Discussiones Mathematicae General Algebra and Applications 20(2000) 43–49

ON DUALITY OF SUBMODULE LATTICES ¹

Gábor Czédli and Géza Takách

JATE Bolyai Institute Aradi vértanúk tere 1, H–6720 Szeged, Hungary e-mail: czedli@math.u-szeged.hu e-mail: takach@math.u-szeged.hu

Dedicated to the memory of George Hutchinson

Abstract

An elementary proof is given for Hutchinson's duality theorem, which states that if a lattice identity λ holds in all submodule lattices of modules over a ring R with unit element then so does the dual of λ . **Keywords:** submodule lattice, lattice identity, duality.

1991 Mathematics Subject Classification: Primary 06C05, Secondary 08B10, 16D99.

Given a ring R, always with unit element $1 = 1_R$, the class of left modules over R is denoted by R-**Mod**. Let T(R) denote the set of all lattice identities that hold in the submodule lattices of all R-modules, i.e., in the class of $\{\operatorname{Sub}(M) : M \in R$ -**Mod**\}. Using the heavy machinery of abelian category theory and Theorem 4 from [3], G. Hutchinson in [2] and [3] has proved the following duality result.

Main Theorem (G. Hutchinson). For every ring R, T(R) is a selfdual set of lattice identities. In other words, a lattice identity λ holds in {Sub(M) : $M \in R$ -Mod} iff so does the dual of λ .

The goal of the present paper is to give an easy new proof of this theorem. Our elementary approach does not resort to category theory and uses much less from [3] than the original one.

¹This research was partially supported by the NFSR of Hungary (OTKA), grant no. T023186 and T022867, and also by the Hungarian Ministry of Education, grant no. FKFP 1259/1997 and MKM KF 402/96.

Proof of the Main Theorem. Let λ be a lattice identity. Since $\operatorname{Sub}(M) \cong \operatorname{Con}(M)$ for every $M \in R$ -Mod and R-Mod is a congruence permutable variety, by results of R. Wille ([5]) or A. Pixley [4] (cf. [3] for more details) there is a strong Mal'cev condition $U(\lambda)$ such that $\lambda \in T(R)$ is equivalent to the satisfaction of $U(\lambda)$ in R-Mod. Using the fact that each n-ary term $f(y_1, \ldots, y_n)$ in R-Mod can uniquely be written in the form $r_1y_1 + \ldots + r_ny_n$ with $r_1, \ldots, r_n \in R$, $U(\lambda)$ easily turns to a system of linear equations

(1)
$$Ay = b \cdot 1_R$$

where A is an integer matrix, b is a column vector with integer entries, and y is the column vector of ring variables (cf. [3] for concrete examples). So we obtain that

(2)
$$\lambda \in T(R)$$
 iff $Ay = b \cdot 1_R$ is solvable in R .

We can easily infer from this observation that for any rings R_i $(i \in I)$ and their direct product we have

(3)
$$T\left(\prod_{i\in I} R_i\right) = \bigcap_{i\in I} T(R_i)$$

A classical matrix diagonalization method, due to Frobenius ([1], cf. also [3]), asserts that for any integer matrix A there exist invertible integer matrices B and C with integer inverses such that BAC is a diagonal matrix. Choosing B and C according to this result, multiplying (1) by B from the left and introducing the notations M := BAC, $z := C^{-1}y$, c := Bb we easily conclude that the solvability of (1) in R is equivalent to the solvability of

$$(4) Mz = c \cdot 1_R$$

in R. Now, for integers $m \ge 0$ and $n \ge 1$ let D(m, n) denote the "divisibility condition" $(\exists x)(mx = n \cdot 1)$ where $mx = x + \ldots + x$ (m times) and 1 stands for the ring unit. The set $\{(m, n) : m \ge 0, n \ge 1, \text{ and } D(m, n) \text{ holds in } R\}$ will be denoted by D(R). Since M in (4) is a diagonal matrix, the solvability of (4) in R depends only on D(R). Hence, combining the previous assertions and (2), we conclude that

(5)
$$D(R)$$
 determines $T(R)$,

i.e., $D(R_1) = D(R_2)$ implies $T(R_1) = T(R_2)$. Clearly, for arbitrary rings $R_i, i \in I$,

(6)
$$D\left(\prod_{i\in I}R_i\right) = \bigcap_{i\in I}D(R_i).$$

Now we claim that for arbitrary rings R and R_i $(i \in I)$

Indeed, $\bigcap_{i \in I} T(R_i) = T(\prod_{i \in I} R_i)$ by (3). Since $D(\prod_{i \in I} R_i) = D(R)$ by (6) and the premise of (7), (5) yields $T(\prod_{i \in I} R_i) = T(R)$, proving (7).

