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1 Introduction

There are many important results in the structure theory of torsion abelian
groups that are known to be true in certain classes of modules as well.
The class of I-primary modules (studied by Bican [4], [5]) and the class of
rectifiable modules (studied by Benabdallah and Hattab [2], [3]) are known
examples of such classes of modules. In the present paper, we introduce the
class of strongly rectifiable and S-homogeneous modules and we show that,
among others, the extensions of Priifer’s theorems are true in this class.

The class of strongly rectifiable and S-homogeneous modules is clearly
a proper subclass of the class of all rectifiable modules, but, on the other
hand, making use of this restriction we can get deeper structural results,
especially by an appropriate generalization of the concept of the height of
an element — the maximum value of the height of a universal submodule, as
defined by Benabdallah and Hattab [2], [3] is equal to w, i.e. to the first
limit ordinal, while the height of an element, defined in this paper, can be
equal to any ordinal number (limit or non-limit).
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2 Strongly rectifiable, S-homogeneous modules

Let R be an associative ring with identity, let I be a maximal left ideal of
R. The submodule of a module M generated by all simple submodules of
M isomorphic to R/I is denoted by Soc!(M) and called the I-socle of the
module M. If « is an ordinal, then Soc{(M) =0, Socl,,(M)/Sock (M) =
Soc! (M /Sock(M)) and Socl (M) = Us<a Socé(M) for « limit is
called the I-Loewy series of M. The smallest ordinal 7 for which
Socl(M) = Socl, (M) is called the I-Loewy length of M. We say
that M is the I-primary (or I-Loewy) module if Socl(M) = M. A
module U is called uniserial if all its submodules form a finite chain
0=UyCcU C---CU,=U. The number n = [(U) is called the
length of U. A module M is said to satisfy the rectifiability condition if
for every U and V uniserial submodules of M, U+ V admits a uniserial
summand (i.e. U+V contains a uniserial submodule W and a submodule
L for which U4+ V =W &L ). M issaid to be locally rectifiable if every
homomorphic image of M satisfies the rectifiability condition. A module
is said to be rectifiable if it is locally rectifiable and generated by uniserial
submodules.

Throughtout this article, I denotes the maximal left ideal of R and
this ideal I is supposed to be a two-sided ideal. The simple module R/I
is denoted by S.

Definition. We say that a module M is S-homogeneousif M is rectifiable
and all its uniserial submodules are I-primary.

Definition. We say that a module M is strongly rectifiable if M is locally
rectifiable and its every cyclic submodule is uniserial.

Remark. In the theory of the I-primary modules, L. Bican studied the
modules over ring satisfying two conditions (1I) and (2I) — see [4] and [5]. It
is easy to see that every I-primary module over a ring satisfying conditions
(1I) and (2I) from [4] and [5] is strongly rectifiable and S-homogeneous.

Theorem 1. Let M be a strongly rectifiable and S-homogeneous module.
Then every submodule and every quotient of M is strongly rectifiable and
S-homogeneous.

Proof. Since every quotient of an uniserial module is uniserial, the quotient
of any strongly rectifiable module is strongly rectifiable as well.
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Since M is S-homogeneous, M =3 ;c;U;, where U; are uniserial for all
j € J, and hence U; are I-primary for all j € J and the smallest ordinal
7; for which Socij(Uj) = U; satisfies 77 <o =sup{r; : jeJ} <w.
Then Socl (M) = M, M is I-primary and hence each quotient of M is
S-homogenous, due to the fact that the class of I-primary modules is closed
under submodules and quotients. [

Definition. Let M be a module. Then we define:

(i) Ho(M)= M,

(ii) Hi(M) is the submodule of M generated by a set U of all uniserial
submodules U for which there is a uniserial submodule V' such that
UcCcVCM, (V/IU) >1 (for U=0 weput Hi(M)=0),

(i) Ho41(M) = H1(Ho(M)), for a non-limit,

(iv) Ho(M) = Ngeq Hz(M), for a limit.

Let 7 be the smallest ordinal for which H,y1(M) = H,(M). For every
element x € M we put

hor () = a for x€ Hy(M)N\Hqy1(M)
MW= oo for x € H(M).

The ordinal hps(x) is called the height of x in M.

Lemma 2. Let M,N be modules and let p: M — N be a homomor-
phism. Then hy(x) < hn(e(x)) for every x € M.

