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Abstract

The class of unique factorization semilattices (UFSs) contains
important examples of semilattices such as free semilattices and the
semilattices of idempotents of free inverse monoids. Their structural
properties allow an efficient study, among other things, of their
principal ideals. A general construction of UFSs from arbitrary posets
is presented and some categorical properties are derived. The problem
of embedding arbitrary semilattices into UFSs is considered and com-
plete characterizations are obtained for particular classes of semilat-
tices. The study of the Munn semigroup for regular UFSs is developed
and a complete characterization is accomplished with respect to being
E-unitary.
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1 Preliminaries

The general terminology and notation are those of Howie [1]. We denote by
N the set {0, 1, 2, . . .} of all nonnegative integers.

We define a semilattice to be a commutative semigroup consisting of
idempotents. Given a semilattice E, the natural partial order on E is defined
by

e ≤ f ⇔ e = ef.
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For this partial order, the product ef is clearly the meet of the elements e
and f . Hence we can view a semilattice as a poset where the meet of two
elements is always defined. Conversely, given a poset (E,≤) where the meet
e ∧ f of two elements e, f ∈ E is always defined, we can view (E,∧) as a
semilattice. It follows that every semilattice has a semigroup structure and
an ordered structure, and each one of them is completely determined by
the other. Obviously, the word “semilattice” refers originally to the ordered
structure.

A semigroup S is said to be inverse if, for every a ∈ S, there exists a
unique b ∈ S such that

aba = a and bab = b.

Given an inverse semigroup S, the subset of all idempotents of S con-
stitutes a semilattice E(S), usually called the semilattice of idempotents of
S.

Let E be a semilattice and e ∈ E. We say that e is irreducible if

e = fg ⇒ e = f or e = g

for all f, g ∈ E. We say that e is prime if

e ≥ fg ⇒ e ≥ f or e ≥ g

for all f, g ∈ E. The subset of all irreducible elements of E is denoted by
Irr(E).

Lemma 11 ([2], Lemma 2.1). Let E be a semilattice and e ∈ E be prime.
Then e is irreducible.

The semilattice E is called a unique factorization semilattice (UFS) if:

(i) E is generated by Irr(E);

(ii) Every irreducible of E is prime.

We say that e = f1 . . . fn is a reduced irreducible factorization of e if
f1, . . . , fn ∈ Irr(E) and fi 6≥ fj whenever i 6= j. If E is generated by
Irr(E), then every e ∈ E admits a reduced irreducible factorization. The
next result justifies the expression “unique factorization”.
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Lemma 12 ([2], Lemma 2.2). Let E be a UFS.

(i) Let e1 . . . en = f1 . . . fm with all ei, fj ∈ Irr(E). Then, for every i ∈
{1, . . . , n}, there exists j ∈ {1, . . . , m} such that ei ≥ fj.

(ii) Every e ∈ E admits a unique reduced irreducible factorization.

Given a poset X and A ⊆ X, we say that A is an ideal of X if a ∈ A and
x ≤ a together imply x ∈ A. Dually, A is a dual-ideal of X if a ∈ A and
x ≥ a together imply x ∈ A. Given Y ⊆ X, we define

Y ↓ = {x ∈ X | x ≤ y for some y ∈ Y },
Y ↑ = {x ∈ X | x ≥ y for some y ∈ Y }.

Clearly, Y ↓ (respectively, Y ↑) is the smallest ideal (respectively, dual-ideal)
of X containing Y . If A = Y ↓ for some finite subset Y of X, we say that
A is a finitely generated ideal. If A = x ↓ for some x ∈ X, we say that A
is a principal ideal. We have similar definitions for dual-ideals. If E is a
semilattice and e ∈ E, note that

e↓= Ee = {fe | f ∈ E}.

Clearly, Ee is a subsemilattice of E.
In the case of a UFS, the structure of principal ideals is particularly

amenable.

Lemma 13 ([2], Lemma 2.3). Let E be a UFS and e ∈ E.

(i) Irr(Ee) = (Irr(E))e.

(ii) Ee is a UFS.

Principal dual-ideals are also subsemilattices and show a simple structure.

Lemma 14. Let E be a UFS and e ∈ E.

(i) Irr(e↑) = Irr(E) ∩ e↑.

(ii) e↑ is a UFS.

Proof. Straightforward.
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In general, (finitely generated) dual-ideals are not subsemilattices, and
(finitely generated) ideals need not be UFSs, as the next example shows.

Straightforward verification shows that the semilattice depicted above is a
UFS. However, the ideal {d, e, f, g} is not.

We shall consider several particular subclasses of both posets and semi-
lattices throughout this work, and we must introduce further terminology
and notation.

Let X be a poset. We say that X is upper finite if x↑ is finite for every
x ∈ X. Given x, y ∈ X, we write x Â y if x > y and there is no z ∈ X such
that x > z > y. We define also

x̂ = {y ∈ X | y Â x}
and

[x, y] = {z ∈ X | x ≤ z ≤ y}.
The poset X is said to be connected if, given x, y ∈ X, [x, y] contains no
infinite chain. Clearly, every upper finite poset is connected.