For k > 0 let \mathbf{Z}_k denote the factor ring of the ring \mathbf{Z} of integers modulo k, and let $\mathbf{Z}_0 = \mathbf{Q}$, the field of rational numbers. We claim that, for any ring R,

(8)
$$D(R) = \bigcap \{ D(\mathbf{Z}_k) : D(R) \subseteq D(\mathbf{Z}_k) \}$$

The proof of (8) will implicitly use the fact that for any integers $m \ge 0$, n > 0 and k > 0 the following equivalence holds:

(9)
$$(m,n) \in D(\mathbf{Z}_k) \iff \text{g.c.d.}(m,k) \mid n$$

First we deal with the case when k := char(R) > 0. Here char (R) denotes $\min\{i : 0 < i \in \mathbb{Z} \text{ and } i \cdot 1_R = 0\}$, the characteristic of R, where $\min \emptyset$ is understood as 0. We assert that

(10)
$$D(R) = D(\mathbf{Z}_k),$$

which clearly yields (8) for char R > 0. The embedding $\mathbf{Z}_k \to R$, $x \cdot \mathbf{1}_{\mathbf{Z}_k} \mapsto x \cdot \mathbf{1}_R \ (x \in \mathbf{Z})$ ensures that $D(\mathbf{Z}_k) \subseteq D(R)$. Now suppose that $(a, b) \notin D(\mathbf{Z}_k)$, i.e., d := g.c.d.(a, k) does not divide b. Let $k = k_1 d$, $a = a_1 d$ and b = qd + r, 0 < r < d. If we had $ax = b \cdot \mathbf{1}_R$ for some $x \in R$, then $0 = k(a_1x) = k_1ax = k_1b \cdot \mathbf{1}_R = k_1qd \cdot \mathbf{1}_R + k_1r \cdot \mathbf{1}_R = k(q \cdot \mathbf{1}_R) + (k_1r) \cdot \mathbf{1}_R = (k_1r) \cdot \mathbf{1}_R$ would be a contradiction, for $k_1r < k_1d = k = \text{char}(R)$. Hence $(a, b) \notin D(R)$. This proves $D(R) = D(\mathbf{Z}_k)$, and (8) follows.

Now let us assume that char (R) = 0. Only the \supseteq part of (8) has to be verified, so suppose

$$(m,n) \notin D(R),$$

 $m \ge 0$ and n > 0; we have to show that (m, n) does not belong to the right-hand side of (8). Two cases will be distinguished.

Case 1. m = 0. Then $(m, n) \notin D(\mathbf{Z}_0)$, and $D(R) \subseteq D(\mathbf{Z}_0)$ clearly follows from the implication: $(a, b) \in D(R) \Longrightarrow a \neq 0$. Hence (m, n) = (0, n) does not belong to the right-hand side of (8).

Case 2. m > 0. First we claim that for arbitrary $0 \le a_1, \ldots, a_t \in \mathbb{Z}$ and $1 \le b_1, \ldots, b_t \in \mathbb{Z}$ we have

$$(11) \qquad (a_1, b_1), \dots, (a_t, b_t) \in D(R) \Longrightarrow (a_1 \dots a_t, b_1 \dots b_t) \in D(R).$$

Indeed, if $a_1r_1 = b_1 \cdot 1_R$ and $a_2r_2 = b_2 \cdot 1_R$ for $r_1, r_2 \in R$, then $(a_1a_2)(r_1r_2) = a_2(a_1r_1)r_2 = a_2(b_1 \cdot 1_R)r_2 = b_1(a_2r_2) = b_1b_2 \cdot 1_R$. This proves (11) for t = 2, whence it holds for t > 2 as well.

Now let $m = p_1^{f_1} \dots p_t^{f_t}$ and $n = p_1^{g_1} \dots p_t^{g_t}$ with pairwise distinct primes p_1, \dots, p_t and nonnegative integers $f_1, \dots, f_t, g_1, \dots, g_t$. We infer from (11) that $(p_i^{f_i}, p_i^{g_i}) \notin D(R)$ for some $i \in \{1, \dots, t\}$. With the notations $p := p_i$, $f := f_i, g := g_i$ and $k := p^{g+1}, (p^f, p^g) \notin D(R)$ implies f > g. Hence $(m, n) \notin D(\mathbf{Z}_k)$, for $mx = 0 \neq n \cdot 1_{\mathbf{Z}_k}$ holds for all $x \in \mathbf{Z}_k$. Now, before showing that \mathbf{Z}_k occurs on the right hand side of (8), let us observe that if (p^{g+1}, p^g) belonged to D(R), then, choosing an $r \in R$ with $p^{g+1}r = p^g \cdot 1_R$, we could obtain $p^g \cdot 1_R = p^{g+1}r = p(p^g \cdot 1_R)r = pp^{g+1}r^2 = p^{g+2}r^2 = \ldots = p^f r^{f-g}$, which would contradict $(p^f, p^g) \notin D(R)$. Therefore $(p^{g+1}, p^g) \notin D(R)$.