Proof. We prove that (H,(M)) C Hy(N). We proceed by induction
on a. Let U be a uniserial submodule of H,(M) for which there is
a uniserial submodule V such that U C V C H,(M), (V/U) = 1.
Then @(U) C @(V) C @(Ho(M)) C Ha(N). For o(U) # 0 the

map f:V #lv, o(V) — o(V)/e(U) is an epimorphism and Kerf = U.
Therefore ©(V)/o(U) = V/Kerf = V/U and ¢(U) C Hi(Hu(N))
Hg41(N). If the ordinal o is limit, then ¢(Ha(M)) = ©(Ng<q Hp(M))
Np<a P(H(M)) € Ng<o Hp(N) = Ha(N).

We have immediately two corollaries:

m Nl

Corollary 3. Let M and N be modules and let ¢o: M — N be an
isomorphism. Then ¢(Hy(M)) = Ho(N) and hence Ho(M) = Ho(N) for
every ordinal «. [
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Corollary 4. Let M = @,c; M; be a direct sum of submodules M; C M
(teJ). Then Ho(M) = @;c; Ho(M;) for every ordinal o |

Lemma 5. Let M be a rectifiable, S-homogeneous module, let U be a
uniserial submodule of M, and let 0 = Uy C Uy C ... C U, = U be the
chain of all submodules of U, I(U) =n. Then the following statements are
satisfied for all j=1,...n:

(i) U;/Uj-1 2 R/,
(i) Up—; =IU.

Proof. We proceed by induction on n. The result is trivially true for
n=1 If (Uy) =k+1, 0=Uy C U C..C U C Uy, then for
all j = 1,..,k by the induction hypothesis we have U;/U;_1 = R/I,
Uk—j = D'Uyg. Ugy1/Uy is a simple submodule of M/Uy. Because M /Uy
is S-homogeneous (see the proof of Theorem 1), we have Uyi1/Ux = R/I
and hence IUgyq C Ug. Since [(Ugy1/Up—1) =2, we get [Upy1 =U;. m

Lemma 6. Let M be a rectifiable, S-homogeneous module. Then
H,(M)=1I"M for all n € IN.

Proof.If U is a uniserial submodule of M such that there is a uniserial
submodule V' for which U Cc V C M, [(V/U) = 1, then, by Lemma 5,
IV = U and hence U C IM. Let U be a uniserial submodule of M.
If {(U)=1,then U= R/I and IU =0¢€ Hi(M). If [(U)=n > 1,
then 0=Uy Cc U; C ... C U, = U is the chain of all submodules of U
and, by Lemma 5, IU = U,—; C Hi(M). Hence H;(M) = IM. Because
H,(M) is again a rectifiable and S-homogeneous module (see the proof of
Theorem 1), Hy,1(M) = Hy(H,(M)) = I(H,(M)) = I[(I"M) = I""' M.
|

Lemma 7. Let M be a rectifiable, S-homogeneous module. Then
har(x 4+ y) > min{hps (), har(y)} for every z,y € M .
If moreover hyr(x) # har(y), then hpr(x +y) = min{ha (z), har(y) }-

Proof. If hy(x) # oo, hy(z) = a, hpy(y) # oo, ha(y) = B, then
x € Hy(M), y€ Hg(M) and z,y € Hy (M), where v = min{«, 3}. Now
we have hy(x+y) > . For a# 3, (e.g. a < (), we have v =« and
if hpy(x+y) >, then x € Hyy1(M), which is a contradiction. Hence

hy(x+y) = .
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If hpy(x) =00 and hps(y) = oo, then hps(x +y) = oo.

If hy(z) # oo, hy(x) = a and hp(y) = oo, then immediately
hy(x +y) = a (since otherwise hps(x +y) > o implies hpy(z) > «, a
contradiction). n

Lemma 8. Let M be a rectifiable, S-homogeneous module and let U
be a wuniserial submodule of M. Then for =,y € U~IU we have

har(x) = har(y).

Proof. Using Lemma 5 we have Rx = U = Ry. [

Let now M be a rectifiable, S-homogeneous module and let U be a
uniserial submodule of M. By Lemma 8, we can denote h(U) = has(x)
for arbitrary x € UNIU. The ordinal hps(U) is called the height of U
in M.

Lemma 9. Let M be a strongly rectifiable, S-homogeneous module. Then
hyr(rz) = hy(x) for all x € M and for all » € RNI .

