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Abstract
In the first part of this paper we prove without using the transfer

or characters the equivalence of some conditions, each of which would
imply p-nilpotence of a finite group G. The implication of p-nilpotence
also can be deduced without the transfer or characters if the group is
p-constrained. For p-constrained groups we also prove an equivalent
condition so that Oq′(G)P should be p-nilpotent. We show an example
that this result is not true for some non-p-constrained groups.

In the second part of the paper we prove a generalization of a
theorem of Itô with the help of the knowledge of the irreducible
characters of the minimal non-nilpotent groups.
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1 Definitions and known results
We know the remarkable theorems of Frobenius which tell that in
Theorem 2.1 (i) and (iv) both imply that the finite group G has a
normal p-complement. All existing proofs of them use the transfer
homomorhism or characters.

The well-studied minimal non-nilpotent groups, i.e. non-nilpotent
groups, each of whose subgroups are nilpotent, sometimes are called
Schmidt groups or (p, q)-groups. They can be described without using the
transfer, see 5.1 Satz and 5.2 Satz in pp. 280-281 of [6]. Let G be a minimal
non-nilpotent group. Then it can be proved without using the transfer
or characters, that
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1. G is solvable.
2. |G| is divisible only by 2 primes, say |G| = paqb.
3. G′ = P ∈ Sylp(G).
4. If p > 2, then exp(P ) = p; if p = 2, then exp(P ) ≤ 4; exp(Z(P )) = p in

all cases.
5. P is either abelian or P ′ = Φ(P ) = Z(P ) ≤ Z(G).
6. If Q ∈ Sylq(G), then Q is cyclic; and if Q = 〈x〉, then 〈xq〉 ≤ Z(G).
7. If P is abelian, then Q acts irreducibly on P ; if P is nonabelian, then

Q acts irreducibly on P/Z(P ). If P is abelian, then P is of expo-
nent p; and if P is nonabelian, then P/Z(P ) is also of exponent p. So,
they can be considered as vector spaces over GF (p). Their dimension
is o(p)(mod(q)), which is even in the nonabelian case.

8. G is generated by its Sylow q-subgroups.

These groups are non-p-nilpotent. It can also be proved using the transfer
or characters that a group is p-nilpotent if and only if, it does not contain
such a subgroup.

We shall use the following:

Notation 11. We shall write (p, q) 6≤ G if the group G does not contain a
(p, q)-group, otherwise we write (p, q) ≤ G.

Let us recall the definition of Thompson-ordering:

Definition 12. Let G be a finite group. Let P be a property of subgroups
of G. Let A = {A| p-subgroup of G, NG(A) < G, A p-group, NG(A) has
the property P}. We tell for A1, A2 ∈ A that A1 is smaller than A2 in
the Thompson-ordering if either |NG(A1)|p < |NG(A2)|p, or |NG(A1)|p =
|NG(A2)|p and |A1| < |A2|.

Definition 13. Let P ∈ Sylp(G). A subgroup U ≤ P is called strongly
closed if for every u ∈ U if ux ∈ P then ux ∈ U .

2 Main results

The aim of this paper is to prove that the equivalence of the following four
conditions can be proved without the use of transfer or characters:
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Theorem 21. Let G be a finite group, let P ∈ Sylp(G). Then the following
are equivalent:

(i) If x, y ∈ P are G-conjugate, then they are conjugate already in P ;
(ii) If x, y ∈ P of order p or 4 and are G-conjugate, then they are conju-

gate already in P ;
(iii) (p, q) 6≤ G for every prime q 6= p;
(iv) For every p-subgroup U ≤ G, NG(U)/CG(U) is a p-group.

As a corollary we get:

Theorem 22. Let G be a p-constrained group, P ∈ Sylp(G). If any of the
conditions of the above theorem holds for G, then one can deduce without
using the transfer that G has a normal p-complement.

As an application of Theorem 2.1 we prove also the following:

Theorem 23. Let G be a finite group, let p 6= q be primes with p, q ∈ π(G).
Let P ∈ Sylp(G) and let Oq′(G) denote the subgroup of G generated by the
q-elements of G. If G is p-constrained then the following are equivalent:

(i) (p, q) 6≤ G.
(ii) Oq′(G)P has a normal p-complement.

