Discussiones Mathematicae General Algebra and Applications 20(2000) 37–41

MODIFICATIONS OF CSÁKÁNY'S THEOREM

Ivan Chajda

Department of Algebra and Geometry, Palacký University of Olomouc Tomkova 40, Cz-779 00 Olomouc, Czech Republic

e-mail: chajda@risc.upol.cz

Abstract

Varieties whose algebras have no idempotent element were characterized by B. Csákány by the property that no proper subalgebra of an algebra of such a variety is a congruence class. We simplify this result for permutable varieties and we give a local version of the theorem for varieties with nullary operations.

Keywords: congruence class, idempotent element, permutable variety, Mal'cev condition.

1991 Mathematics Subject Classification: 8B05, 08A30.

1 Introduction

B. Csákány [2] proved the following statement:

Proposition. For a variety \mathcal{V} , the following conditions are equivalent:

- None of algebras in V having at least two elements have idempotent elements;
- (ii) No algebra A ∈ V has a proper subalgebra whose carrier is a class of some θ ∈ Con A ;
- (iii) There exist $n \in N$, ternary terms p_1, \ldots, p_n , and unary terms $f_1, \ldots, f_n, g_1, \ldots, g_n$ such that the identities

$$x = p(f_1(x), x, y),$$

$$p_i(g_i(x), x, y) = p_{i+1}(f_{i+1}(x), x, y), \quad for \quad i = 1, \dots, n-1,$$

$$y = p_n(g_n(x), x, y)$$

hold in \mathcal{V} .

It was recognized by J. Kollár [3] that each of the equivalent conditions of the Proposition is equivalent to

(iv) For all $\mathcal{A} \in \mathcal{V}$, the greatest congruence ι_A on \mathcal{A} is a compact element of Con \mathcal{A} .

Analyzing the proof of Proposition, we find out that these conditions are also equivalent to

(v)
$$\theta(F_{\mathcal{V}}(x) \times F_{\mathcal{V}}(x)) = F_{\mathcal{V}}(x, y) \times F_{\mathcal{V}}(x, y)$$
 in Con $F_{\mathcal{V}}(x, y)$,

where $F_{\mathcal{V}}(x_1, \ldots, x_n)$ denotes the free algebra of \mathcal{V} generated by the set $\{x_1, \ldots, x_n\}$ of free generators, and $\theta(M \times M)$ denotes the least congruence containing the set $M \times M$.

From this point of view, (v) can be modified by several ways. We can consider a variety \mathcal{V} with constants (i.e. nullary operations) and we can omit a free variable on the left-hand side of (v) to obtain

(vi)
$$\theta(F_{\mathcal{V}}(\emptyset) \times F_{\mathcal{V}}(\emptyset)) = F_{\mathcal{V}}(x, y) \times F_{\mathcal{V}}(x, y)$$
 in Con $F_{\mathcal{V}}(x, y)$.

This condition used in [1] it is equivalent to the property that ι_A is generated by the set of nullary operations for each $\mathcal{A} \in \mathcal{V}$.

Further, we can also

- (a) simplify Csákány's original result for permutable varieties;
- (b) omit one free variable in both sides of (v) to obtain
- (vii) $\theta(F_{\mathcal{V}}(\emptyset) \times F_{\mathcal{V}}(\emptyset)) = F_{\mathcal{V}}(x) \times F_{\mathcal{V}}(x)$ in Con $F_{\mathcal{V}}(x)$.

In the second case we obtain a local version of Csákány's theorem. These modifications are treated in this paper.

2 Results

Theorem 1. Let \mathcal{V} be a permutable variety. The following conditions are equivalent:

- None of algebras in V having at least two elements have idempotent elements;
- (ii) No algebra A ∈ V has a proper subalgebra whose carrier is a class of some θ ∈ Con A;
- (iii) There exist $n \in N$ and a (2 + n)-ary term p and unary terms $v_1, \ldots, v_n, w_1, \ldots, w_n$ such that the identities

$$x = p(x, y, v_1(x), \dots, v_n(x)),$$

Modifications of Csákány's Theorem

$$y = p(x, y, w_1(x), \dots, w_n(x))$$

hold in \mathcal{V} .