Now, to show $D(R) \subseteq D(\mathbf{Z}_k)$, let $(c,d) \notin D(\mathbf{Z}_k)$, $0 \leq c$, and $1 \leq d$; we have to show that $(c,d) \notin D(R)$. If c = 0 then $(c,d) \notin D(R)$ follows from char (R) = 0, so c > 0 can be supposed. Let $c = p^u c_1$ and $d = p^v d_1$ such that p does not divide $c_1 d_1$. We infer from (9) that u > v and $v \leq g$. Hence there are integers x and y with $p^v = \text{g.c.d.}(p^u, d) = xp^u + yd$. If (c, d)belonged to D(R), i.e., if there was an element $r \in R$ with $cr = d \cdot 1_R$, then we would have

$$p^{g} \cdot 1_{R} = p^{g-v}(p^{v} \cdot 1_{R}) = p^{g-v}(xp^{u} + yd) \cdot 1_{R} =$$

= $p^{g+u-v}x \cdot 1_{R} + p^{g-v}yd \cdot 1_{R} = p^{g+u-v}x \cdot 1_{R} + p^{g-v}yc \cdot r =$
= $p^{g+1}((xp^{u-v-1} \cdot 1_{R} + p^{u-v-1}yc_{1} \cdot r)),$

which would contradict $(p^{g+1}, p^g) \notin D(R)$. Thus $(c, d) \notin D(R)$, proving (8).

By (7) and (8), T(R) is the intersection of some $T(\mathbf{Z}_k)$. Therefore it suffices to show that

(12) $T(\mathbf{Z}_k)$ is selfdual for every $k \ge 0$.

The mentioned strong Mal'cev conditions of Wille and Pixley easily imply that, for any lattice identity λ , we have $\lambda \in T(\mathbf{Z}_k)$ iff λ holds in $\operatorname{Sub}(\mathbf{Z}_k^t)$ for all positive integers t where \mathbf{Z}_k^t is considered a \mathbf{Z}_k -module in the natural way. (In fact, \mathbf{Z}_k^t is the free \mathbf{Z}_k -module on t generators.) Hence (12) and the Main Theorem will prompt follow from

(13) for all $k \ge 0$, $\operatorname{Sub}(\mathbf{Z}_k^t)$ is a selfdual lattice.

Although there are deep module theoretic results implying (13), the tools we have already listed make a short elementary proof possible. The elements of Z_k^t will be row vectors, and for $\vec{x} = (x_1, \ldots, x_t) \in Z_k^t$ the transpose of \vec{x} will be denoted by \vec{x}^* . Standard matrix notations like $\vec{x}\vec{y}^* = x_1y_1 + \cdots + x_ty_t$ will be in effect. We claim that

$$\begin{aligned} \varphi : \operatorname{Sub}(\boldsymbol{Z}_k^t) &\to \operatorname{Sub}(\boldsymbol{Z}_k^t), \\ S &\mapsto S^{\perp} := \{ \vec{x} \in \boldsymbol{Z}_k^t : (\forall \vec{y} \in S) (\vec{x} \vec{y}^* = 0) \} \end{aligned}$$

is a dual lattice automorphism and, in addition, an involution. All the necessary properties of φ can be checked very easily except that

(14)
$$(S^{\perp})^{\perp} \subseteq S.$$

Assume that k > 0, and let 1_k denote the ring unit of \mathbb{Z}_k . First we prove (14) for the case when t = 1. Since \mathbb{Z} is a principal ideal domain, we easily conclude that S is necessarily of the form $\{xu \cdot 1_k : x \in \mathbb{Z}\}$ for some positive divisor u of k in \mathbb{Z} . The same holds for the submodule S^{\perp} , so it is of the form $\{vx \cdot 1_k : x \in \mathbb{Z}\}$ for an appropriate positive divisor v of k in \mathbb{Z} . Since $(u \cdot 1_k)(v \cdot 1_k) = 0$, we obtain