Proof. Let U = Rx be a uniserial submodule of the strongly rectifiable
module M andlet 0 =Uy C Uy C --- C U, = U be the chain of all
submodules of U. Then z € U,~\U,_1 = U~IU. Since I+ Rr = R, there
are 1 € I, v € R such that x = iz + r'rz and therefore, by Lemma 5,
R(rz) =U, re € U,\NUy—1 = UNIU. |

Theorem 10. Let M be a strongly rectifiable, S-homogeneous module,
2 U € M, and let U;, i € {1,..,n}, be simple submodules of
M. Then there are simple submodules Vi,Va,....,V,, of M such that
U =@, Vi and for every simple submodule Z C @i, U; there
exists ig € {1,...,n} such that hpy(Z) = hp (V).

Proof. We proceed by induction on n. For @fill U; € M we get by
induction @f:ll U, = @?:1 Vi @ Ui+1. Now we distinguish three cases.

Case 1. hpr(Uky1) = har(Vy) for some ' € {1,....,k} and for every
simple submodule Z C Uy @ ... @ Ugy1, thereis ig € {1,...,k} such that
har(Z) = har(Viy). In this case we can put Viiq = Uggq.

Case 2. hpr(Uky1) # har(V;) for all 7 € {1,...,k}. In this case we can
put Viiq1 = Ug4q. For every simple submodule Z C @fill U;, we have Z =
Rz, where z€ Z, 2#0 and z=v+4wvi4 for ve @2‘;1 Vi, Vk+1 € Vg1
For v =0, we have hp(Z) = hpr(Viy1). For vgi1 =0, by the induction
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hypothesis, there exists ig € {1,...,k} such that hy(Z) = har(Vi,). For
v # 0, vgr1 # 0 the module Rv is a uniserial submodule of M and
moreover, Ruv is simple since I(Rv) = 0. By the induction hypothesis,
there exists i € {1,...,k} such that hp(Rv) = ha(Vy). By Lemmas 7
and 8, we get ha(Z) = min{hp (Vyy), har (Vi) }-

Case 3. hpar(Ugt1) = har(Vy) for some ' € {1,...,k} and there exists
a simple submodule T'C Uy @ -+ ® Ugyq such that hp(T) # har(V;) for
all ¢ € {1,...,k}. In this case we can put Vj41 =T and the proof concludes
as in case 2. [

Lemma 11. Let M be a strongly rectifiable, S-homogeneous module, let
N =@}, Ui, where U; are simple submodules of M for all i € {1,...,n}.
Then the set {hy(z) : x € N} s finite.

Proof. For every non-zero element x € N the module Rz is an uniserial
submodule of M, Ix = 0, and therefore Rz is simple. By Theorem 10,

{h]\/[(x) LT E N} = {hM(()),hM(Vl),hM(VQ), ceey hM(Vn)} |

Both Priifer’s theorems, well-known from the theory of abelian groups, hold
also in the class of strongly rectifiable, S-homogeneous modules. Benabdal-
lah and Hattab [2] showed an extension of the first Priifer’s theorem and
of the Kulikov’s criterion for rectifiable modules. They prove, that a rec-
tifiable module M is a direct sum of uniserial submodules if and only if
Soc(M) = U1 Sn, where S; C S C --- and for each n € IN there exists
k, € IN such that S, N Hy, (M) =0.

The next theorem gives an extension of the second Priifer’s theorem for
strongly rectifiable and S-homogeneous modules.

Theorem 12. Let M be a countable generated, strongly rectifiable,
S-homogeneous module. Then M is a direct sum of uniserial submodules

if and only if H,(M)=0.

Proof.If M isa direct sum of uniserial submodules, then, by the Kulikov’s
criterion, Soc(M) = U,en Sn, S1 € S2 € S3 C ... and for every n € IN
there exists ky, € IN such that S, N Hy, (M) = 0. If H,(M) # 0, then
there exists a non-zero element z € H, (M), and therefore, Rz is an
uniserial submodule. Denote Z = Soc(Rx). Then there exists n’ € IN
such that 0 # Z C S,y N Hy, ,(M) = 0, which is a contradiction. Now, let
H,(M)=0, M =3 ;cy Rm;. Put S, =Soc(>_jL; Rm;). By Theorem 10,
there exist simple submodules Wi, ..., W, such that S, = EBi-“:l W; and,
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for every simple submodule U of S, there exists ig € {1,...,k} for which
har(U) = hpr(Wy,). For every @ = 1,...,k, we have hy(W;) < w (since
H,(M)=0). Let k, =14 max{hp(W1),..., aps(Wj)}. By Lemma 8 and
by Theorem 10, S, N Hy, (M) =0 and we use the Kulikov’s criterion for
rectifiable modules (see [2]). n

3 Pure and refined submodules

The concepts of pure and refined submodules are direct analogies of the
corresponding concept in the theory of I-primary modules or rectifiable
modules, respectively, and we show that basic results hold also in the class
of strongly rectifiable, S-homogeneous modules.