Proof. The equivalence of (i) and (ii) is proven by the Proposition. Prove (ii) \Rightarrow (iii): Set $\mathcal{A} = F_{\mathcal{V}}(x, y)$ and $\mathcal{B} = F_{\mathcal{V}}(x)$. Let $\theta = \theta(B \times B) \in Con \mathcal{A}$ (where B is the carrier of \mathcal{B}). Since \mathcal{B} is a subalgebra of \mathcal{A} , we have $\theta(B \times B) = \theta = \iota_A$ by (ii). However, \mathcal{V} is permutable; thus $\theta(B \times B) = R(B \times B)$, the least reflexive and compatible relation on \mathcal{A} containing the set $B \times B$. It follows $\iota_A = R(B \times B)$ which yields $\langle x, y \rangle \in R(B \times B)$. Hence, there exists a (2+n)-ary term p and elements $b_1, \ldots, b_n, b'_1, \ldots, b'_n \in B$ such that

$$x = p(x, y, b_1, \dots, b_n)$$
 and $y = p(x, y, b'_1, \dots, b'_n)$.

Since $b_i, b'_i \in F_{\mathcal{V}}(x)$, there are unary terms v_i, w_i with $b_i = v_i(x)$ and $b'_i = w_i(x)$, $i = 1, \ldots, n$.

For (iii) \Rightarrow (i) let $\mathcal{A} \in \mathcal{V}$ with |A| > 1 and suppose that $a \in A$ is an idempotent element. Let $b \in A \setminus \{a\}$. Then $v_i(a) = a = w_i(a)$ and, by (iii), $a = p(a, b, v_i(a), \ldots, v_n(a)) = p(a, b, a, \ldots, a) = p(a, b, w_1(a), \ldots, w_n(a)) = b$, a contradiction.

Example 1. For a variety \mathcal{R} of rings with 1, we can set n = 2, $v_1(x) = 1 = w_2(x)$, $v_2(x) = 0 = w_1(x)$ and p(x, y, a, b) = ax + by. Hence, it follows that the reduct of a ring with 1, determined by the terms 0, 1, x - y + z, and xy, generates a permutable variety with no idempotent elements.

In this section we consider only varieties \mathcal{V} having a nullary operation which will be denoted by 0; it is usually called a *constant*. For $\mathcal{A} \in \mathcal{V}$, this constant will be denoted by 0_A . We do not restrict the number of nullary operations of \mathcal{V} but this 0 will be considered to be fixed.

Theorem 2. Let \mathcal{V} be a variety with 0. The following conditions are equivalent:

- (i) No $\mathcal{A} \in \mathcal{V}$ having at least two elements has 0_A as an idempotent element;
- (ii) For each $A \in V$ and each $\theta \in Con A$, $[0_a]_{\theta}$ is not a proper subalgebra of A;
- (iii) There exist $n \in N$, binary terms q_1, \ldots, q_n , and unary terms $v_1, \ldots, v_n, w_1, \ldots, w_n$ such that the identities

$$x = q_1(x, v_1(0)),$$

$$q_1(x, w_i(0)) = q_{i+1}(x, v_{i+1}(0)), \quad i = 1, \dots, n-1,$$

$$0 = q_n(x, w_n(0))$$

hold in \mathcal{V} .

Proof. (i) \Rightarrow (ii): Let $\mathcal{A} \in \mathcal{V}$, |A| > 1, $\theta \in Con \mathcal{A}$ and suppose $[0_A]_{\theta} \neq A$. Then \mathcal{A}/θ has at least two elements, and, of course, $0_{A/\theta} = [0_A]_{\theta}$. Since $0_{A/\theta}$ is not an idempotent of $\mathcal{A}/\theta \in \mathcal{V}$, $[0_A]_{\theta}$ cannot be a subalgebra of \mathcal{A} .