Another application of Theorem 2.2 is to prove without using the transfer
the following generalization of a theorem of Itô:

Theorem 24. Let G be a finite p-constrained group, let P ∈ Sylp(G). Let
us suppose that χ is a character of G satisfying the following conditions:

α) χ(1) ≤ 2p− 2,

β) for every subgroup H ≤ G, χH does not have a constituent of
degree p,

γ) Ker(χ) = 1.

Then one of the following two possibilities holds:
(i) P is abelian and P is normal in G;
(ii) p is a Fermat-prime and one of the constituents of χ has degree at

least p− 1.
The inequality in α) is sharp. There is a solvable group G0 having a
character χ0 ∈ Char(G0) satisfying β) and γ) with degree χ0(1) = 2p − 1,
such that for this pair the assertion of the Theorem does not hold.



132 K. Corrádi and E. Horváth

3 Preliminary lemmas

In the proof of Theorem 2.1 we will need the following lemma, which is
Lemma 2 in [4].

Lemma 31. Let G be a group with H ∈ Hallπ(G) and with the property
that every π-subgroup Y of G can be conjugated into H. Let K be a class of
elements of H, which is closed under conjugation inside H with elements of
G such that if two elements of K are conjugate in G then they are already
conjugate in H. Then if G1 / G and |G : G1| = q, where q ∈ π, then for
H1 = H∩G1 it holds that each pair of elements of H1∩K that are conjugate
in G1 are already conjugate in H1.

For the proof of Theorem 2.1 we will also need the following lemma, which
generalizes both Lemma 5 in [4] and Lemma 3.2 in [3].

Lemma 32. Let q ∈ π(G)\{p} be a fixed prime, P ∈ Sylp(G), U < P
abelian and strongly closed in P . Then if (p, q) 6≤ NG(U) then (p, q) 6≤ G,
as well.

Proof. Let G be a counterexample of minimal order.

First we prove that we may assume that Op(G) = 1.

Let Op(G) > 1 and let B/G be a p-subgroup. Let G = G/B, and the images
of U and P in this factor group let U and P , respectively. Then P ∈ Sylp(G)
and the triple (G,P , U) satisfies the conditions set for (G,P, U). To see this
we have to show only that (p, q) 6≤ NG(U) implies (p, q) 6≤ NG(U). Let M be
the inverse image of NG(U) in G. Here M < G, since if U /G then UG ≤ P ,
and as U ≤ P is strongly closed, UG = U would follow. This would imply
(p, q) 6≤ NG(U) = G, which is a contradiction. So M < G. But P ≤ M
and NG(U) = NM (U). The triple (M,P, U) satisfies the conditions of the
Lemma. By induction (p, q) 6≤ M . By [2], (p, q) 6≤ M = NG(U), as well.
Hence the conditions of the Lemma are satisfied by the triple (G,P , U) and
by induction (p, q) 6≤ G.

Let V be a (p, q)-group in G. Then V ′ = Vp ∈ Sylp(V ) and by the above
result, its image V in G is nilpotent. Hence Vp ≤ B. There are two cases:

(i) U ∩Op(G) = 1,
(ii) U ∩Op(G) 6= 1.
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Ad (i): We know that U / P and we may assume that Vp ≤ P , by replacing
V with a suitable conjugate of it. Hence [U, Vp] ≤ U . On the other
hand as Vp ≤ Op(G), [U, Vp] ≤ Op(G) ∩ U = 1.

Ad (ii): If U ∩ Op(G) 6= 1, then we may choose B equal to it, because
U ∩Op(G) is normal in G as U is strongly closed. Hence Vp ≤ B ≤ U
by the above results. But U is abelian, so [Vp, U ] = 1 in this case,
too.

