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Keywords: strongly rectifiable module, S-homogeneous module, pure
submodule, refined submodule, pure composite series, Hill’s module.

1991 Mathematics Subject Classifications: 16D80, 16D70,
13C13.

1 Introduction

There are many important results in the structure theory of torsion abelian
groups that are known to be true in certain classes of modules as well.
The class of I-primary modules (studied by Bican [4], [5]) and the class of
rectifiable modules (studied by Benabdallah and Hattab [2], [3]) are known
examples of such classes of modules. In the present paper, we introduce the
class of strongly rectifiable and S-homogeneous modules and we show that,
among others, the extensions of Prüfer’s theorems are true in this class.

The class of strongly rectifiable and S-homogeneous modules is clearly
a proper subclass of the class of all rectifiable modules, but, on the other
hand, making use of this restriction we can get deeper structural results,
especially by an appropriate generalization of the concept of the height of
an element – the maximum value of the height of a universal submodule, as
defined by Benabdallah and Hattab [2], [3] is equal to ω, i.e. to the first
limit ordinal, while the height of an element, defined in this paper, can be
equal to any ordinal number (limit or non-limit).
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2 Strongly rectifiable, S-homogeneous modules

Let R be an associative ring with identity, let I be a maximal left ideal of
R. The submodule of a module M generated by all simple submodules of
M isomorphic to R/I is denoted by SocI(M) and called the I-socle of the
module M . If α is an ordinal, then SocI

0(M) = 0, SocI
α+1(M)/SocI

α(M) =
SocI(M/SocI

α(M)) and SocI
α(M) =

⋃
β<α SocI

β(M) for α limit is
called the I-Loewy series of M . The smallest ordinal τ for which
SocI

τ (M) = SocI
τ+1(M) is called the I-Loewy length of M . We say

that M is the I-primary (or I-Loewy) module if SocI
τ (M) = M . A

module U is called uniserial if all its submodules form a finite chain
0 = U0 ⊂ U1 ⊂ · · · ⊂ Un = U . The number n = l(U) is called the
length of U . A module M is said to satisfy the rectifiability condition if
for every U and V uniserial submodules of M , U +V admits a uniserial
summand (i.e. U +V contains a uniserial submodule W and a submodule
L for which U + V = W ⊕L ). M is said to be locally rectifiable if every
homomorphic image of M satisfies the rectifiability condition. A module
is said to be rectifiable if it is locally rectifiable and generated by uniserial
submodules.

Throughtout this article, I denotes the maximal left ideal of R and
this ideal I is supposed to be a two-sided ideal. The simple module R/I
is denoted by S.

Definition. We say that a module M is S-homogeneous if M is rectifiable
and all its uniserial submodules are I-primary.

Definition. We say that a module M is strongly rectifiable if M is locally
rectifiable and its every cyclic submodule is uniserial.

Remark. In the theory of the I-primary modules, L. Bican studied the
modules over ring satisfying two conditions (1I) and (2I) – see [4] and [5]. It
is easy to see that every I-primary module over a ring satisfying conditions
(1I) and (2I) from [4] and [5] is strongly rectifiable and S-homogeneous.

Theorem 1. Let M be a strongly rectifiable and S-homogeneous module.
Then every submodule and every quotient of M is strongly rectifiable and
S-homogeneous.

Proof. Since every quotient of an uniserial module is uniserial, the quotient
of any strongly rectifiable module is strongly rectifiable as well.
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Since M is S-homogeneous, M =
∑

j∈J Uj , where Uj are uniserial for all
j ∈ J, and hence Uj are I-primary for all j ∈ J and the smallest ordinal
τj for which SocI

τj
(Uj) = Uj satisfies τj ≤ σ = sup{τj : j ∈ J} ≤ ω.

Then SocI
σ(M) = M , M is I-primary and hence each quotient of M is

S-homogenous, due to the fact that the class of I-primary modules is closed
under submodules and quotients.

Definition. Let M be a module. Then we define:

(i) H0(M) = M,

(ii) H1(M) is the submodule of M generated by a set U of all uniserial
submodules U for which there is a uniserial submodule V such that
U ⊂ V ⊆ M , l(V/U) ≥ 1 (for U = ∅ we put H1(M) = 0),

(iii) Hα+1(M) = H1(Hα(M)), for α non-limit,
(iv) Hα(M) =

⋂
β<α Hβ(M), for α limit.

Let τ be the smallest ordinal for which Hτ+1(M) = Hτ (M). For every
element x ∈ M we put

hM (x) =

{
α for x ∈ Hα(M)rHα+1(M)
∞ for x ∈ Hτ (M).

The ordinal hM (x) is called the height of x in M .

Lemma 2. Let M, N be modules and let ϕ:M −→ N be a homomor-
phism. Then hM (x) ≤ hN (ϕ(x)) for every x ∈ M .

Proof. We prove that ϕ(Hα(M)) ⊆ Hα(N). We proceed by induction
on α. Let U be a uniserial submodule of Hα(M) for which there is
a uniserial submodule V such that U ⊂ V ⊆ Hα(M), l(V/U) = 1.
Then ϕ(U) ⊆ ϕ(V ) ⊆ ϕ(Hα(M)) ⊆ Hα(N). For ϕ(U) 6= 0 the

map f : V
ϕ|V−→ ϕ(V ) π−→ ϕ(V )/ϕ(U) is an epimorphism and Kerf = U .

