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Abstract

The concept of Boolean filters in p-algebras is introduced. Some prop-
erties of Boolean filters are studied. It is proved that the class of all
Boolean filters BF (L) of a quasi-modular p-algebra L is a bounded dis-
tributive lattice. The Glivenko congruence Φ on a p-algebra L is defined
by (x, y) ∈ Φ iff x∗∗ = y∗∗. Boolean filters [Fa), a ∈ B(L), generated by
the Glivenko congruence classes Fa (where Fa is the congruence class [a]Φ)
are described in a quasi-modular p-algebra L. We observe that the set
FB(L) = {[Fa) : a ∈ B(L)} is a Boolean algebra on its own. A one-one
correspondence between the Boolean filters of a quasi-modular p-algebra L

and the congruences in [Φ,∇] is established. Also some properties of congru-
ences induced by the Boolean filters [Fa), a ∈ B(L) are derived. Finally, we
consider some properties of congruences with respect to the direct products
of Boolean filters.
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