(ii) \Rightarrow (iii): Set $\mathcal{A} = \mathcal{F}_{\mathcal{V}}(x)$ and $\mathcal{B} = \mathcal{F}_{\mathcal{V}}(\emptyset)$. Let $\theta = \theta(B \times B)$ in Con \mathcal{A} . Since $0_A = 0_B \in B$, the class $[0_A]_{\theta}$ contains B. Hence, for every *n*-ary operation f of the type of \mathcal{V} , for every $c_1, \ldots, c_n \in [0_A]_{\theta}$, and every $b_1, \ldots, b_n \in B$ we have $\langle c_i, b_i \rangle \in \theta$ $(i = 1, \ldots, n)$; thus, also $\langle f(c_1, \ldots, c_n), f(b_1, \ldots, b_n) \rangle \in \theta$. But $f(b_1, \ldots, b_n) \in B \subseteq [0_A]_{\theta}$, whence $f(c_1, \ldots, c_n) \in [0_A]_{\theta}$. Thus, $[0_A]_{\theta}$ is a subalgebra of \mathcal{A} . In account of (ii), $[0_A]_{\theta} = A$; thus, $\langle x, 0 \rangle \in \theta(B \times B)$. Hence, there exist $d_0, d_1, \ldots, d_n \in A$ such that $d_0 = x$, $d_n = 0$ and $\langle d_{i-1}, d_i \rangle = \langle \varphi_i(b_i), \varphi_i(b'_i) \rangle$ $(i = 1, \ldots, n)$ for some $b_i, b'_i \in B$ and unary polynomials φ_i over \mathcal{A} . Thus $b_i = v_i(0), b'_i =$ $w_i(0)$ for some unary terms v_i, w_i . Of course, $\varphi_i(z) = q_i(x, z)$ for some binary terms q_1, \ldots, q_n . The condition (iii) is evident.

(iii) \Rightarrow (i): Let $\mathcal{A} \in \mathcal{V}$, $|\mathcal{A}| > 1$, $0_A \neq a \in \mathcal{A}$. Suppose that 0_A is an idempotent of \mathcal{A} . Then $v_i(0_A) = 0_A = w_i(0_A)$ and $a = q_1(a, v_1(0_A)) = q_1(a, 0_A) = q_1(a, w_1(0_A)) =$

 $q_1(a, v_1(0_A)) = q_1(a, 0_A) = q_1(a, w_1(0_A)) =$ $q_2(a, v_2(0_A)) = q_2(a, 0_A) = q_2(a, w_2(0_A)) = \dots = 0_A,$

a contradiction.

Example 2. For a variety \mathcal{P} of pseudocomplemented semilattices, we set $n = 1, v_1(x) = x^*, w_1(x) = x$ and $q_1(x, y) = x \wedge y$. Then

$$q_1(x, v_1(0)) = x \wedge 0^* = x,$$

 $q_1(x, w_1(0)) = x \wedge 0 = 0.$

Analogously as previously, we can simplify Theorem 2 for permutable varieties.

Theorem 3. Let \mathcal{V} be a permutable variety with 0. The following conditions are equivalent:

(i) No $\mathcal{A} \in \mathcal{V}$ consisting of at least two elements has 0_A as an idempotent element;

- (ii) For each $\mathcal{A} \in \mathcal{V}$ and each $\theta \in Con \mathcal{A}$, $[0_A]_{\theta}$ is not a proper subalgebra of \mathcal{A} ;
- (iii) There exist $n \in N$ and a (1 + n)-ary term q and unary terms $v_1, \ldots, v_n, w_1, \ldots, w_n$ such that the identities

$$x = q(x, v_1(0), \dots, v_n(0)),$$

$$0 = q(x, w_1(0), \dots, w_n(0))$$

hold in \mathcal{V} .

Example 3. For the variety of Boolean algebras, we can set n = 1, $v_1(x) = x'$, $w_1(x) = x$ and $q(x, y) = x \land y$. Then $q(x, v_1(0)) = x \land 0' = x$, and $q(x, w_1(0)) = x \land 0 = 0$.

Acknowledgement

I wish to thank the referee for several comments which enable to improve the preliminary version of this paper.

References

- I. Chajda and J. Duda, Compact universal relation in varieties with constants, Czechoslovak Math. J. 47 (1997), 173–178.
- B. Csákány, Varieties whose algebras have no idempotent elements, Colloq. Math. 35 (1976), 201–203.
- [3] J. Kollár, Congruences and one-element subalgebras, Algebra Universalis 9 (1979), 266–267.

Received 12 December 1997 Revised 28 December 1998