Next we introduce two important examples of UFSs.
The free semilattice on a nonempty set X may be described as the set

F (X) of all finite nonempty subsets of X, endowed with the union operation.
It is common practice to identify the singleton subset {x} of F (X) with the
element x ∈ X. Clearly, the natural partial order is described by

A ≤ B ⇔ A ⊇ B

and Irr(F (X)) consists of all the singleton sets. Proving that F (X) is a
connected upper finite UFS is a simple exercise.
Let FG(X) denote the free group on a set X, viewed as the set of all reduced
words on the double alphabet X∪X−1. A subset A ⊆ FG(X) is prefix-closed
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if it contains all the prefixes of its elements. The semilattice of idempotents
of the free inverse monoid on a set X may be described as the set I(X) of
all finite nonempty prefix-closed subsets of FG(X), endowed with the union
operation. The natural partial order is also described by A ≤ B ⇔ A ⊇ B.

Lemma 15 ([2], Lemma 2.5). Let X be a set.

(i) A ∈ I(X) is irreducible if and only if A is the set of prefixes of a single
word u ∈ FG(X).

(ii) I(X) is a connected upper finite UFS.

A semilattice presentation is a formal expression of the form S〈X | R〉,
where X is a nonempty set and R ⊆ F (X)×F (X). The semilattice defined
by the above presentation is the quotient F (X)/R], where R] denotes the
congruence on F (X) generated by the relation R. If a semilattice E is
isomorphic to F (X)/R], we say that S〈X | R〉 is a presentation of E.

2 Constructing UFSs out of posets

In this section we introduce a general construction of UFSs.
Let (X,≤) be a poset, which we denote simply by X whenever possible.

We write

R(X) = {(x, Y ) ∈ F (X)× F (X) | x ∈ Y ⊆ x↑},

where x ↑= {y ∈ X | y ≥ x}. Let U(X) be the semilattice defined by the
presentation S〈X | R(X)〉. Given A,B ∈ F (X), we write A ≥X B if for
every a ∈ A there exists b ∈ B such that a ≥ b, and we write AρX B if
A ≥X B and B ≥X A.

Lemma 21. Let X be a poset.

(i) ρX = (R(X))].

(ii) The natural partial order of U(X) is given by

(AρX) ≤ (BρX) ⇔ A ≤X B.

Proof. (i) Clearly, ρX is a reflexive and symmetric relation on F (X),
and transitivity follows from the fact that ≥X is itself transitive. Clearly,
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AρX B implies (A ∪ C) ρX (B ∪ C) for every C ∈ F (X), hence ρX is a
congruence on F (X). The inclusion R(X) ⊆ ρX is easily verified and thus
(R(X))] ⊆ ρX .

To prove the converse inclusion, assume that AρX B with A,B ∈ F (X).
Let ρ = (R(X))]. We show that Aρ (A ∪ B). By symmetry, we get also
B ρ (A ∪B) and so Aρ B as required.

Let

C = ∪a∈A((A ∪B) ∩ (a↑)) = (A ∪B) ∩ (∪a∈A(a↑)).

Since a ρ ((A ∪B) ∩ (a↑)) for every a ∈ A and ρ is a congruence, we obtain
Aρ C. Since B ≥X A by hypothesis, it follows that B ⊆ ∪a∈A(a ↑) and so
B ⊆ C. Hence (A ∪B) ρ (C ∪B) = C ρA.

(ii) We have

(AρX) ≤ (BρX) ⇔ AρX = (A ∪B)ρX ⇔ (A ≤X (A ∪B) ∧ (A ∪B) ≤X A).

Since the condition (A ∪B) ≤X A holds trivially and A ≤X (A ∪B) if and
only if A ≤X B, the result follows.

From now on, we shall omit the subscript X and even the congruence symbol
ρ whenever possible.

Before presenting our next result, we note that, given a semilattice E,
we can view Irr(E) as a poset simply by considering the restriction of the
natural partial order of E to Irr(E).

Lemma 22. Let X be a poset.

(i) Irr(U(X)) = {xρ | x ∈ X}.
(ii) Irr(U(X)) ' X as posets.

(iii) U(X) is a UFS.

Proof. (i) Let A ∈ F (X) be such that Aρ ∈ Irr(U(X)). We can assume
that the cardinal of A is least possible. Suppose that |A | > 1 and let a ∈ A.
Then we can write Aρ = (aρ)((A−{a})ρ) and Aρ irreducible yields Aρ = aρ
or Aρ = (A−{a})ρ, in either case contradicting the minimality of A. Hence
|A |= 1 and so Irr(U(X)) ⊆ {xρ | x ∈ X}.

Now let x ∈ X. Assume that xρ ≥ (Aρ)(Bρ) = (A ∪ B)ρ for some
A,B ∈ F (X). We have x ≥X A ∪ B by Lemma 21(ii) and so there exists
some y ∈ A ∪ B such that x ≥ y in X. It follows that x ≥X A or x ≥X B,
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and so xρ ≥ Aρ or xρ ≥ Bρ, by the same reference. Thus xρ is prime. By
Lemma 11, we obtain {xρ | x ∈ X} ⊆ Irr(U(X)), as required.

(ii) The mapping

ϕ : X → Irr(U(X)), x 7→ xρ

is well defined by part (i) and is surjective.
Let x, y ∈ X. By Lemma 21(ii), we have

x ≥ y ⇔ x ≥X y ⇔ xρ ≥ yρ ⇔ xϕ ≥ yϕ.