Hence in both cases (i) and (ii) [Vp, U ] = 1. Let N = NG(Vp). We claim
that N = G. If N < G then if we choose S ∈ Sylp(N) with the property
U ≤ S, then the triple (N, S,U) satisfies the conditions of the Lemma. So
by induction (p, q) 6≤ N . This contradicts the fact that V ≤ N . Thus Vp

is normal in G. Let C = CG(Vp). Then C / G. Let us choose Q ∈ Sylq(G)
so that it should contain a Sylow q-subgroup of V . Set L = CQ. Then
P ∩ L = P ∩ C ∈ Sylp(L) and P ∩ C / P . Then the triple (L,P ∩ L,U)
satisfies the conditions of the Lemma. Hence if L < G then by induction
(p, q) 6≤ L, which is impossible as V ≤ L. Thus G = L = CQ. Since
P = P ∩ L = P ∩ C, P ≤ C and as C / G, so by the Frattini argument
we have that G = CNG(P ). As U is a strongly closed subgroup of P ,
NG(P ) ≤ NG(U) and thus (p, q) 6≤ NG(P ). Since Vp ≤ CG(P ) ≤ NG(P ) and
Vp/G, hence Vp/NG(P ). Thus |NG(P ) : C∩NG(P )| 6≡ 0 (q). But then, since
|NG(P ) : C ∩ NG(P )| = |CNG(P ) : C| = |G : C| = |CQ : C| = |Q : C ∩Q|,
Q ≤ C = G follows. This is a contradiction, since V ≤ G = CG(Vp).

End of the proof: Let A = {A| NG(A) < G,A p-group, (p, q) ≤ NG(A)}.
Let K be a maximal element ofA for the Thompson-ordering. Then |NG(K)|p
is maximal and among those with this property K is also of maximal or-
der. As A 6= ∅, so such K exists. Then K ≤ P1 for a suitable Sylow
p-subgroup P1 of G. Let x ∈ G such that P x

1 = P. Then Kx ≤ P .
Let Z(P1) ≤ R ∈ Sylp(NG(K)). Then Z(P ) ≤ Rx ∈ Sylp(NG(Kx)). Let
Rx ≤ P2 ∈ Sylp(G). Choose t ∈ G so that P t

2 = P. Thus Rxt ≤ P. Since
U / P , Z(P )∩U 6= 1, thus Rx ∩U 6= 1, as well. As U is stongly closed in P ,
(Rx ∩ U)t ≤ Rxt ∩ U and Rxt ∩ U is strongly closed in Rxt. It is enough to
prove that the triple (NG(Kxt), Rxt, Rxt ∩ U) satisfies the conditions of the
Lemma. When we prove this, then (p, q) 6≤ NG(Kxt) follows, contradicting
our assumption. It is enough to prove that (p, q) 6≤ NG(Rxt∩U). If |R| = |P |
then we have that the triple (NG(Kxt), P, U) satisfies the conditions of the
Lemma, and since NG(Kxt) < G, by induction we get that (p, q) 6≤ NG(Kxt),
contradicting the choice of K. Thus |R| < |P |. Then NP (Rxt) > Rxt,
and since Rxt ∩ U is strongly closed in Rxt, NG(Rxt) ≤ NG(Rxt ∩ U).
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So |NG(Rxt ∩ U)|p > |NG(Kxt)|p = |R|. As NG(Rxt ∩ U) 6= G, thus
(p, q) 6≤ NG(Rxt ∩ U), by the maximality of K in the Thompson ordering.
The proof is complete.

For the proof of Theorem 2.4 we will need the description of irreducible
characters of minimal non-nilpotent groups. As we did not find any reference
to it in the literature, for the sake of selfcontainedness we include it here.

Lemma 33. Let G be a (p, q)-group, P ∈ Sylp(G), Q ∈ Sylq(G), |Q| = qn.
Then G has exactly qn linear characters.

(i) If P is abelian, then all other characters in Irr(G) are of degree q.
They are induced from nontrivial characters of the unique index q
subgroup of G. There are (|P | − 1)qn−2 such characters.

(ii) If P is extraspecial, then |P | = p2m+1, where 2m ≡ o(p)(mod(q)).
P/Z(P )Q is a (p, q)-group of type (i). So it has (p2m − 1)qn−2

irreducible characters of degree q. The p − 1 irreducible characters
of degree pm of P can be extended to G giving (p − 1)qn irreducible
characters of degree pm.