Lemma 13. Let M be a strongly rectifiable, S-homogeneous module, let
xg € M be a non-zero element and let ro € R~I. Then, for every integer
m > 0, we have Rxg = I"™xg + Rroxg and hence there exists d € R\I
such that xg = drozg.

Proof. We proceed by induction on m. Because the left ideal I is

maximal, Rxg = Izg + Rrozxg. For every s € R, we have srg =
u(bzg + t'roxg) + trozg € I¥1wg + Rrozg € Rxg, where u € IF, b € I,
t,t' € R. ]

Lemma 14.
1. If I=I?>+aR forsome a €I, then I =I"+aR for every m € IN.
2. If I =12+ Ra for some a €I, then I =1"+ Ra for every m € IN.

Proof.
1. We proceed by induction on m. For m =1 the statement is obvious.
Suppose that I = I"™ +aR for m = k. Then I = I?> + aR =
(I* + aR)I + aR C I*' +al + aR C I*¥!' 4 aR C I and therefore
I =1""1+aR.
2. The proof is similar as in the previous case. [

Lemma 15. Let M be a strongly rectifiable, S-homogeneous module, and
let I=1%+aR for some a€I. Then H,(M)=a"M = I"M for every
mteger n > 0.

Proof. For an element x € M, the module Rz is a uniserial submodule of
M and, by Lemma 5, there is k& > 0 such that I*2 = 0. Thus, by Lemma 14,
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Iz C I*z + aRx C aM. By Lemma 6, further aM = IM = Hy(M). Now,
by induction and by Lemma 6, H,11(M) = Hi(H,(M)) = IH,(M) =
aH,(M) = I" MM = o™t M. [ |

Lemma 16. Let M be a strongly rectifiable, S-homogeneous module, let
I =124+ Ra for some a € I. Then, for every integer k >0, for every non-
zero element x € M and for an element b € R, for which bx € I~ Iz,

there exists an element d € R~I such that dbx = ax.

Proof. By induction on k. For k =0 the lemma follows immediatly from
Lemma 13. For bx € I*t1a~T1¥"2z there is bx # 0, Rz is an uniserial
submodule and, by Lemma 5, there exists an integer m such that Iz = 0.
By Lemma 14, Iz = Raxz and then I*T'z = I*Rax = I*ax, consequently
bxr = bax, where ¥ € I*. By induction, there exists d € R~\I such that
dbx = db'ax = a*(ax) = a* 1. ]

Theorem 17. Let M be a strongly rectifiable, S-homogeneous module, let
I =1%+ Ra for some a € I. Then for every finitely generated submodule
N of M, the set {hpy(x): x € N} is finite.

Proof. We proceed by induction on number of elements which generate
the submodule N. If the submodule N is cyclic, then N is uniserial and
we use Lemma 8. Let N = Zle Rzx; be finitely generated and let the set
{hp(x): = € N} beinfinite. Then there exist y1,y2,ys,... € N, such that
har(y1) < har(y2) < har(ys) < ....Forevery i € IN, y; = ry 1+ -+7r, Tk,
where 7;; € R forall j=1,... k. Using induction we can assume r; ry #
0 for all 4 € IN. Since Rxy is uniserial, there exists n, 0 < n < [(Rxy),
such that the set { i € IN : r;x, € I"zp~ 1"z, 1 is infinite. We
can assume that r;, x; € Iz ~\I""1g;, for all ¢ € IN. By Lemma 16,
for every ¢ € IN there exists d; € R~I such that d;r;,zi = a"xy.
Then diyi - di+1yi+1 S Zf;ll R.’L‘j, because dﬂ’ikxk — di+1r(i+1)kxk = 0.
By Lemmas 7 and 9, hp(diyn — daye) < har(daye — dsys) < ... which
contradicts the induction hypothesis. [ ]

Definition. Let M be a strongly rectifiable, S-homogeneous module.
We say that a submodule N of M is pure in M if H,(M/N) =
(Ho(M)+ N)/N for every ordinal a.

Remark. If a module M is strongly rectifiable and S-homogeneous, then
Hy(M/N) = (Ho(M) + N)/N for every submodule N of M and for
every non-limit ordinal « (by induction and by Lemma 6). We can say
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that the submodule N is pure in M iff H,(M/N)= (Hy(M)+ N)/N
for every limit ordinal «.