(15)
$$k \mid uv$$

On the other hand, $(k/u) \cdot 1_k$ is clearly orthogonal to all members of S, so it is in S^{\perp} , whence $(k/u) \cdot 1_k = vx \cdot 1_k = v(x \cdot 1_k)$ for some $x \in \mathbb{Z}$. Therefore $(v, k/u) \in D(\mathbb{Z}_k)$, and (9) gives $v \mid k/u$, i.e.,

$$(16) uv \mid k$$

From (15) and (16), we have v = k/u. Hence, giving the role of u to v we obtain $(S^{\perp})^{\perp} = \{x(k/(k/u)) \cdot 1_k : x \in \mathbb{Z}\} = \{xu \cdot 1_k : x \in \mathbb{Z}\} = S.$

Now let t > 1, and let S be a submodule of \mathbf{Z}_k^t . Since S is finite, we can consider a matrix A of size $s \times t$ for some $s \ge t$ such that each vector of S

coincides with at least one row of A. Although A is a matrix over \mathbf{Z}_k , not over \mathbf{Z} , using the natural ring homomorphism $\mathbf{Z} \to \mathbf{Z}_k$ for matrix entries we can easily conclude from Frobenius' afore-mentioned result that there are square matrices B and C over \mathbf{Z}_k with respective sizes $s \times s$ and $t \times t$ such that BAC is a diagonal matrix, and B resp. C has an inverse in the ring of $s \times s$ resp. $t \times t$ matrices over \mathbf{Z}_k . For any $\vec{y} \in \mathbf{Z}_k^t$ we have

$$\vec{y} \in S^{\perp} \iff A\vec{y}^* = 0.$$

Now let \vec{v} be an arbitrary member of $S^{\perp \perp}$. Then

$$(\forall \vec{y} \in \boldsymbol{Z}_k^t) \ (A \vec{y}^* = 0 \Longrightarrow \vec{v} \vec{y}^* = 0).$$

Resorting to the above-mentioned B and C and multiplying by B from the left we obtain

$$(\forall \vec{y} \in \boldsymbol{Z}_k^t) \; ((BAC)(C^{-1}\vec{y}^*) = 0 \Longrightarrow (\vec{v}C)(C^{-1}\vec{y}^*) = 0).$$

Since $C^{-1}\vec{y}^*$ takes all (transposed) values from Z_k^t , with the notations M = BAC and $\vec{w} = \vec{v}C$ we obtain

(17)
$$(\forall \vec{z} \in \boldsymbol{Z}_k^t) \ (M \vec{z}^* = 0 \Longrightarrow \vec{w} \vec{z}^* = 0)$$

We know that M is a diagonal matrix, let m_{11}, \ldots, m_{tt} be its diagonal entries. Choosing \vec{z} such that all but one of its components are zero we obtain from (17) that

(18)
$$(\forall z_i \in \mathbf{Z}_k) \ (m_{ii}z_i = 0 \Longrightarrow w_i z_i = 0) \qquad (i = 1, \dots, t).$$

Let $S_i = \{um_{ii} : u \in \mathbb{Z}_k\} \in \text{Sub}(\mathbb{Z}_k)$; condition (18), in other words, says that $w_i \in S_i^{\perp \perp}$. Since (14) has already been proved for t = 1, we have $w_i \in S_i$, and we can choose an $r_i \in \mathbb{Z}_k$ such that

(19)
$$w_i = r_i m_{ii}$$
 $(i = 1, \dots, t).$

Letting $\vec{r} = (r_1, \ldots, r_t, 0, \ldots, 0)$ (with s components) we have $\vec{r}M = \vec{w}$. Hence

$$\vec{v} = \vec{w}C^{-1} = \vec{r}MC^{-1} = \vec{r}BACC^{-1} = (\vec{r}B)A$$

showing that \vec{v} is a linear combination of the rows of A, i.e., $\vec{v} \in S$. This proves (14) for the case k > 0.

When k = 0, $Z_0 = Q$, and the rudiments of linear algebra yield $\dim S^{\perp} = t - \dim S$. Hence (14) follows from the evident \supseteq inclusion and the fact that both sides have the same dimension. This completes the proof of the the Main Theorem.

References

- G. Frobenius, Theorie der linearen Formen mit ganzen Coefficienten, J. Reine Angew. Math. 86 (1879), 146–208.
- [2] G. Hutchinson, On classes of lattices representable by modules, p. 69–94 in: Proceedings of the University of Houston Lattice Theory Conference, Univ. Houston 1973.
- [3] G. Hutchinson and G. Czédli, A test for identities satisfied in submodule lattices, Algebra Universalis 8 (1978), 269–309.
- [4] A.F. Pixley, Local Mal'cev conditions, Canadian Math. Bull. 15 (1972), 559–568.
- [5] R. Wille, Kongruenzklassengeometrien, Lecture Notes in Math., no. 113, Springer-Verlag, Berlin-Heidelberg-New York 1970.

Received 23 February 1998