(iii) If P is special and nonabelian, then if |Z(P )| = pk then Z(P ) has pk−1
p−1

maximal subgroups. By factoring with one of them we get a (p, q)-
group of type (ii). The union of inverse images of these characters
give Irr(G).

Proof. As G′ = P , |G : G′| = qn, so G has exactly qn linear characters.
Let H = P 〈xq〉. Then |G : H| = q and H is normal in G.

Ad (i): If P is abelian, then so is H, so if χ ∈Irr(G) nonlinear, then χH =
σ1 + ... + σq and χ = σG

i for i = 1, ..., q. So χ(1) = q and χ is
induced from exactly q linear characters of H. As |G| = |P |qn =
qn + q2(|P | − 1)qn−2, we get that each nontrivial character of H that
does not contain P in its kernel is induced to Irr(G).

Ad (ii): If P is extraspecial, then |P | = p2m+1. As Q acts irreducibly on
P/Z(P ), by Lemma 3.10 in Chapter II. of [6] we get that 2m =
o(p)(mod(q)). The p − 1 faithful irreducible characters of P are of
degree pm, they are 0 outside Z(P ), so they are G-invariant, and
as (|P |, |G : P |) = 1, they can be extended to G. By Gallagher’s
theorem, se e.g. [7], they can be extended in qn ways. This way we
get (p−1)qn irreducible characters of G. By taking into consideration
those of degree 1 and q the sum of squares of the degrees gives:
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qn + q2(p2m − 1)qn−2 + p2m(p− 1)qn = qnp2m+1 = |G|,
so we determined all Irr(G).

Ad (iii): We calculate the sum of squares of the irreducible characters we
produced so far: qn+q2(p2m−1)qn−2+p2m pk−1

p−1 (p−1)qn = qnp2m+k =
|G|, so we produced the whole Irr(G).

4 Proofs of the main results

Now we prove Theorem 2.1:

Proof of Thorem 2.1. (i) → (ii) is trivial.
(ii) → (iii): We use induction on |G|. The following argument is similar

to one in the last part of the proof of Theorem 1 in [4]. For the sake of
selfcontainedness, we repeat it here.

Let A / P be an abelian normal subgroup in P such that exp(A) ≤ p if
p > 2, and exp(A) ≤ 4 if p = 2, and A is maximal with these properties.

(a) If A ≤ Z(P ):

then according to Alperin’s theorem [1], Ωj(P ) ≤ Z(P ), where j = 1 if p > 2
and j = 2 if p = 2. Then A is strongly closed in P , as if we take two elements
a and ax of order p or of order 4 in A and P , then they are conjugate in P ,
and as A is normal in P , we get that ax ∈ A, too. Let N = NG(A). If N < G,
then as P ∈ Sylp(N), by induction we get that (p, q) 6≤ N, and by Lemma
3.2 , (p, q) 6≤ G. So we may assume that NG(A) = G. Then P ≤ CG(A) /G.
As for each a ∈ A# for the conjugacy class KG(a) of a in G and for the
conjugacy class KP (a) in P it holds that KG(a) = KG(a)∩ P = KP (a) = a,
as A / G and A ≤ Z(P ), so |G : CG(a)| = |P : CP (a)| = 1, and we get
that A ≤ Z(G). Thus, if p > 2, then Ω1(P ) ≤ A ≤ Z(G); if p = 2, then
Ω2(P ) ≤ Z(G); and this means that G 6≥ (p, q) in cases p > 2 and p = 2,
either, for every prime divisor q 6= p of G.