Lemma 18. Let M be a strongly rectifiable, S-homogeneous module and
let N be a submodule of M. Then N is pure in M if and only
if for every element x € M~N there is an element y € N such that
har(x 4+ z) < hp(z+y) forall z€ N.

Proof.If N ispurein M and x € M~\N, then x4+ N is a non-zero
element of M/N. If hypn(z + N) = oo, then there is y € N for which
hy(x +y) = oo, If hpyyn(z + N) =, a# oo, then u € Hy(M) and
there exists y € N such that *+y = u and hpy(z +y) > «a. Since
hyyn(z + N) = a, we have hy(z + 2) < o for every z € N. Let the
assumptions of this lemma be valid, let a be a limit ordinal. By Lemma 2,
(Ho(M)+ N)/N C Hy(M/N) for all ordinals «a. Let x+ N € Hy(M/N)
be an element. Then, by the induction hypothesis, for every 8 < a there
is zg € Hg(M) such that =+ N = 23+ N and thereis yg € N
for which = + yg = z3. By the assumption of this Lemma, there exists
y € N such that 8 < hy(z+yg) < hpu(x +y) for every B < a. Hence,
T +y € Npeq Ha(M) = Ho(M). |

Theorem 19. If M s a strongly rectifiable, S-homogeneous module, then
for every ordinal o the submodule Hy(M) is pure in M.

Proof. Let us consider an element = € M\ H,(M). Then hy(z) =0 < a,
where ¢ is an ordinal. Forall z € Hy(M), we have hps(z) > a. Therefore,
by Lemma 7, hps(z+2) =0 = hy(z) and we can choose y = 0. The rest
of the proof follows from Lemma 18. [

Lemma 20. Let M be a strongly rectifiable, S-homogeneous module, and
let K, L be submodules of M such that K C L C M. Then:

1. if L is pure in M, then L/K is pure in M/K;
2. if Kispurein M and L/K is purein M/K, then L is pure in M.

Proof.

1. Let T+ L/K € Ho((M/K)/(L/K)) be an element, where T €
M/K and 7T = z + K, for an element x € M. By Corollary 3,
hyyr(z + L) > «, and then, since L is pure in M, there exist
2 € Hy(M) and | € L for which x =2’ + 1. Then T+ L/K =
(2’ +l+K)+L/K = («/+K)+L/K € (H,(M/K)+L/K)/(L/K), due



14 L. TESKOVA

to (Ho(M)+K)/K C Ho(M/K) by Lemma 2. The opposite inclusion
follows from Lemma 2.

2. Let *+ L € Hy(M/L) be an element, where z € M. Then, by
Corollary 3, (z+ K)+ L/K € Hy(M/K)/(L/K)) = (Ho(M/K) +
L/K)/(L/K), and then there is ' € M for which '+ K € H,(M/K)
and (r+ K)+ L/K = (¢’ + K) + L/K. Now, since K is pure
in M, there exists 2" € H,(M) such that 2/ + K = 2" + K.
Then, since z+ K = (' + K)+ (Il + K), we have ' = 2" + k
and z = 2/ +1+ k' for some k, k' € K, | € L. Futher, we get
x+L=a"4+k+1+k+L=a"+Lec (Hy(M)+ L)/L. The opposite
inclusion is valid by Lemma 2. [

Theorem 21. Let M be a strongly rectifiable, S-homogeneous module and
suppose there is an element a € I such that I = I? + Ra. Then every
finitely generated submodule N of M is pure in M.

Proof. For an element z € M~N we have {hy(z+2): z € N} C
{hpm(u) : w € Rr+ N} and, by Theorem 17, this set is finite. Hence the
set {hy(z+2): z€ N} has a maximal element and the proof is finished
by Lemma 18. [

Lemma 22. Let M = @;c; M; be a strongly rectifiable, S-homogeneous
module, and let N; be a submodule of M; for every i € J. Then
N = @;c;N; is pure in M if and only if N; is pure in M; for all
e J.

Proof. Proof follows immediately from Lemma 2 and Corollary 3. [

Definition. Let N be a submodule of a strongly rectifiable, S-
homogeneous module M. We say that N is refined in M if Ho(M)NN =
H,(N) for all ordinals «.

Theorem 23. Let N be a direct summand of a strongly rectifiable,
S-homogeneous module. Then N is pure and refined in M.

