 cos
2π

n
,(8)

by Lemma 5. The rest of the proof follows from (7), (8) and definition (1)
of s.

Lemma 8 (see [4]). Let G be a group. An element g ∈ Km
2 (m ≥ 2) if and

only if there is an element x ∈ Km−1
2 , x 6= g−1 such that (gx)2 = 1.

Theorem 1. PSL(2,R) = K2
n, for n ≥ 4.

Proof. Let

Mi =
[

0 wi

−w−1
i di

]
, T1 =

[
0 1
−1 di

]
, T2 =

[
0 1
−1 0

]
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and di = 2 cos πj
n , i = 1, 2; (j, n) = 1. From (1) for x2 = 0, y1 = y2 = 1, it

results that

s = −w1w2x
2
1 + (w2d1 − w1d2)x1 − w1

w2
− w2

w1
+ d1d2.(9)

The function (9) in x1 achieve the same minimum and maximum value as
the function (1). For this reason, the trace tr(MS1

1 MS2
2 ) = s fulfills the

condition of Lemma 7. The matrix

MT1
1 MT2

2 =
[

a b
c d

]
, where b = −w1

w2
x1 +

d1

w2
, c = w1(−d2 − w2x1)

is similar in GL(2,R) to the matrix

D =
[

0 r
−r−1 s

]
, s = a + d for any r 6= 0.

By Lemma 6, these matrices are similar in SL(2,R) provided

rc ≤ 0 or rb ≥ 0.(10)

From Lemma 7, it results that the equation (9) is solvable in x1 and

x
′
1 =

w2d1 − w1d2 +
√4

2w1w2
, x

′′
1 =

w2d1 − w1d2 −
√4

2w1w2
,

where 4 = (w2d1 + w1d2)2 − 4w2
1 − 4w2

2 − 4w1w2s.
If we put x1 = x

′
1, then

b =
1

2w2
2

(
w2d1 + w1d2 −

√
4

)
and c = −1

2

(
w2d1 + w1d2 +

√
4

)
.

Note that 4(−w1,−w2) = 4(w1, w2). Hence, if r > 0, then the signs of w1

and w2 can be chosen such that w2d1 + w1d2 > 0, thus cr < 0; if r < 0,
then the signs of w1 and w2 can be chosen such that w2d1 +w1d2 < 0 , thus
br > 0. If w2d1 + w1d2 = 0, then c < 0 and b < 0, thus for r > 0, rc < 0 and
for r < 0, rb > 0. Hence, condition (10) holds in all cases. Thus MT1

1 MT2
2

and D are similar in SL(2,R), by Lemma 6. Hence, matrices conjugate to
D run over all non-scalar matrices of PSL(2,R), by Lemma 1. Our set of

matrices contains together with the matrix L =
[

0 r
−r−1 di

]
also L−1, so

E = LL−1 ∈ K2
n. Therefore, K2

n = PSL(2,R).
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Theorem 2. a) PSL(2,R) = K3
3 ,

b) PSL(2,Q) 6= K3
3 ,

c) PSL(2, F ) 6= K3
2 for F = Q and R.

Proof. Let Mi =
[

0 z
−z−1 di

]
, where di = 2 cos πj

n , i = 1, 2; (j, n) = 1

and Mi, Ti as in Lemma 3 or 4. If we take r = x2b+xy(d−a)−cy2, x, y ∈ F,

then the matrices MT1
1 MT2

2 =
[

a b
c d

]
and D =

[
0 r

−r−1 s

]
, s = a + d

are similar in SL(2, F ).
Consider the matrix

MiD =
[

0 z
−z−1 di

]
·
[

0 r
−r−1 s

]
=

[ −zr−1 zs
−dir

−1 −rz−1 + dis

]
.

By Lemma 3 or 4 the trace tr(MiD) = t runs over all of F , according to
n = 2 or n = 3. The matrix MiD is similar in the gerneral linear group

GL(2, F ) to the matrix C=
[

0 m
−m−1 t

]
. The similarity of MiD and C in

SL(2, F ) is equivalent to the condition

x2(t2 − 4) + 4
mdi

r
≥ 0,(11)

by Lemma 6.
Since di = ±1 for n = 3, it is possible to chose di and x such that the

condition (11) holds in R. Hence, by the Lemma 1, matrices conjugate to
C run over all non-scalar matrices of PSL(2, F ). By Lemma 7, K2

3 contains

the matrix B=
[

0 b
−b−1 di

]
∈ K3, where di = 2 cos πj

3 , (j, 3) = 1. The set

K3 together with B contains also B−1. Hence E = BB−1 ∈ K3
3 . Therefore

PSL(2,R) = K3
3 .

If F = Q, then the condition (11) cannot hold for t = 2 and for any
arbitrary m ∈ Q. Hence PSL(2,R) 6= K3

3 .

If n = 2, then di = 0 and the condition (11) cannot hold for |t| < 2
even for F = R. Hence PSL(2, F ) 6= K3

3 for F = Q, R. The part b) of
Theorem 2 follows.

The statement c) results from Lemma 8. Indeed, the set of non-scalar
matrices of K2

2 ⊂ PSL(2, F ) consist of matrices

X =
[

0 x
−x−1 0

]
·
[

y z
−z−1(1 + y2) −y

]
∈ K2

2(12)
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and their conjugates. The conditions (XG)2 = E, G = ±E, X 6= G are
equivalent to

x2(y2 + 1) + z2 = 0; x, y, z 6= 0,(13)

which cannot be fulfilled over Q and R. Hence E /∈ K3
2 , by Lemma 8.

Theorem 3. If F = Q or R and n = ∞, then SL(2, F ) = K2
n and

PSL(2, F ) = K2
n.

Proof. Among matrices of order n = ∞ in PSL(2, F ) there are matrices
of the form

Ai =
[

0 ai

−a−1
i di + d−1

i

]
,

with distinct eigenvalues di, d
−1
i , where di 6= 0. Observe that o(Ai) =

o(−Ai) = o(A−1
i ) = ∞ and K2

n =
⋃
i,j

CAiCAj . Lemma 2 implies that K2
n∪Z =

SL(2, F ) but E ∈ CAiCA−1
i

and −E ∈ CAiC(−Ai), so K2
n = SL(2, F ).

The equality K2∞ = PSL(2, F ) can be proved similarly.

From Theorems 1, 2, 3, all proporties (i) – (v) follow immediately.
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