Since the relation on X is a partial order, this implies that ϕ is also injective
and thus an isomorphism of posets.

(iii) In part (i), we have proved that every irreducible of U(X) is prime,
and it is immediate that these irreducibles generate U(X).

In view of the preceding lemma, we proceed to identify X with Irr(U(X)).

Lemma 23. If X is a poset, E a semilattice and ϕ : X → E an
order-preserving map, then there exists a unique semilattice homomorphism
Φ : U(X) → E such that Φ |X= ϕ.

Proof. Since F (X) is the free semilattice on X, there is a unique semilat-
tice homomorphism ϕ : F (X) → E such that ϕ |X= ϕ. Let x ∈ Y where Y
is a finite nonempty subset of x↑. We have

Y ϕ =


 ⋃

y∈Y

y


 ϕ =

∏

y∈Y

yϕ =
∏

y∈Y

yϕ.

Since x ∈ Y , it follows that Y ϕ ≤ xϕ. Conversely, Y ⊆ x ↑ together with
ϕ being order-preserving yield xϕ ≤ yϕ for every y ∈ Y and so xϕ ≤ Y ϕ.
Thus xϕ = Y ϕ and the homomorphism ϕ induces a quotient homomorphism

Φ : U(X) → E, Aρ 7→ Aϕ.

Clearly, (xρ)Φ = xϕ = xϕ for every x ∈ X. Uniqueness follows from the
fact that X generates U(X).

Lemma 24. If E is a UFS, then E ' U(Irr(E)).
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Proof. Let X = Irr(E) viewed as a poset. By Lemma 23, the inclusion
mapping ι : X → E induces a semilattice homomorphism

Φ : U(X) → E, Aρ 7→
∏

a∈A

aι.

Since E is a UFS, X generates E and so Φ is surjective.
Let A,B ∈ F (X) be such that (Aρ)Φ = (Bρ)Φ. Then

∏
a∈A aι =∏

b∈B bι. Let a ∈ A. Since Aι ⊆ Irr(E) and E is a UFS, Lemma 12(i)
implies that aι ≥ bι for some b ∈ B. Since ι is the inclusion mapping,
we obtain a ≥ b. Thus A ≥X B. By symmetry, we get B ≥X A and so
Aρ = Bρ. Hence Φ is injective and therefore an isomorphism.

From Lemmas 22 and 24 we get

Theorem 25. Up to isomorphism, UFSs are semilattices of the form U(X),
where X is a poset.

We can take this discussion into a categorical framework. Let Pos denote
the category with posets as objects and order-preserving mappings as mor-
phisms, and let Ufs denote the category with UFSs as objects and semi-
lattice homomorphisms as morphisms. We define an operator U as follows.
Given a poset X, U(X) is the UFS defined as before. Let ϕ : X → Y be a
morphism in Pos. Since Y embeds in U(Y ) by Lemma 22(ii), we can view
ϕ as an order-preserving map from the poset X into the semilattice U(Y ).
According to Lemma 23, we can denote by U(ϕ) the unique semilattice
homomorphism from U(X) into U(Y ) that extends ϕ.

Proposition 26. U is a faithful functor from Pos into Ufs.

Proof. We prove that U(ϕψ) = U(ϕ) U(ψ) for morphisms ϕ : X → Y and
ψ : Y → Z in Pos. The remaining verifications are straightforward.

Clearly, both U(ϕψ) and U(ϕ) U(ψ) are semilattice homomorphisms
from U(X) into U(Z). Since U(X) is generated by X, it suffices to show
that these two homomorphisms agree on X. Indeed, for every x ∈ X, we
have

x(U(ϕψ)) = xϕψ = xϕ(U(ψ)) = (x(U(ϕ))) U(ψ) = x(U(ϕ)U(ψ))

and so U(ϕψ) = U(ϕ) U(ψ).
In the next examples, we compute U(X) for some particular posets X.
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Example 27. Let X be a nonempty set partially ordered by the identity
relation. Then U(X) = F (X).

Proof. In this case, we have x ↑= {x} for every x ∈ X and so ρ is the
identity relation on F (X).

Example 28. Let X be a set and let FG(X) be partially ordered by the
prefix relation (that is, v ≤ w if and only if v is a prefix of w). Then
U(FG(X)) ' I(X).

Proof. In view of Lemmas 15(ii) and 24, we only need to show that
Irr(I(X)) and FG(X) are isomorphic as posets, and this follows easily from
Lemma 15(i).

Example 29. Let X be a a chain. Then U(X) ' X. The converse impli-
cation is not true.

Proof. Since X is a chain, it can be viewed as a semilattice, and it is
straightforward to see that all elements of X are prime. In particular, X is
a UFS and so Lemma 24 yields

X ' U(Irr(X)) = U(X).

Now let X be the poset described by

It is a simple exercise to verify that U(X) can be described by
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Thus U(X) ' X in this case, even though X is not a chain.

3 Embeddings into UFSs

The problem of determining necessary and sufficient conditions for a semi-
lattice to be embeddable into a UFS remains an open problem. We can
only present partial results. We note that the problem of embedding semi-
lattices into upper finite UFSs is intimately connected with the problem of
embedding semilattices into free inverse monoids, as the next result shows.