Therefore ϕ(V )/ϕ(U) ∼= V/Kerf = V/U and ϕ(U) ⊆ H1(Hα(N)) =
Hα+1(N). If the ordinal α is limit, then ϕ(Hα(M)) = ϕ(

⋂
β<α Hβ(M)) ⊆⋂

β<α ϕ(Hβ(M)) ⊆ ⋂
β<α Hβ(N) = Hα(N).

We have immediately two corollaries:

Corollary 3. Let M and N be modules and let ϕ: M −→ N be an
isomorphism. Then ϕ(Hα(M)) = Hα(N) and hence Hα(M) ∼= Hα(N) for
every ordinal α.
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Corollary 4. Let M =
⊕

i∈J Mi be a direct sum of submodules Mi ⊆ M
(i ∈ J). Then Hα(M) =

⊕
i∈J Hα(Mi) for every ordinal α.

Lemma 5. Let M be a rectifiable, S-homogeneous module, let U be a
uniserial submodule of M , and let 0 = U0 ⊂ U1 ⊂ ... ⊂ Un = U be the
chain of all submodules of U , l(U) = n. Then the following statements are
satisfied for all j = 1, ..., n:

(i) Uj/Uj−1
∼= R/I,

(ii) Un−j = IjU .

Proof. We proceed by induction on n. The result is trivially true for
n = 1. If l(Uk+1) = k + 1, 0 = U0 ⊂ U1 ⊂ ... ⊂ Uk ⊂ Uk+1, then for
all j = 1, ..., k by the induction hypothesis we have Uj/Uj−1

∼= R/I,
Uk−j = IjUk. Uk+1/Uk is a simple submodule of M/Uk. Because M/Uk

is S-homogeneous (see the proof of Theorem 1), we have Uk+1/Uk
∼= R/I

and hence IUk+1 ⊆ Uk. Since l(Uk+1/Uk−1) = 2, we get IUk+1 = Uk.

Lemma 6. Let M be a rectifiable, S-homogeneous module. Then
Hn(M) = InM for all n ∈ IN.

Proof. If U is a uniserial submodule of M such that there is a uniserial
submodule V for which U ⊂ V ⊆ M , l(V/U) = 1, then, by Lemma 5,
IV = U and hence U ⊆ IM . Let U be a uniserial submodule of M .
If l(U) = 1, then U ∼= R/I and IU = 0 ∈ H1(M). If l(U) = n > 1,
then 0 = U0 ⊂ U1 ⊂ ... ⊂ Un = U is the chain of all submodules of U
and, by Lemma 5, IU = Un−1 ⊆ H1(M). Hence H1(M) = IM . Because
Hn(M) is again a rectifiable and S-homogeneous module (see the proof of
Theorem 1), Hn+1(M) = H1(Hn(M)) = I(Hn(M)) = I(InM) = In+1M .

Lemma 7. Let M be a rectifiable, S-homogeneous module. Then

hM (x + y) ≥ min{hM (x), hM (y)} for every x, y ∈ M .

If moreover hM (x) 6= hM (y), then hM (x + y) = min{hM (x), hM (y)}.

Proof. If hM (x) 6= ∞, hM (x) = α, hM (y) 6= ∞, hM (y) = β, then
x ∈ Hα(M), y ∈ Hβ(M) and x, y ∈ Hγ(M), where γ = min{α, β}. Now
we have hM (x + y) ≥ γ. For α 6= β, (e.g. α < β ), we have γ = α and
if hM (x + y) > γ, then x ∈ Hα+1(M), which is a contradiction. Hence
hM (x + y) = γ.
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If hM (x) = ∞ and hM (y) = ∞, then hM (x + y) = ∞.

If hM (x) 6= ∞, hM (x) = α and hM (y) = ∞, then immediately
hM (x + y) = α (since otherwise hM (x + y) > α implies hM (x) > α, a
contradiction).

Lemma 8. Let M be a rectifiable, S-homogeneous module and let U
be a uniserial submodule of M . Then for x, y ∈ UrIU we have
hM (x) = hM (y).

Proof. Using Lemma 5 we have Rx = U = Ry.

Let now M be a rectifiable, S-homogeneous module and let U be a
uniserial submodule of M . By Lemma 8, we can denote hM (U) = hM (x)
for arbitrary x ∈ UrIU . The ordinal hM (U) is called the height of U
in M .

Lemma 9. Let M be a strongly rectifiable, S-homogeneous module. Then
hM (rx) = hM (x) for all x ∈ M and for all r ∈ RrI .

Proof. Let U = Rx be a uniserial submodule of the strongly rectifiable
module M and let 0 = U0 ⊂ U1 ⊂ · · · ⊂ Un = U be the chain of all
submodules of U . Then x ∈ UnrUn−1 = UrIU . Since I +Rr = R, there
are i ∈ I, r′ ∈ R such that x = ix + r′rx and therefore, by Lemma 5,
R(rx) = U , rx ∈ UnrUn−1 = UrIU .