Proof.Let M = N®K be a direct sum, where K, N are submodules of
M. By Lemma 2, H,(N) C H,(M)NN, (Hyo(M)+ N)/N C H,(M/N)
for all ordinals «. Applying Lemma 2 to the projection m: M — N,
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we get hy(x) > a for z € Hy(M)N N. For the exact sequence 0 —

N—M- M/N — 0, there exists a homomorphism ¢: M/N — M
such that i = 17/x. Then, for an element x+ N € Ho(M/N), we have
o(x + N) € Hy(M), by Lemma 2, and hence x4+ N = p(z+ N)+ N €
(Ho(M)+ N)/N. n

Lemma 24. Let M be a strongly rectifiable, S-homogeneous module, let
N be a submodule of M and let o be an ordinal. Then the submodule
N is pure in M if and only if the submodule (N + Hy(M))/Hy(M) is
pure in M/H,(M) and the submodule N N Hs(M) is pure in Hqs(M).

Proof.

1. We first show that N is pure in M. Let C = (M/H,(M))/((N +
oA/ Ho(30) and D = (N + Hl M)/ Ho M)/ (& + Hy AD)/
H,(M)).

Then C/D = M/(N + Ho(M)) = (M/N)/((N + Ho(M))/N). By
Theorem 19, the submodule H, (M) is pure in M, and hence for o < o
we have H,(C) = D. Because, by Theorem 19, H,(C/H,(C)) = 0,
we have H,(C/D) = 0 and thus, by Corollary 3, Hy(M/N) C
(Ho(M) + N)/N.

For « > o, there is an ordinal ( such that o = o + (.
Since N N Hy(M) is pure in H,(M), we have Hg(H,(M)/(N N
Hy(M)) = (Ha(M) + (N 0 H,(M))/(N N Hy(M)). Tt is easy to
show that Hy(M) + (NN Hy(M)) = Hy(M) N (N + Ho(M)), hence
(N Ha(UYN)/(N + HaM)/N) = (N 5 (M)A

Ha(0) )+ Ha(M))/)) = (N + o (1)) (V-+ Hul01) = v

Ha(M) + Hy(M)) /(N + Ha(M)) = Hy (M) /(N + Ha(M)) 0 Hy(M)) =
Ho (M)/(Ho (M) + (N 1, (M))) 2 (Hy (M) (N 01 Hy (M)))/((Ha(M) +
(NOH, (M)))/(NAH, (M))) = (Hy (M)/(NOH, (M)))/ Hs (Hy (M) /(N7
H,(M))). Because the submodule N N H,(M) is pure in H,(M), we
have Hy(H,y (M)/(N 1 Hy (M) = (Ha(Hy (M) + (N 0 Hy (M)))/(N 0
H,(M)) = (Ho(M) + (N N Hy(M)))/(N N Hy(M)). By Theorem 19,
e st HA(((Y + Ha(0)/W)/(N - Ha(M))/N)) =0 and, hercore
(N+Ha(M))/N 2 Ha((N+Hy(M))/N) = Hy(Hy(M/N)) = Ha(M/N).

2.Let N bepurein M andlet a be an ordinal. Then (Hyio(M) +
N)/N = Hyio(M/N) = Ho((H,(M) + N)/N) is pure in (H,(M) +
N)/N and, therefore, Hy(((Hy(M)+N)/N)/((Ho4a(M)+N)/N)) = 0.
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Since Hy(M)/(NNH,(M)) = (Hys(M)+ N)/N, we have ((Hs(M) +
N)/N)/(Hy+a(M) + N)/N) = (Ho(M)/(N N Ho(M)))/((Hota(M) +
(N N Hy(M)))/(N N Hy(M))), hence Ho((Ho(M)/(N N H,(M)))/
(Hy 1o M) + (N 1 H, (M)))/(N A H, (M)))) =0 and then Ho(H, (M),
(NNHy(M))) C (Hp4a(M)+ (NNH;(M)))/(NNHs(M)). The other
inclusion follows from Lemma 2, and thus the submodule NN H,(M) is
pure in H,(M).

For an ordinal a < o, we have, by Theorem 19, H,(M/(Hq(M) +
N)) = Ho((M/N)/Ho(M/N)) = 0. Then Ho(C/D) = Ho((M/Hy(M))/
((N + Ha(M>)/Ha(M))) = Ha(M/(N + Ha(M))) = 0, and
H,(C) C D. Therefore, for all a < o, the condition from the definition of
a pure submodule is satisfied. For an ordinal « > o, an ordinal 3 exists,
such that o = o+ . Then H,((M/H,(M))/((N+H,(M))/Hs(M))) =
Hp((Hy(M/Hy(M))+(N+Hy(M))/Ho(M))/((N+H,(M))/Hy(M))) =
0. Because H,(M/Hy(M)) = (Ho(M) + Ho(M))/H,(M) = 0, the
submodule (N + H,(M))/H,(M) is pure in M/H,(M). |

4 Hill’s modules

Hill’s modules are well-known to yield interesting results, e.g., in the theory
of I-primary modules. In this paper we give an analogous definition in
the class of strongly rectifiable, S-homogeneous modules, and we show that
this concept has analogous properties in this class. Under an additional
assumption that there is an element a € I such that I = I?> 4+ Ra, we
describe the structure of Hill’s modules in Theorem 30.