Proposition 31. Let E be a semilattice. The following conditions are
equivalent:

(i) E is embeddable into a countable upper finite UFS,

(ii) E is embeddable into I(X) for some countable set X,

(iii) E is embeddable into F (X) for some countable set X.

Proof. (i) ⇒ (ii): By Theorem 5.2 of [2].
(ii) ⇒ (iii): Since I(X) embeds naturally in F (FG(X)) and X

countable implies FG(X) countable.
(iii) ⇒ (i): If X is countable, then F (X) is a countable upper finite

UFS.

Given a semilattice E and e ∈ E, we say that a factorization e = e1 . . . en

in E is reduced if e1 . . . ej−1ej+1 . . . en > e for every j ∈ {1, . . . , n}. We
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say that e ∈ E has finite order k if k is the maximum length of a reduced
factorization of e. Otherwise, e has infinite order.

Proposition 32. Let E be a semilattice. If E embeds into a UFS, then
every element of E has finite order.

Proof. Suppose that ϕ : E → U is an embedding of E into a UFS U and
let e ∈ E. We can write eϕ = u1 . . . uk for some u1, . . . , uk ∈ Irr(U). Let
e = e1 . . . en be a reduced factorization of e. Then

(e1ϕ) . . . (enϕ) = eϕ = u1 . . . uk.

Since every uj is prime, we have that

∀j ∈ {1, . . . , k} ∃ij ∈ {1, . . . , n} uj ≥ eijϕ.

It follows that

eϕ ≤ (ei1ϕ) . . . (eikϕ) ≤ u1 . . . uk = eϕ

and so
eϕ = (ei1ϕ) . . . (eikϕ) = (ei1 . . . eik)ϕ.

Since ϕ is injective, we get e = ei1 . . . eik . Now e = e1 . . . en being a reduced
factorization of e yields {i1, . . . , ik} = {1, . . . , n} and so n ≤ k. Thus e has
finite order at most k.

This result can be used to prove that some semilattices are not embeddable
into UFSs.

Example 33. Let X be an infinite set and let P (X) denote the set of
all subsets of X, endowed with the union operation. Then P (X) is not
embeddable into a UFS.

Proof. By the preceding result, it suffices to show that the element X ∈
P (X) has infinite order. Every partition of X into finitely many classes
produces a reduced factorization of X. Since X is infinite, the number of
such classes cannot be bounded and so X has infinite order.

We can obtain full characterizations by restricting the type of semilattice
considered. We need a few preliminary results.
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Lemma 34. Let E be a semilattice, e ∈ E and F ⊆ E be such that:

(i) F is infinite,

(ii) e 6≥ f for every f ∈ F,

(iii) e ≥ fg for all distinct f, g ∈ F .

Then E is not embeddable into a UFS.

Proof. Suppose that ϕ : E → U is an embedding of E into a UFS U .
Let eϕ = u1 . . . uk with u1, . . . , uk ∈ Irr(U). By (ii), we have that eϕ 6≥ fϕ.
Thus, for every f ∈ F there exists i ∈ {1, . . . , k} such that ui 6≥ fϕ. By (i),
there exist f, g ∈ F distinct such that ui 6≥ fϕ and ui 6≥ gϕ. However,

ui ≥ eϕ ≥ (fg)ϕ = (fϕ)(gϕ)

by (iii) and ui prime yields ui ≥ fϕ or ui ≥ gϕ, a contradiction. Therefore
there is no embedding of E into a UFS.

Let K1 = N be endowed with the binary operation

m ? n =

{
m if m = n
0 otherwise

Then K1 is a semilattice which admits the following graphical description.

Let also K2 =(N× {0, 1})−{(0, 1)} be endowed with the binary operation

(m,n)(k, l) =

{
(m,n) if (m,n) = (k, l)
(max{m, k},min{n, l}) otherwise

Then K2 is a semilattice which admits the following graphical description.
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Corollary 35. Neither K1 nor K2 are embeddable into a UFS.

Proof. We only need to show that both K1 and K2 satisfy the conditions
in Lemma 34. For K1, we take e = 0 and F = N − {0}. For K2, we take
e = (0, 0) and F = {(n, 1) | n ≥ 1}.
Given a semilattice E and e ∈ E, it is easy to see that the complement
E − Ee is a dual-ideal of E. Our next result provides a sufficient condition
for embeddability into a UFS.

Lemma 36. Let E be a semilattice such that E−Ee is a finitely generated
dual-ideal for every e ∈ E. Then E is embeddable into a UFS.

Proof. First of all we remark that, given a finitely generated dual-ideal
A of E, there is a subset Y of E such that A = Y ↑ and that has minimum
cardinal with respect to this property. Let also A = Y ′ ↑ and take y ∈ Y .
Since y ∈ A = Y ′ ↑, we have y ≥ y′ for some y′ ∈ Y ′. Also y′ ∈ A = Y ↑
yields y′ ≥ z for some z ∈ Y . By minimality of Y , no two elements of Y can
be comparable, hence y ≥ y′ ≥ z implies that y = z and thus y = y′ ∈ Y ′.
Therefore Y ⊆ Y ′ and we may define β(A) to be the unique generating set
of A with minimum cardinal.