Theorem 10. Let M be a strongly rectifiable, S-homogeneous module,⊕n
i=1 Ui ⊆ M , and let Ui, i ∈ {1, ..., n}, be simple submodules of

M . Then there are simple submodules V1, V2, ..., Vn of M such that⊕n
i=1 Ui =

⊕n
i=1 Vi and for every simple submodule Z ⊆ ⊕n

i=1 Ui there
exists i0 ∈ {1, ..., n} such that hM (Z) = hM (Vi0).

Proof. We proceed by induction on n. For
⊕k+1

i=1 Ui ⊆ M we get by
induction

⊕k+1
i=1 Ui =

⊕k
i=1 Vi ⊕ Uk+1. Now we distinguish three cases.

Case 1. hM (Uk+1) = hM (Vi′) for some i′ ∈ {1, ..., k} and for every
simple submodule Z ⊆ U1 ⊕ ... ⊕ Uk+1, there is i0 ∈ {1, ..., k} such that
hM (Z) = hM (Vi0). In this case we can put Vk+1 = Uk+1.

Case 2. hM (Uk+1) 6= hM (Vi) for all i ∈ {1, ..., k}. In this case we can
put Vk+1 = Uk+1. For every simple submodule Z ⊆ ⊕k+1

i=1 Ui, we have Z =
Rz, where z ∈ Z, z 6= 0 and z = v + vk+1 for v ∈ ⊕k

i=1 Vi, vk+1 ∈ Vk+1.
For v = 0, we have hM (Z) = hM (Vk+1). For vk+1 = 0, by the induction
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hypothesis, there exists i0 ∈ {1, ..., k} such that hM (Z) = hM (Vi0). For
v 6= 0, vk+1 6= 0 the module Rv is a uniserial submodule of M and
moreover, Rv is simple since I(Rv) = 0. By the induction hypothesis,
there exists i′0 ∈ {1, ..., k} such that hM (Rv) = hM (Vi′0). By Lemmas 7
and 8, we get hM (Z) = min{hM (Vi′0), hM (Vk+1)}.

Case 3. hM (Uk+1) = hM (Vi′) for some i′ ∈ {1, ..., k} and there exists
a simple submodule T ⊆ U1 ⊕ · · · ⊕ Uk+1 such that hM (T ) 6= hM (Vi) for
all i ∈ {1, ..., k}. In this case we can put Vk+1 = T and the proof concludes
as in case 2.

Lemma 11. Let M be a strongly rectifiable, S-homogeneous module, let
N =

⊕n
i=1 Ui, where Ui are simple submodules of M for all i ∈ {1, ..., n}.

Then the set {hM (x) : x ∈ N} is finite.

Proof. For every non-zero element x ∈ N the module Rx is an uniserial
submodule of M , Ix = 0, and therefore Rx is simple. By Theorem 10,
{hM (x) : x ∈ N} = {hM (0), hM (V1), hM (V2), ..., hM (Vn)}.

Both Prüfer’s theorems, well-known from the theory of abelian groups, hold
also in the class of strongly rectifiable, S-homogeneous modules. Benabdal-
lah and Hattab [2] showed an extension of the first Prüfer’s theorem and
of the Kulikov’s criterion for rectifiable modules. They prove, that a rec-
tifiable module M is a direct sum of uniserial submodules if and only if
Soc(M) =

⋃∞
n=1 Sn, where S1 ⊆ S2 ⊆ · · · and for each n ∈ IN there exists

kn ∈ IN such that Sn ∩Hkn(M) = 0.
The next theorem gives an extension of the second Prüfer’s theorem for

strongly rectifiable and S-homogeneous modules.

Theorem 12. Let M be a countable generated, strongly rectifiable,
S-homogeneous module. Then M is a direct sum of uniserial submodules
if and only if Hω(M) = 0.

Proof. If M is a direct sum of uniserial submodules, then, by the Kulikov’s
criterion, Soc(M) =

⋃
n∈IN Sn, S1 ⊆ S2 ⊆ S3 ⊆ ... and for every n ∈ IN

there exists kn ∈ IN such that Sn ∩ Hkn(M) = 0. If Hω(M) 6= 0, then
there exists a non-zero element x ∈ Hω(M), and therefore, Rx is an
uniserial submodule. Denote Z = Soc(Rx). Then there exists n′ ∈ IN
such that 0 6= Z ⊆ Sn′ ∩Hkn′ (M) = 0, which is a contradiction. Now, let
Hω(M) = 0, M =

∑
i∈IN Rmi. Put Sn = Soc(

∑n
i=1 Rmi). By Theorem 10,

there exist simple submodules W1, ..., Wk such that Sn =
⊕k

i=1 Wi and,
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for every simple submodule U of Sn, there exists i0 ∈ {1, ..., k} for which
hM (U) = hM (Wi0). For every i = 1, ..., k, we have hM (Wi) < ω (since
Hω(M) = 0 ). Let kn = 1 + max{hM (W1), ..., hM (Wk)}. By Lemma 8 and
by Theorem 10, Sn ∩Hkn(M) = 0 and we use the Kulikov’s criterion for
rectifiable modules (see [2]).