Definition. Let M be a strongly rectifiable, S-homogeneous module and
let N be a submodule of M. We say that a well-ordered series of its
submodules Ny C N1 C Ny C ... is a pure composite series from N to
M, if:

N =Ny, M = N, for an ordinal o;

N, ispurein M for all ordinals «a < o;
Not1/Ny =2 S for all ordinals « < o3

No =Upcq Np for all limit ordinals a.

Ll A

A pure composite series from N =0 to M is said to be a pure composite
series of the module M.
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Lemma 25. Let M be a strongly rectifiable, S-homogeneous module, let
I = I> + Ra for some a € I and let N be a countable generated
submodule of M. Then the module N has a pure composite series
0=NygC Ny C..CNy=N, suchthat o <w and for every i < a the
submodule N; is pure in M.

Proof. If N = ;. Rgi, then we denote Ng = 0, N, = >, Ryg;
for every m € IN. For every integer n > 0, the module N,ii/N, =
Rgni1 /(Np, N . Rg,+1) is uniserial and we can denote by 0 = Ny C

Ny C ... C Ng, = Np+1/N,, the chain of all submodules of N, 1/N,.
For each j = 0,1,...,k,, there exists a submodule N,, such that
Np;/Nn = Nj, Np C Ny, € Npt1, Npg = Ny, Nk, = Npy1. By Lemma 5,
Npj 1 /Nn; = Njy1/N;j = S and all submodules N,,; are finitely generated.
Then, by Theorem 21, every submodule N, is purein M and alsoin N.
Therefore, the series 0 = Ny C Np, C ... C Noko =N; =Nj, C Ny, C...is
a pure composite series. [ |

Definition. Let M be a strongly rectifiable, S-homogeneous module. A
system N of submodules of M is a Hill’s system, if the following conditions
are satisfied:

if N e NV, then N is purein M;

0eN;

if{NZ‘Z 1€ J} QN, then Zie]Ni EN;

if X is a countable subset of M and N € N, then there exists K €¢ N/
such that N U X C K and the module K/N is countable generated.

A reduced, strongly rectifiable, S-homogeneous module with a Hill’s system
is called a Hill’s module.

Ll e

Theorem 26. Let M be a reduced, countable generated, strongly rectifi-
able, S-homogeneous module. Then M is a Hill’s module and {0, M} s
its Hill’s system.

Proof. Straightforward. [

Theorem 27. A direct summand of a Hill’s module is a Hill’s module.

Proof. Let M be a Hill’s module and let M = A& B be a direct sum
of submodules A, B, let M be a Hill’'s system of the module M. Let
N ={N: N is asubmodule of A for which there exists a module Z € M
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such that Z = N & (Z N B)}. We show that N is the Hill’s system of the
submodule A.

The first condition of the definition of Hill’s system is satisfied by Lemma 22,
the second and the third conditions are obvious. For the fourth condition,
let X be a countable subset of A and let N be a submodule of A
such that there is a module Z € M for which Z = N& (ZnN B). We
denote Zy = Z, Ap = N+ > xRz, By = ZN B. Then Ay/N is
countable generated and for Z € M there exists a module Z; € M
such that Zyp+ Ap € Z; and the module Z;/Z is countable generated,
too. We continue by induction. Suppose that we have modules Z, € M,
A,CA, B,CB, Z,CA,®By, Z+ A,_1C Z,, such that Z,/Z and
A, /N are countable generated, Z,_1 C Z,, A,-1 C A,, Bn,—1 C Bj.
Then there exists a module 7,11 € M, Z, C Z, 41 such that Z,.1/Z is
countable generated and Z + A, C Z,+1. We denote A,11 = m4(Znt1),
B,t1 = m5(Zp41), where w4, wp are the projections determined by the
direct sum M = A® B. Then Z,+1 C An+1 @ Bp+1 and the mapping
©: Znt1/Z — Apt1/N defined by p: 2+ 72 —— my(x)+ N forall x € Z, 4
is an epimorphism and, hence, the module A,,11/N is countable generated.
Let L = U,en, Zn be the union of Z, for all integers n > 0. Then L € M,
L=(AnL)®(BNL) and LNA € N. The module (LNA)/N is countable
generated as an epimorphic image of the countable generated module L/Z.
|

Theorem 28. Let M be a reduced, strongly rectifiable, S-homogeneous
module, and let M = @,;c; M; be a direct sum of submodules M;. Then
M is a Hill’s module if and only if M; are Hill’s modules for all i € J.