Our second remark is that, given a poset X, we can adjoin a (new)
greatest element 1 to X and obtain a new poset X1.

Finally, we define a mapping ϕ : E → U(E1) by

eϕ =

{
(β(E − Ee))ρ if Ee 6= E
1ρ otherwise,
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where ρ denotes the congruence on F (E1) induced by E1. Next we show
that ϕ is a homomorphism. Let e, f ∈ E. We assume that Ee 6= E 6= Ef ,
the remaining cases being straightforward. We must show that

(β(E − Ee) ∪ β(E − Ef)) ρ β(E − Eef).(1)

It is easy to see that, given a finite nonempty subset X of E1, we have

β(X ↑) ρ X.(2)

If A and B are finitely generated nonempty dual-ideals of E1, then β(A) ∪
β(B) generates the dual-ideal A ∪B, hence (2) yields

β(A ∪B) ρ (β(A) ∪ β(B)).(3)

Clearly, Ee∩Ef = Eef and so (E−Ee)∪ (E−Ef) = E−Eef . Replacing
A and B in (3) by E − Ee and E − Ef , we obtain (1). Therefore ϕ is a
homomorphism.

Now let eϕ = fϕ hold for some e, f ∈ E. Since a semilattice has at most
one identity element, we can assume that E 6= Ee. Suppose that Ef = E.
Then β(E −Ee) ρ 1 and so 1 ≤ g for every g ∈ β(E −Ee), a contradiction,
since β(E−Ee) ⊆ E and 1 > x for every x ∈ E. Thus we may assume that
Ef 6= E and so

β(E −Ee) ρ β(E −Ef).(4)

Suppose that e 6= f . Without loss of generality, we may assume that e 6≥ f .
Hence f ∈ E − Ee and so f ≥ x for some x ∈ β(E − Ee). By (4), there
exists some y ∈ β(E −Ef) such that y ≤ x. Now y ≤ x ≤ f yields y ∈ Ef ,
contradicting y ∈ β(E −Ef). Thus e = f and ϕ is an embedding.

Before proceeding to apply the previous results to particular classes of semi-
lattices, we need to establish a few consequences of connectedness.

Lemma 37. Let X be a connected poset and let x, y ∈ X.

(i) Every chain contained in [x, y] is contained in a maximal chain of
[x, y].

(ii) A maximal chain of [x, y] is a subset {z0, . . . , zn} such that

x = z0 ≺ z1 ≺ . . . ≺ zn = y.

(iii) If x̂ is finite for every x ∈ X, then [x, y] is finite.
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Proof. (i) Let C denote a chain contained in [x, y], and let A be the
set of all chains contained in [x, y] and containing C, partially ordered by
inclusion. Let A0 ⊆ A be a chain (of chains). A standard argument shows
that ∪A0 ∈ A and so ∪A0 is an upper bound for A0 in A. By Zorn’s Lemma,
A has some maximal element, and such an element is obviously a maximal
chain of [x, y] containing C.

(ii) It is immediate that every subset of the considered form is a maximal
chain of [x, y].

Conversely, let C be a maximal chain of [x, y]. Since X is connected, C
must be finite, and we can write it in the form

x = z0 < z1 < . . . < zn = y.

By maximality, there are no i ∈ {1, . . . , n} and w ∈ X such that zi−1 < w <
zi. Hence zi−1 ≺ zi for every i ∈ {1, . . . , n} and so C has the required form.

(iii) Assume that x̂ is finite for every x ∈ X. Suppose that [x, y] is
infinite. We define a sequence (zn) in [x, y] such that zn ↑ ∩[x, y] is infinite
for every n ≥ 0. Let z0 = x. By hypothesis, z0 ↑ ∩[x, y] = [x, y] is infinite.
Assume that zn−1 is defined and satisfies the required condition. We may
write ẑn−1 = {w1, . . . , wk} with k ≥ 0. By parts (i) and (ii), we must have

zn−1 ↑ ∩[x, y] = {zn−1} ∪
(

k⋃

i=1

(wi ↑ ∩[x, y])

)
.

Since zn−1 ↑ ∩[x, y] is infinite by hypothesis, we may define zn = wi for some
i = {1, . . . , k} such that wi ↑ ∩[x, y] is infinite.

Clearly, the sequence (zn) so constructed satisfies

x = z0 ≺ z1 ≺ . . . < y,

contradicting the connectedness of X. Thus [x, y] must be finite.

We say that a semilattice E is a tree semilattice if E is connected and Ee is
a chain for every e ∈ E.

Theorem 38. Let E be a tree semilattice. Then the following conditions
are equivalent:

(i) E is embeddable into a UFS,

(ii) Neither K1 nor K2 embed into E,
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(iii) E − Ee is a finitely generated dual-ideal of E for every e ∈ E.

Proof. (i) ⇒ (ii): By Corollary 35, since the composition of embeddings
is still an embedding.

(ii) ⇒ (iii): Suppose that the dual-ideal E − Ee is not finitely
generated for some e ∈ E. Since E is a tree semilattice, the ideal Ee is a
chain. Moreover, E is connected and so it follows easily from Lemma 37
that the elements of Ee may be written in the form

e = e0 Â e1 Â e2 Â . . . ,

the chain being either finite or countably infinite. It should be also clear
that E −Ee is generated by the set

X =
⋃

n≥0

ên − Ee.