3 Pure and refined submodules

The concepts of pure and refined submodules are direct analogies of the
corresponding concept in the theory of I-primary modules or rectifiable
modules, respectively, and we show that basic results hold also in the class
of strongly rectifiable, S-homogeneous modules.

Lemma 13. Let M be a strongly rectifiable, S-homogeneous module, let
x0 ∈ M be a non-zero element and let r0 ∈ RrI. Then, for every integer
m ≥ 0, we have Rx0 = Imx0 + Rr0x0 and hence there exists d ∈ RrI
such that x0 = dr0x0.

Proof. We proceed by induction on m. Because the left ideal I is
maximal, Rx0 = Ix0 + Rr0x0. For every s ∈ R, we have sx0 =
u(bx0 + t′r0x0) + tr0x0 ∈ Ik+1x0 + Rr0x0 ⊆ Rx0, where u ∈ Ik, b ∈ I,
t, t′ ∈ R.

Lemma 14.
1. If I = I2 +aR for some a ∈ I, then I = Im +aR for every m ∈ IN.
2. If I = I2 +Ra for some a ∈ I, then I = Im +Ra for every m ∈ IN.

Proof.

1. We proceed by induction on m. For m = 1 the statement is obvious.
Suppose that I = Im + aR for m = k. Then I = I2 + aR =
(Ik + aR)I + aR ⊆ Ik+1 + aI + aR ⊆ Ik+1 + aR ⊆ I and therefore
I = Ik+1 + aR.

2. The proof is similar as in the previous case.

Lemma 15. Let M be a strongly rectifiable, S-homogeneous module, and
let I = I2 + aR for some a ∈ I. Then Hn(M) = anM = InM for every
integer n ≥ 0.

Proof. For an element x ∈ M, the module Rx is a uniserial submodule of
M and, by Lemma 5, there is k ≥ 0 such that Ikx = 0. Thus, by Lemma 14,
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Ix ⊆ Ikx + aRx ⊆ aM . By Lemma 6, further aM = IM = H1(M). Now,
by induction and by Lemma 6, Hn+1(M) = H1(Hn(M)) = IHn(M) =
aHn(M) = In+1M = an+1M .

Lemma 16. Let M be a strongly rectifiable, S-homogeneous module, let
I = I2 +Ra for some a ∈ I. Then, for every integer k ≥ 0, for every non-
zero element x ∈ M and for an element b ∈ R, for which bx ∈ IkxrIk+1x,
there exists an element d ∈ RrI such that dbx = akx.

Proof. By induction on k. For k = 0 the lemma follows immediatly from
Lemma 13. For bx ∈ Ik+1xrIk+2x there is bx 6= 0, Rx is an uniserial
submodule and, by Lemma 5, there exists an integer m such that Imx = 0.
By Lemma 14, Ix = Rax and then Ik+1x = IkRax = Ikax, consequently
bx = b′ax, where b′ ∈ Ik. By induction, there exists d ∈ RrI such that
dbx = db′ax = ak(ax) = ak+1x.

Theorem 17. Let M be a strongly rectifiable, S-homogeneous module, let
I = I2 + Ra for some a ∈ I. Then for every finitely generated submodule
N of M , the set {hM (x) : x ∈ N} is finite.

Proof. We proceed by induction on number of elements which generate
the submodule N . If the submodule N is cyclic, then N is uniserial and
we use Lemma 8. Let N =

∑k
i=1 Rxi be finitely generated and let the set

{hM (x) : x ∈ N} be infinite. Then there exist y1, y2, y3, . . . ∈ N, such that
hM (y1) < hM (y2) < hM (y3) < . . . . For every i ∈ IN, yi = ri1x1+· · ·+rikxk,
where rij ∈ R for all j = 1, . . . , k. Using induction we can assume rikxk 6=
0 for all i ∈ IN. Since Rxk is uniserial, there exists n, 0 ≤ n < l(Rxk),
such that the set { i ∈ IN : rikxk ∈ InxkrIn+1xk } is infinite. We
can assume that rikxk ∈ InxkrIn+1xk for all i ∈ IN. By Lemma 16,
for every i ∈ IN there exists di ∈ RrI such that dirikxk = anxk.
Then diyi − di+1yi+1 ∈

∑k−1
j=1 Rxj , because dirikxk − di+1r(i+1)k

xk = 0.
By Lemmas 7 and 9, hM (d1y1 − d2y2) < hM (d2y2 − d3y3) < . . . which
contradicts the induction hypothesis.

Definition. Let M be a strongly rectifiable, S-homogeneous module.
We say that a submodule N of M is pure in M if Hα(M/N) =
(Hα(M) + N)/N for every ordinal α.

Remark. If a module M is strongly rectifiable and S-homogeneous, then
Hα(M/N) = (Hα(M) + N)/N for every submodule N of M and for
every non-limit ordinal α (by induction and by Lemma 6). We can say
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that the submodule N is pure in M iff Hα(M/N) = (Hα(M) + N)/N
for every limit ordinal α.

Lemma 18. Let M be a strongly rectifiable, S-homogeneous module and
let N be a submodule of M . Then N is pure in M if and only
if for every element x ∈ MrN there is an element y ∈ N such that
hM (x + z) ≤ hM (x + y) for all z ∈ N .