(b) If A 6≤ Z(P ):

then A ∩ Z(P ) < A. Thus A/A ∩ Z(P ) contains a central subgroup of
P/A ∩ Z(P ) of order p. Let A1 be its inverse image in A. According to
our assumption, A1 = 〈A ∩ Z(P ), x〉, where o(x) = p or o(x) = 4 and
x 6∈ Z(P ). A1 is strongly closed in P as if a1 ∈ A1 and au

1 ∈ P, then
by assumption au

1 is conjugate to a1 in P . But as A1 / P , au
1 ∈ A1. If
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N1 = NG(A1) < G, then as P ≤ N1, by induction we have that (p, q) 6≤ N1.
Then, by Lemma 3.2, (p, q) 6≤ G. So, we may assume that N1 = G. Then
CG(A1) / G and A ∩ Z(P ) ≤ Z(G), as if a ∈ A ∩ Z(P ) and g ∈ G then
ag ∈ A1 ≤ P , so by assumption there is a u ∈ P such that ag = au and
as a ∈ A ∩ Z(P ) au = a. So, |G : CG(a)| = 1 and thus A ∩ Z(P ) ≤ Z(G)
and CG(A1) = CG(x). Let g ∈ G, then xg ∈ A1 ≤ P , so there exists
an u ∈ P such that xg = xu, therefore the conjugacy classes KG(x) and
KP (x) coincide and thus |G : CG(A1)| = |G : CG(x)| = |P : CP (x)| > 1.
So, CG(A1) is a proper normal subgroup of p-power index in G and it is
contained in some normal subgroup G1 of index p. By Lemma 3.1 , applied
for H = P ∈ Sylp(G) if we take K to be the set of elements of P of order
p or 4, then induction gives that (p, q) 6≤ G1 for every prime q 6= p. As a
(p, q)-group is generated by its Sylow q-subgroups, (p, q) 6≤ G, either.

(iii) → (iv): Let T be a p-subgroup of G. Let N = NG(T ). Let q ∈
π(N)\{p}, Q ∈ Sylq(N). If [Q,T ] 6= 1, then (p, q) ≤ QT , which cannot
happen by assumption. Hence (iv) follows.

(iv) → (i): The proof is similar to the second part of Lemma 5 in [4].
For the sake of selfcontainedness we repeat it here.

Let a, b ∈ P such that a = bx for some x ∈ G. By the thereom of Alperin,
see e.g. Chapter 7, Theorem 2.6 in [5], there exist Sylow
p-subgroups Q1, ..., Qn of G, elements x1, ..., xn with xj ∈ NG(P ∩ Qj),
and y ∈ NG(P ) such that b ∈ P ∩ Q1, bx1...xj−1 ∈ P ∩ Qj , x = x1...xny
and NP (P ∩Qj)∈Sylp(NG(P ∩Qj)) for j = 1, ..., n. Let Nj =NG(P ∩Qj),
Cj = CG(P ∩Qj), Pj = NP (P ∩Qj), j = 1, ..., n.

So Nj = Cj(P∩Nj) and hence xj = yjzj , where yj ∈ Cj and zj ∈ P∩Nj .
It is easy to see that that a = bx = bz1...zny. NG(P ) = CG(P )P , so y = czn+1,
where c ∈ CG(P ), zn+1 ∈ P . Thus a = bx = bz1...zn+1 , which means that a
and b are conjugate in P . The proof is complete.

Now we prove Theorem 2.2:

Proof of Theorem 2.2. Let H = Op′,p(G), R = H ∩ P . As G is
p-constrained, CG(R) ≤ H. By the Frattini argument, G = Op′(G)NG(R).
Let q 6= p prime, Q ∈ Sylq(NG(R)). Then QR = Q × R, as (p, q) 6≤ QR.
Hence Q ≤ CG(R) ≤ H, and so Q ≤ Op′(G). Thus G = Op′(G)P .

Now we prove Theorem 2.3:

Proof of Theorem 2.3. (i) →(ii): Repeating the argument of the previ-
ous proof one gets that Oq′(G) ≤ Op′(G). As Oq′(G)/G and it is a p′-group,
so Oq′(G)P is a subgroup of G having normal p-complement.
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(ii)→(i): If Oq′(G)P has a normal p-complement, then Oq′(G) is a p′-
subgroup. If U is a (p, q)-group in G, then U ≤ Oq′(U) ≤ Oq′(G). As Oq′(G)
is a p′-subgroup, this is a contradiction. So, the proof is complete.

Remark 41. In Theorem 2.3 the condition that G is p-constrained cannot
be omitted. Take G = A5, P ∈ Syl5(G). Then (5, 3) 6≤ G, since 25 does not
divide |G|. As G is simple, G = O3′(G) = O3′(G)P.