By the hypothesis, X must be infinite. Two cases may occur.
Suppose that ên is infinite for some n ≥ 0. Since the product of two

distinct elements of ên cannot lie above en, it follows that {en}∪ ên contains
a subsemilattice of E isomorphic to K1.

Otherwise, we may assume that ên−Ee is nonempty for infinitely many
positive values of n. We may also assume that these are i1 < i2 < i3 < . . .
and we may choose fk ∈ êik −Ee for every k ≥ 1. Straightforward checking
shows that

{e0, ei1 , ei2 , . . .} ∪ {f1, f2, . . .}
is a subsemilattice of E isomorphic to K2.

(iii) ⇒ (i): By Lemma 36.

We say that a semilattice E has a tail if there exists some z ∈ E such that
E = Ez ∪ (z ↑) and Ez is a chain.

Theorem 39. Let E be a connected semilattice with a tail. Then the fol-
lowing conditions are equivalent:

(i) E is embeddable into a UFS,

(ii) K1 does not embed into E,

(iii) ê is finite for every e ∈ E,

(iv) E − Ee is a finitely generated dual-ideal of E for every e ∈ E.
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Proof. (i) ⇒ (ii): By Corollary 35, since the composition of embeddings
is still an embedding.

(ii) ⇒ (iii): Straightforward.
(iii) ⇒ (iv): Let z ∈ E be such that E = Ez ∪ (z ↑) and Ez is a

chain. Let e ∈ E. If e ∈ Ez, then E − Ee is generated by ê, which is finite
by hypothesis, hence we may assume that e > z. By Lemma 37(iii), [z, e]
is finite. Given f ∈ E − Ee, we have f > z and so fe ∈ [z, e]. Since E is
connected, we conclude that E −Ee is generated by

⋃

f∈[z,e]

f̂ − [z, e],

a finite set.
(iv) ⇒ (i): By Lemma 36.

4 The Munn semigroup

The Munn semigroup of a semilattice E consists of the set TE of all iso-
morphisms of the form ϕ : Ee → Ef (e, f ∈ E), endowed with the usual
composition of partial transformations. Munn semigroups play a major role
in the study of fundamental inverse semigroups. An inverse semigroup is
fundamental if the unique idempotent-separating congruence on S is the
identity congruence. Given an inverse semigroup S,

• there is a homomorphism ϕ : S → TE(S) whose kernel is the greatest
idempotent-separating congruence on S ([1], Theorem 4.9);

• S is fundamental if and only if S is isomorphic to a full inverse sub-
semigroup of TE(S) ([1], Theorem 4.10).

We shall discuss some properties of the Munn semigroup for a particular
class of UFSs which includes our favourite semilattices F (X) and I(X).

A UFS E is said to be regular if E is upper finite and Irr(E) is an
dual-ideal of E. An alternative characterization can be provided in terms of
Irr(E) alone.

Lemma 41. Let X be a poset. Then U(X) is regular if and only if x↑ is a
finite chain for every x ∈ X.

Proof. Suppose that x↑ is infinite for some x ∈ X. It is immediate that
the projection of x↑ on U(X) will provide infinitely many elements of (xρ)↑,
hence U(X) is not upper finite and therefore not regular.
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Suppose now that x ↑ is not a chain for some x ∈ X. Then there exist
y, z ∈ x↑ such that y 6≥ z and z 6≥ y. We must have y, z > x and it follows
easily that

is a subsemilattice of U(X). Since xρ is irreducible but {y, z}ρ is not, U(X)
is not regular.

Conversely, assume that x ↑ is a finite chain for every x ∈ X. Suppose
that U(X) is not upper finite. Then there exists A ∈ F (X) such that (Aρ)↑
contains infinitely many elements, say {C1ρ,C2ρ, . . .}. Let A = {a1, . . . , an}.
Since Ciρ ≥ Aρ for every i, we have

C1 ∪ C2 ∪ . . . ⊆ (a1 ↑) ∪ . . . ∪ (an ↑).
For every i ∈ {1, . . . , n}, write

Ai = (C1 ∪ C2 ∪ . . .) ∩ (ai ↑).
Since ai ↑ is finite, it follows that Ai is finite for every i and thus C1∪C2∪ . . .
is itself finite, contradicting {C1ρ,C2ρ, . . .} being an infinite set. Therefore
U(X) is upper finite.

Finally, let x ∈ X and assume that Aρ ≥ xρ, with A ∈ F (X). Since
A ⊆ x↑ and x↑ is a chain, we may write Aρ = aρ, where a denotes the least
element of A. Thus Aρ is irreducible, X is dual-ideal of U(X) and U(X) is
regular.

By the preceding result, we can get an accurate picture of the irreducibles
in a regular UFS. They constitute a forest (disjoint union) of rooted trees,
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turned upside down. We adopt here the standard terminology for trees.
Given a tree T and x, y ∈ T , we say that x is a son (respectively father,
descendant, ancestor) of y if x ≺ y (respectively x Â y, x < y, x > y). The
elements are generally called nodes. Every node but one has exactly one
father, the fatherless node being called the root. A node has depth n if it
has exactly n ancestors.