Proof. If N is pure in M and x ∈ MrN , then x + N is a non-zero
element of M/N . If hM/N (x + N) = ∞, then there is y ∈ N for which
hM (x + y) = ∞. If hM/N (x + N) = α, α 6= ∞, then u ∈ Hα(M) and
there exists y ∈ N such that x + y = u and hM (x + y) ≥ α. Since
hM/N (x + N) = α, we have hM (x + z) ≤ α for every z ∈ N . Let the
assumptions of this lemma be valid, let α be a limit ordinal. By Lemma 2,
(Hα(M)+N)/N ⊆ Hα(M/N) for all ordinals α. Let x+N ∈ Hα(M/N)
be an element. Then, by the induction hypothesis, for every β < α there
is zβ ∈ Hβ(M) such that x + N = zβ + N and there is yβ ∈ N
for which x + yβ = zβ. By the assumption of this Lemma, there exists
y ∈ N such that β ≤ hM (x + yβ) ≤ hM (x + y) for every β < α. Hence,
x + y ∈ ⋂

β<α Hβ(M) = Hα(M).

Theorem 19. If M is a strongly rectifiable, S-homogeneous module, then
for every ordinal α the submodule Hα(M) is pure in M .

Proof. Let us consider an element x ∈ MrHα(M). Then hM (x) = σ < α,
where σ is an ordinal. For all z ∈ Hα(M), we have hM (z) ≥ α. Therefore,
by Lemma 7, hM (x + z) = σ = hM (x) and we can choose y = 0. The rest
of the proof follows from Lemma 18.

Lemma 20. Let M be a strongly rectifiable, S-homogeneous module, and
let K, L be submodules of M such that K ⊆ L ⊆ M . Then:

1. if L is pure in M , then L/K is pure in M/K;
2. if K is pure in M and L/K is pure in M/K, then L is pure in M .

Proof.
1. Let x + L/K ∈ Hα((M/K)/(L/K)) be an element, where x ∈

M/K and x = x + K, for an element x ∈ M . By Corollary 3,
hM/L(x + L) ≥ α, and then, since L is pure in M , there exist
x′ ∈ Hα(M) and l ∈ L for which x = x′ + l. Then x + L/K =
(x′+ l+K)+L/K = (x′+K)+L/K ∈ (Hα(M/K)+L/K)/(L/K), due
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to (Hα(M)+K)/K ⊆ Hα(M/K) by Lemma 2. The opposite inclusion
follows from Lemma 2.

2. Let x + L ∈ Hα(M/L) be an element, where x ∈ M . Then, by
Corollary 3, (x + K) + L/K ∈ Hα((M/K)/(L/K)) = (Hα(M/K) +
L/K)/(L/K), and then there is x′ ∈ M for which x′+K ∈ Hα(M/K)
and (x + K) + L/K = (x′ + K) + L/K. Now, since K is pure
in M , there exists x′′ ∈ Hα(M) such that x′ + K = x′′ + K.
Then, since x + K = (x′ + K) + (l + K), we have x′ = x′′ + k
and x = x′ + l + k′ for some k, k′ ∈ K, l ∈ L. Futher, we get
x + L = x′′ + k + l + k′ + L = x′′ + L ∈ (Hα(M) + L)/L. The opposite
inclusion is valid by Lemma 2.

Theorem 21. Let M be a strongly rectifiable, S-homogeneous module and
suppose there is an element a ∈ I such that I = I2 + Ra. Then every
finitely generated submodule N of M is pure in M .

Proof. For an element x ∈ MrN we have {hM (x + z) : z ∈ N} ⊆
{hM (u) : u ∈ Rx + N} and, by Theorem 17, this set is finite. Hence the
set {hM (x + z) : z ∈ N} has a maximal element and the proof is finished
by Lemma 18.

Lemma 22. Let M =
⊕

i∈J Mi be a strongly rectifiable, S-homogeneous
module, and let Ni be a submodule of Mi for every i ∈ J . Then
N =

⊕
i∈J Ni is pure in M if and only if Ni is pure in Mi for all

i ∈ J .

Proof. Proof follows immediately from Lemma 2 and Corollary 3.

Definition. Let N be a submodule of a strongly rectifiable, S-
homogeneous module M . We say that N is refined in M if Hα(M)∩N =
Hα(N) for all ordinals α.

Theorem 23. Let N be a direct summand of a strongly rectifiable,
S-homogeneous module. Then N is pure and refined in M .

Proof. Let M = N⊕K be a direct sum, where K, N are submodules of
M . By Lemma 2, Hα(N) ⊆ Hα(M) ∩N , (Hα(M) + N)/N ⊆ Hα(M/N)
for all ordinals α. Applying Lemma 2 to the projection π:M −→ N,
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we get hN (x) ≥ α for x ∈ Hα(M) ∩ N . For the exact sequence 0 −→
N −→ M

ψ−→ M/N −→ 0, there exists a homomorphism ϕ: M/N −→ M
such that ϕψ = 1M/N . Then, for an element x + N ∈ Hα(M/N), we have
ϕ(x + N) ∈ Hα(M), by Lemma 2, and hence x + N = ϕ(x + N) + N ∈
(Hα(M) + N)/N .