Now we prove Theorem 2.4:

Proof of Theorem 2.4. We use induction on |G|. We assume that G is a
finite p-constrained group of minimal order that has character χ ∈ Char(G)
satisfying the conditions in our Theorem such that the assertion is not yet
known. We may assume that (ii) is false for G, and we have to prove that
for G (i) holds. As (ii) does not hold for G, so it cannot hold for any proper
subgroup H of G. So by induction (i) holds for all such H. Using α) and β)
we can deduce that every constituent of χP is linear, and thus P ′ ≤ Ker(χ).
By γ), P is abelian. As G is p-constrained, so P ′ = 1 implies that G is
p-solvable. By the choice of G we get immidiately that π(G) = {p, q} for
a suitable prime q 6= p. This gives that G is solvable, hence G is also
q-constrained.

We have to prove that P / G. As π(G) = {p, q}, this means that G
is q-nilpotent. As G is q-constrained, our Theorem 2.1 (iii) and Theorem
2.2 implies, (even without the use of the transfer), that either P / G or G
is a (q, p)-group. To finish the proof, it is enough to show that the
second possibility cannot occur. Assume that G is a (q, p)-group. Let m be
o(q) (mod (p)). Using β) an appeal to Lemma 33. shows that χ can have
a nonlinear constituent only in the case when m is even, say m = 2a. The
degree of a nonlinear irreducible constituent of χ is then qa. Since qa +1 ≡ 0
(mod (p)), qa = pl − 1, for a suitable natural number l. From this one de-
duces that either qa ≥ 2p− 1 or qa = p− 1 and q = 2. If qa = p− 1, p = 2
cannot occur. As (ii) is not true in G, case qa = p−1 cannot hold, either. So
χ has only linear constituents. But then G′ ≤ Ker(χ), so by γ) G has to be
abelian in this case, contradicting the assumption that G is a (q, p)-group.
This completes the proof.

Now we give an example showing that in α) 2p − 2 cannot be replaced by
2p− 1.

Let p and q = 2p − 1 be primes, where p ≥ 7. E.g. p = 7 and q = 13.
Let G0 be a (q, p)-group of order q3p with extraspecial Sylow q-subgroup. In
this case o(q)(modp) = 2, so such a group exists. Then Q0 = G′

0 ∈ Sylq(G0),
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and G0 has a character χ0 of degree q which is irreducible and faithful. So α)
is not satisfied for χ0, as χ0(1) = 2p−1. Since χ0 is faithful γ) holds. As all
proper subgroups of G0, except for Q0, are abelian, and χQ0 is irreducible,
for χ0 β) also holds. (i) is not true for G0. But p is not a Fermat prime
either, as then p=22k

+1 would hold and q =2p−1= 22k+1+1≡0(mod(3))
so (ii) cannot hold, either.

Remark 42. This theorem extends a well-known result of N. Itô ([8], see
also [7]).

It can be deduced from our statement if we replace 2p − 2 by p − 1 in
α) and we assume also γ). Then β) is automatically satisfied. If P is not
normal in G, then χ(1) = p− 1 and χ ∈ Irr(G) also holds.

On the other hand the assumption β) is vital for our proof as if case
(i) holds, then, by a theorem of N. Itô (see e.g. [7]), (χ(1), p) = 1 holds for
every irreducible character χ ∈ Irr(G).

Remark 43. The conditions of our Theorem 2.4 however do not guarantee
that if P is not normal in G, then χ should be irreducible. Let us take
p = 22k

+ 1 to be a Fermat-prime. Let G be a (2, p)-group of order 22k+1+1p
with extraspecial Sylow 2-subgroup and Sylow p-subgroup P of order p.
Then G has a faithful irreducible character χ of degree p− 1. Let us choose
a character σ ∈ Char(G) with p − 1 < σ(1) ≤ 2p − 2, and (σ, χ) = 1 and
all other constituents of σ are choosen to be linear. Then σ satisfies α), β)
and γ), but σ is not irreducible.
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