In the case of F (X), we have |X | trivial trees with a single node. In
the case of I(X), we have a single tree described as follows: the root has
2 |X | sons, all the other nodes have 2 |X | −1 sons each. The reason for
this is that there are 2 |X | different ways of adjoining a letter to the empty
word without cancellation, but only 2 |X | −1 possibilities in the case of a
nonempty word.

To study the Munn semigroup, we have to consider isomorphisms be-
tween principal ideals. By Lemma 13(ii), all principal ideals of a UFS are
UFSs, and it should be clear from Proposition 26 that such isomorphisms
must be induced by isomorphisms between the posets of irreducibles. The
next step will be to devise the structure of these posets. We note that, given
a forest F of the type described above, the poset obtained by adjoining a
(new) greatest element 1 to F is a tree.

Lemma 42. Let E be a regular UFS and let e ∈ E. Then Ee is a regular
UFS and Irr(Ee) is isomorphic to the tree obtained by identifying with the
new root 1 in (Irr(E))1 all the irreducibles f such that f ≥ e.

Proof. By Lemma 13, Ee is a UFS and Irr(Ee) = (Irr(E))e. By Lemma
41, we only need to prove our second assertion, since it implies, in particular,
that x↑ is a finite chain for every x ∈ Irr(Ee). Let f, g ∈ Irr(E) be distinct.
Clearly, f > g implies fe ≥ ge, hence we need to establish when does
fe = ge occur.

It is immediate that f, g ≥ e implies fe = ge. Now assume that fe = ge,
and suppose that g 6≥ e. We have g ≥ fe. Since g is prime and g 6≥ e, we
get g ≥ f . Also f ≥ ge yields f ≥ g or f ≥ e. Since f ≥ e would imply
g ≥ e, a contradiction, we must have f ≥ g. But then we obtain f = g,
contradicting the fact that f and g were assumed to be distinct. It follows
that g ≥ e and, by symmetry, also f ≥ e. Thus only the irreducibles that lie
above e are identified. Since e is the maximal element of Ee, these identified
irreducibles will constitute the root of the tree Irr(Ee), and we may describe
this by identifying them all with the new root 1 in (Irr(E))1.

Note that the set Y = {f ∈ Irr(E) | f ≥ e} is always a dual-ideal of both
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Irr(E) and E (since E is regular). Moreover, the minimal elements of Y
are the factors in the (unique) reduced irreducible factorization of e. In the
particular case of I(X), when |X | is finite and greater than 1, we get a tree
where the root may have an arbitrarily large number of sons (depending on
the order of e) and all the other nodes have exactly 2 |X | −1 sons each.
For |X | = 1 (respectively X infinite) the root has 2 sons (respectively |X |
sons) and the other nodes 1 son (respectively |X | sons) each. We can get
an idea of the size of TI(X) by the following proposition.

Proposition 43. Let X be a nonempty set. Then:

(i) Every maximal subgroup of TI(X) is isomorphic to the automorphism
group of a rooted tree.

(ii) If |X | = 1 or X is infinite, all maximal subgroups of TI(X) are iso-
morphic.

(iii) If |X | > 1, every maximal subgroup of TI(X) is uncountable.

Proof. (i) It is easy to see that the maximal subgroups of TE are the sets
of automorphisms of the principal ideals Ee. In the case of a UFS, this
corresponds to automorphisms of Irr(Ee), in our case a rooted tree.

(ii) This follows from the description of the trees accomplished
above, or alternatively from the fact that TI(X) is bisimple in this case ([2],
Theorem 4.2).

(iii) In this case every node in the tree has at least two sons, and
we can define an injective map from the set of all sequences in {0, 1} into
the group of automorphisms of the tree. We give a sketch of the argument.
Let (an) be such a sequence. Assuming that the sons are always ordered in
a certain way, we choose an automorphism that, at level n of depth, keeps
or changes the relative position of the first son according to an being a 0 or
a 1. This shows in fact that the cardinal of a maximal subgroup is at least
the continuum.

Several other properties of TI(X) are discussed in [2], including the property
of being E-unitary. An inverse semigroup S is said to be E-unitary if

ea, e ∈ E(S) ⇒ a ∈ E(S)
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holds for all a, e ∈ S. The idempotents in TE are the identity mappings
on the principal ideals Ee, denoted by 1Ee. Given ϕ : Ee → Ef , we have
1Egϕ = ϕ |Ege, hence TE is E-unitary if and only if, given an isomorphism
ϕ : Ee → Ef and g ∈ E,

ϕ |Ege = 1Ege ⇒ ϕ = 1Ee.

We can give a full account of this property in the context of regular UFSs.

Theorem 44. Let E = U(X) be a regular UFS. Then TE is E-unitary if
and only if X has at most one minimal element.

Proof. Suppose that x and y are two distinct minimal elements of X. We
consider two cases.

Suppose first that x and y are both maximal elements of X. The tree
Irr(Ex) can be obtained from X1 by identifying the isolated node x with the
root 1 (formally, we are in fact multiplying all the irreducibles by x in E).
Symmetrically, Irr(Ey) can be obtained from X1 by identifying the node y
with 1, as the next figure shows.