Lemma 24. Let M be a strongly rectifiable, S-homogeneous module, let
N be a submodule of M and let σ be an ordinal. Then the submodule
N is pure in M if and only if the submodule (N + Hσ(M))/Hσ(M) is
pure in M/Hσ(M) and the submodule N ∩Hσ(M) is pure in Hσ(M).

Proof.

1. We first show that N is pure in M . Let C = (M/Hσ(M))/((N +
Hσ(M))/Hσ(M)) and D = ((N + Hα(M))/Hσ(M))/((N + Hσ(M))/
Hσ(M)).

Then C/D ∼= M/(N + Hα(M)) ∼= (M/N)/((N + Hα(M))/N). By
Theorem 19, the submodule Hσ(M) is pure in M , and hence for α ≤ σ
we have Hα(C) = D. Because, by Theorem 19, Hα(C/Hα(C)) = 0,
we have Hα(C/D) = 0 and thus, by Corollary 3, Hα(M/N) ⊆
(Hα(M) + N)/N .

For α > σ, there is an ordinal β such that α = σ + β.
Since N ∩ Hσ(M) is pure in Hσ(M), we have Hβ(Hσ(M)/(N ∩
Hσ(M))) = (Hα(M) + (N ∩ Hσ(M)))/(N ∩ Hσ(M)). It is easy to
show that Hα(M) + (N ∩ Hσ(M)) = Hσ(M) ∩ (N + Hα(M)), hence
((N + Hσ(M))/N)/((N + Hα(M))/N) ∼= ((N + Hσ(M))/N)/(((N +
Hα(M))/N)∩((N +Hσ(M))/N)) ∼= (N +Hσ(M))/(N +Hα(M)) = (N +
Hα(M) + Hσ(M))/(N + Hα(M)) ∼= Hσ(M)/((N + Hα(M))∩Hσ(M)) =
Hσ(M)/(Hα(M)+ (N ∩Hσ(M))) ∼= (Hσ(M)/(N ∩Hσ(M)))/((Hα(M)+
(N∩Hσ(M)))/(N∩Hσ(M))) = (Hσ(M)/(N∩Hσ(M)))/Hβ(Hσ(M)/(N∩
Hσ(M))). Because the submodule N ∩Hσ(M) is pure in Hσ(M), we
have Hβ(Hσ(M)/(N ∩Hσ(M))) = (Hβ(Hσ(M)) + (N ∩Hσ(M)))/(N ∩
Hσ(M)) = (Hα(M) + (N ∩ Hσ(M)))/(N ∩ Hσ(M)). By Theorem 19,
we get Hβ(((N + Hσ(M))/N)/((N + Hα(M))/N)) = 0 and, therefore,
(N+Hα(M))/N ⊇ Hβ((N+Hσ(M))/N) = Hβ(Hσ(M/N)) = Hα(M/N).

2. Let N be pure in M and let α be an ordinal. Then (Hσ+α(M) +
N)/N = Hσ+α(M/N) = Hα((Hσ(M) + N)/N) is pure in (Hσ(M) +
N)/N and, therefore, Hα(((Hσ(M)+N)/N)/((Hσ+α(M)+N)/N)) = 0.
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Since Hσ(M)/(N ∩ Hσ(M)) ∼= (Hσ(M) + N)/N , we have ((Hσ(M) +
N)/N)/((Hσ+α(M) + N)/N) ∼= (Hσ(M)/(N ∩ Hσ(M)))/((Hσ+α(M) +
(N ∩ Hσ(M)))/(N ∩ Hσ(M))), hence Hα((Hσ(M)/(N ∩ Hσ(M)))/
((Hσ+α(M)+(N ∩Hσ(M)))/(N ∩Hσ(M)))) = 0 and then Hα(Hσ(M)/
(N ∩Hσ(M))) ⊆ (Hσ+α(M) + (N ∩Hσ(M)))/(N ∩Hσ(M)). The other
inclusion follows from Lemma 2, and thus the submodule N ∩Hσ(M) is
pure in Hσ(M).

For an ordinal α ≤ σ, we have, by Theorem 19, Hα(M/(Hα(M) +
N)) ∼= Hα((M/N)/Hα(M/N)) = 0. Then Hα(C/D) ∼= Hα((M/Hσ(M))/
((N + Hα(M))/Hσ(M))) ∼= Hα(M/(N + Hα(M))) = 0, and
Hα(C) ⊆ D. Therefore, for all α ≤ σ, the condition from the definition of
a pure submodule is satisfied. For an ordinal α > σ, an ordinal β exists,
such that α = σ+β. Then Hα((M/Hσ(M))/((N +Hσ(M))/Hσ(M))) =
Hβ((Hσ(M/Hσ(M))+(N+Hσ(M))/Hσ(M))/((N+Hσ(M))/Hσ(M))) =
0. Because Hα(M/Hσ(M)) = (Hα(M) + Hσ(M))/Hσ(M) = 0, the
submodule (N + Hσ(M))/Hσ(M) is pure in M/Hσ(M).