Proof. The first implication follows from Theorem 27. Let N; be a Hill’s
system of the module M; for every i € J, and denote N = {N : N
is a submodule of M, N = @,c;N;, where N; € N; for all i € J}.
We show that N is a Hill’s system of M. The first condition of the
definition of a Hill’s system is satisfied by Lemma 22, the second and the
third conditions are obvious. Let X be a countable subset of M, N € N.
Then N = @,c; N;, where N; € N; forall ¢ € J. Since X is a countable
set, J contains a countable subset Jy for which X C P, ;, M;. For every
i € Jy, there exists N/ € N; such that m;(X)UN; C N/ and the module
N!/N; is countable generated (m; are the projections generated by direct
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sum). If we denote

N — N{ for 7 € Jy,
Ol N; for i€ JNJy

and N =3 ,c;N; =@;c;N;, then XUN CN, N eN and the module
N/N = @,c;, N//N; is countable generated. |

Theorem 29. Let M be a reduced, strongly rectifiable, S-homogeneous
module, let o be an ordinal for which M/Hy,(M) is a Hill’s module and
let Hyp1(M)=0. Then M is a Hill’s module.

Proof.Let N denote the Hill’s system of the module M/H,(M) and let us
define M = {N : N is a submodule of M such that (N + H,(M))/Hy(M)
€ N'}. For every N € M, the module (N + H,(M))/H,(M) is pure in
M/Hy(M). The module H,(M) is semisimple, since H, (M) is generated
by uniserial submodules and IH,(M) = H(H,(M)) = Hy+1(M) = 0. The
submodule NNH,(M) is purein H,(M) as a direct summand of H,(M),
therefore, by Lemma 24, the submodule N is pure in M. The second and
the third conditions are obvious. Let X be a countable subset of M, and
let N € M. Then there exists L € N such that {x + H,(M) : z € X}
U(N + Hy(M))/H,(M) C L and the module L/((N + H,(M))/Hy,(M))
is countable generated. If we put L = L/H,(M), where H,(M)C L C M,
then X UN C L and L/(N + Hs(M)) is countable generated. If
this module is generated by the set {l; + (N + H,(M)) : i € IN},
then we put U = > ,cn Rl; and, then, U+ N + H,(M) = L. If the
countable generated module (3",cx Rz)/(3>,ex Rx N N) is generated by
the set {y; + (T ex Rz N N) : i € N}, we can put V = ¥..n Ryi.
Then V 4+ (C,exRx N N) = Y, cxRr and hence V C L. Now
L=L+V =U+N+H;M)+V and we can put Z = N+U + V.
It is obvious that (Z + H,(M))/H,(M) = L € N. Hence, Z € M
and NUX C Z and the module Z/N = (U+4+V)/((U+V)NN) is
countable generated, since U, V are countable generated. The module M
is a Hill’s module. [ |

Theorem 30. Let M be a reduced, strongly rectifiable, S-homogeneous
module, and let I = I? + Ra for some a € I. If M is a Hill’s module,
then M contains a pure composite series.

Proof. Let M be a Hill's system of M, let M = {z,: o <7} beall
elements of M, where 7 is an ordinal. Put Ny = 0. If thereis N, for which
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Ny € M, {2, : 0 < a} C N,, then, by the definition of Hill’s system,
there exists Ngy1 € M such that N, U{zq} C Nyq1 and the module
No+1/Ny is countable generated. Therefore {z,: o < a+ 1} C Nyy;.
If  is a limit ordinal, we put N, = Ug, Ng. By Lemma 25, for every
a < 7, the module N,y1/N, contains a pure composite series. If this
series are 0 = No41,0/Na C Not1,1/Na C ... C Not1,0/Na = Nag1/Na,
where o < w, then, for all i < g, we have Nyy1it1/Nat1,; =S and, by
Lemmas 25 and 20, the submodules N,i1; are pure in M. Hence, all
modules Nq41,; create a pure composite series of M. ]
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