These trees are obviously isomorphic and we may define a natural isomor-
phism ϕ : Ex → Ey. Since xϕ = y, ϕ is not the identity mapping. We may
assume that (yx)ϕ = xy and (zx)ϕ = zy for every z ∈ X−{x, y}. It follows
that ϕ |Exy = 1Exy and so TE is not E-unitary in this case.

Next we suppose that either x or y is not a maximal element of X. Let
e ∈ E be obtained by multiplying the fathers of x and y (one of the two may
be absent). Since x and y are both minimal, neither of them can lie above
the father of the other. it follows easily that x, y 6≥ e and so x and y are
not to be identified by the product by e. As a consequence, the root of the
tree Irr(Ee) will have two sons corresponding to x and y (possibly others),
as the next figure shows.
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We may define a nontrivial automorphism ϕ of Ee by permuting xe and
ye and fixing all other irreducibles. However, ϕ |Exye = 1Exye and so TE is
not E-unitary in this case too.

Conversely, assume that X has at most one minimal element. If it
exists at all, we denote it by m. Suppose that ϕ : Ee → Ef is a nonidentity
isomorphism and g ∈ E is such that ϕ |Ege = 1Ege. If X is a chain, the mere
fact that ϕ fixes the element eg implies that ϕ must fix all other elements
and is therefore the identity mapping, hence we may assume that X is not
a chain. We claim that

∃x ∈ X : xe < e and (xe)ϕ 6= xf.(5)

Consider first the case e = f . Since ϕ 6= 1Ee, we have hϕ 6= h for some
h ∈ Ee. We may write h = h1 . . . hn for some h1, . . . , hn ∈ Irr(Ee) − {e},
hence we must have hiϕ 6= hi for some i ∈ {1, . . . , n}. We may write hi = xe
for some x ∈ X. Thus (5) holds in this case.

Assume now that e 6= f . Since X is not a chain and has at most one
minimal element, we have e 6= m and so Irr(Ee) 6= {e}. Let {x1e, . . . , xne}
denote the sons of e in Irr(Ee), with x1, . . . , xn ∈ X. It follows from Lemma
42 that x1, . . . , xn are the sons in X of the factors in the reduced irreducible
factorization of e. Suppose that (xie)ϕ = xif for every i ∈ {1, . . . , n}. Since
ϕ must map the sons of e in Irr(Ee) onto the sons of f in Irr(Ef), the same
argument would imply that x1, . . . , xn were the sons in X of the factors
in the reduced irreducible factorization of f . Since e 6= f , the respective
reduced irreducible factorizations must be different and thus their factors
cannot have the same sons, a contradiction. Therefore (xie)ϕ 6= xif for
some i ∈ {1, . . . , n} and (5) holds.

Let x ∈ X satisfy (5). We show that

m ∈ X ⇒ m 6≤ x.(6)
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Suppose that m ∈ X and m ≤ x. Since x 6≥ e, we must have also m 6≥ e,
hence me is a minimal element of Irr(Ee), more precisely, the only one,
since X cannot have more than one minimal element. Thus Irr(Ef) must
have also a minimal element to be the image of me by ϕ, and the unique
candidate is mf . Therefore

(me)ϕ = mf.(7)

We have a sequence in Irr(Ee) of the form

me = y0e ≺ y1e ≺ . . . ≺ yke = xe(8)

for some y0, . . . , yk ∈ X. Since x 6≥ e, it follows from Lemma 42 that

m = y0 ≺ y1 ≺ . . . ≺ yk = x(9)

in X. Suppose that x ≥ f . By (9), the depth of mf in Irr(Ef) would
be at most k, but it follows from (8) and xe < e that the depth of me in
Irr(Ee) must be at least k + 1. Clearly, the unique minimal element in two
isomorphic trees cannot have different depths, thus x 6≥ f . By Lemma 42
and (9) we obtain the sequence

mf = y0f ≺ y1f ≺ . . . ≺ ykf = xf(10)

in Irr(Ef). Any isomorphism between trees must preserve order, in particu-
lar the father must be mapped onto the father of its son’s image. Thus (7),
(8) and (10) yield (xe)ϕ = xf , a contradiction. Thus (6) holds.

Since m 6≤ x, there exist descendants of x with arbitrarily large depth.
Since fge ↑ is finite, there exists x′ ∈ X such that x′ ≤ x and x′ 6≥ fge.
The argument we used to prove (6) shows that (x′e)ϕ = x′f would imply
(xe)ϕ = xf , hence x′ satisfies (5) and (6) and we may assume that x′ = x.
Since ϕ maps Irr(Ee) onto Irr(Ef), we must have (xe)ϕ = zf for some
z ∈ X. Now

xge = (xge)ϕ = ((xe)(ge))ϕ = (xe)ϕ (ge)ϕ = zfge.

In particular, x ≥ zfge. Since x is prime and x 6≥ fge, we obtain x ≥ z.
This implies that z 6≥ fge, hence z ≥ xge yields z ≥ x and so z = x, a
contradiction, since (xe)ϕ 6= xf by (5). Thus TE is E-unitary.

Note. This work is based on a talk presented at the Encontro Nacional da
Sociedade Portuguesa de Matemática, Braga, 9-12/2/98.
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