4 Hill’s modules

Hill’s modules are well-known to yield interesting results, e.g., in the theory
of I-primary modules. In this paper we give an analogous definition in
the class of strongly rectifiable, S-homogeneous modules, and we show that
this concept has analogous properties in this class. Under an additional
assumption that there is an element a ∈ I such that I = I2 + Ra, we
describe the structure of Hill’s modules in Theorem 30.

Definition. Let M be a strongly rectifiable, S-homogeneous module and
let N be a submodule of M . We say that a well-ordered series of its
submodules N0 ⊂ N1 ⊂ N2 ⊂ ... is a pure composite series from N to
M , if:

1. N = N0, M = Nσ for an ordinal σ;
2. Nα is pure in M for all ordinals α < σ;
3. Nα+1/Nα

∼= S for all ordinals α < σ;
4. Nα =

⋃
β<α Nβ for all limit ordinals α.

A pure composite series from N = 0 to M is said to be a pure composite
series of the module M .
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Lemma 25. Let M be a strongly rectifiable, S-homogeneous module, let
I = I2 + Ra for some a ∈ I and let N be a countable generated
submodule of M . Then the module N has a pure composite series
0 = N0 ⊂ N1 ⊂ ... ⊂ Nα = N, such that α ≤ ω and for every i < α the
submodule Ni is pure in M .

Proof. If N =
∑

i∈IN Rgi, then we denote N0 = 0, Nn =
∑n

i=1 Rgi

for every n ∈ IN. For every integer n ≥ 0, the module Nn+1/Nn
∼=

Rgn+1/(Nn ∩ Rgn+1) is uniserial and we can denote by 0 = N0 ⊂
N1 ⊂ ... ⊂ Nkn = Nn+1/Nn the chain of all submodules of Nn+1/Nn.
For each j = 0, 1, ..., kn, there exists a submodule Nnj such that
Nnj/Nn = N j , Nn ⊆ Nnj ⊆ Nn+1, Nn0 = Nn, Nkn = Nn+1. By Lemma 5,
Nnj+1/Nnj = N j+1/N j

∼= S and all submodules Nnj are finitely generated.
Then, by Theorem 21, every submodule Nnj is pure in M and also in N .
Therefore, the series 0 = N0 ⊂ N01 ⊂ ... ⊂ N0k0

= N1 = N10 ⊂ N11 ⊂ ... is
a pure composite series.

Definition. Let M be a strongly rectifiable, S-homogeneous module. A
system N of submodules of M is a Hill’s system, if the following conditions
are satisfied:

1. if N ∈ N , then N is pure in M ;
2. 0 ∈ N ;
3. if {Ni : i ∈ J} ⊆ N , then

∑
i∈J Ni ∈ N ;

4. if X is a countable subset of M and N ∈ N , then there exists K ∈ N
such that N ∪X ⊆ K and the module K/N is countable generated.

A reduced, strongly rectifiable, S-homogeneous module with a Hill’s system
is called a Hill’s module.

Theorem 26. Let M be a reduced, countable generated, strongly rectifi-
able, S-homogeneous module. Then M is a Hill’s module and {0,M} is
its Hill’s system.

Proof. Straightforward.

Theorem 27. A direct summand of a Hill’s module is a Hill’s module.

Proof. Let M be a Hill’s module and let M = A ⊕ B be a direct sum
of submodules A, B, let M be a Hill’s system of the module M . Let
N = {N : N is a submodule of A for which there exists a module Z ∈M
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such that Z = N ⊕ (Z ∩B)}. We show that N is the Hill’s system of the
submodule A.

The first condition of the definition of Hill’s system is satisfied by Lemma 22,
the second and the third conditions are obvious. For the fourth condition,
let X be a countable subset of A and let N be a submodule of A
such that there is a module Z ∈ M for which Z = N ⊕ (Z ∩ B). We
denote Z0 = Z, A0 = N +

∑
x∈X Rx, B0 = Z ∩ B. Then A0/N is

countable generated and for Z ∈ M there exists a module Z1 ∈ M
such that Z0 + A0 ⊆ Z1 and the module Z1/Z is countable generated,
too. We continue by induction. Suppose that we have modules Zn ∈ M,
An ⊆ A, Bn ⊆ B, Zn ⊆ An ⊕Bn, Z + An−1 ⊆ Zn, such that Zn/Z and
An/N are countable generated, Zn−1 ⊆ Zn, An−1 ⊆ An, Bn−1 ⊆ Bn.
Then there exists a module Zn+1 ∈ M, Zn ⊆ Zn+1 such that Zn+1/Z is
countable generated and Z + An ⊆ Zn+1. We denote An+1 = πA(Zn+1),
Bn+1 = πB(Zn+1), where πA, πB are the projections determined by the
direct sum M = A ⊕ B. Then Zn+1 ⊆ An+1 ⊕ Bn+1 and the mapping
ϕ:Zn+1/Z −→ An+1/N defined by ϕ:x+Z 7−→ πA(x)+N for all x ∈ Zn+1

is an epimorphism and, hence, the module An+1/N is countable generated.
Let L =

⋃
n∈IN0

Zn be the union of Zn for all integers n ≥ 0. Then L ∈M,
L = (A∩L)⊕(B∩L) and L∩A ∈ N . The module (L∩A)/N is countable
generated as an epimorphic image of the countable generated module L/Z.

Theorem 28. Let M be a reduced, strongly rectifiable, S-homogeneous
module, and let M =

⊕
i∈J Mi be a direct sum of submodules Mi. Then

M is a Hill’s module if and only if Mi are Hill’s modules for all i ∈ J .

Proof. The first implication follows from Theorem 27. Let Ni be a Hill’s
system of the module Mi for every i ∈ J , and denote N = {N : N
is a submodule of M , N =

⊕
i∈J Ni, where Ni ∈ Ni for all i ∈ J}.

We show that N is a Hill’s system of M . The first condition of the
definition of a Hill’s system is satisfied by Lemma 22, the second and the
third conditions are obvious. Let X be a countable subset of M , N ∈ N .
Then N =

⊕
i∈J Ni, where Ni ∈ Ni for all i ∈ J . Since X is a countable

set, J contains a countable subset J0 for which X ⊆ ⊕
i∈J0

Mi. For every
i ∈ J0, there exists N ′

i ∈ Ni such that πi(X) ∪Ni ⊆ N ′
i and the module

N ′
i/Ni is countable generated (πi are the projections generated by direct
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sum). If we denote

N i =

{
N ′

i for i ∈ J0,
Ni for i ∈ JrJ0

and N =
∑

i∈J N i =
⊕

i∈J N i, then X ∪N ⊆ N , N ∈ N and the module
N/N ∼= ⊕

i∈J0
N ′

i/Ni is countable generated.

Theorem 29. Let M be a reduced, strongly rectifiable, S-homogeneous
module, let σ be an ordinal for which M/Hσ(M) is a Hill’s module and
let Hσ+1(M) = 0. Then M is a Hill’s module.

Proof. Let N denote the Hill’s system of the module M/Hσ(M) and let us
define M = {N : N is a submodule of M such that (N + Hσ(M))/Hσ(M)
∈ N}. For every N ∈ M, the module (N + Hσ(M))/Hσ(M) is pure in
M/Hσ(M). The module Hσ(M) is semisimple, since Hσ(M) is generated
by uniserial submodules and IHσ(M) = H1(Hσ(M)) = Hσ+1(M) = 0. The
submodule N∩Hσ(M) is pure in Hσ(M) as a direct summand of Hσ(M),
therefore, by Lemma 24, the submodule N is pure in M . The second and
the third conditions are obvious. Let X be a countable subset of M , and
let N ∈ M. Then there exists L ∈ N such that {x + Hσ(M) : x ∈ X}
∪ (N + Hσ(M))/Hσ(M) ⊆ L and the module L/((N + Hσ(M))/Hσ(M))
is countable generated. If we put L = L/Hσ(M), where Hσ(M) ⊆ L ⊆ M ,
then X ∪ N ⊆ L and L/(N + Hσ(M)) is countable generated. If
this module is generated by the set {li + (N + Hσ(M)) : i ∈ IN},
then we put U =

∑
i∈IN Rli and, then, U + N + Hσ(M) = L. If the

countable generated module (
∑

x∈X Rx)/(
∑

x∈X Rx ∩N) is generated by
the set {yi + (

∑
x∈X Rx ∩ N) : i ∈ IN}, we can put V =

∑
i∈IN Ryi.

Then V + (
∑

x∈X Rx ∩ N) =
∑

x∈X Rx and hence V ⊆ L. Now
L = L + V = U + N + Hσ(M) + V and we can put Z = N + U + V .
It is obvious that (Z + Hσ(M))/Hσ(M) = L ∈ N . Hence, Z ∈ M
and N ∪ X ⊆ Z and the module Z/N ∼= (U + V )/((U + V ) ∩ N) is
countable generated, since U , V are countable generated. The module M
is a Hill’s module.

Theorem 30. Let M be a reduced, strongly rectifiable, S-homogeneous
module, and let I = I2 + Ra for some a ∈ I. If M is a Hill’s module,
then M contains a pure composite series.

Proof. Let M be a Hill’s system of M , let M = {xσ : σ < τ} be all
elements of M , where τ is an ordinal. Put N0 = 0. If there is Nα for which
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Nα ∈ M, {xσ : σ < α} ⊆ Nα, then, by the definition of Hill’s system,
there exists Nα+1 ∈ M such that Nα ∪ {xα} ⊆ Nα+1 and the module
Nα+1/Nα is countable generated. Therefore {xσ : σ < α + 1} ⊆ Nα+1.
If α is a limit ordinal, we put Nα =

⋃
β<α Nβ. By Lemma 25, for every

α < τ, the module Nα+1/Nα contains a pure composite series. If this
series are 0 = Nα+1,0/Nα ⊂ Nα+1,1/Nα ⊂ ... ⊂ Nα+1,%/Nα = Nα+1/Nα,
where % ≤ ω, then, for all i < %, we have Nα+1,i+1/Nα+1,i

∼= S and, by
Lemmas 25 and 20, the submodules Nα+1,i are pure in M . Hence, all
modules Nα+1,i create a pure composite series of M .
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